1,053 research outputs found

    1992 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 28th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama and MSFC during the period June 1, 1992 through August 7, 1992. Operated under the auspices of the American Society for Engineering Education, the MSFC program, was well as those at other centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are the 29th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers

    A History of Aerospace Problems, Their Solutions, Their Lessons

    Get PDF
    The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete

    Characterising the dynamic response of ultrasonic cutting devices

    Get PDF
    The current work begins by considering a range of common high power ultrasonic components in order to establish a standardised approach to tool design for optimum performance. The vibration behaviour of tuned components resonating longitudinally at ultrasonic frequencies around 35 kHz is modelled via finite element analysis and measured by experimental model analysis. Significant improvements in experimental validation of the models are achieved by the use of a 3D LDV, which allows modal analysis from both in-plane and out-of-plane measurement, which is critical in proposing alternative designs. The vibration characteristics of complex multiple-component systems used in ultrasonic cutting of food products are also investigated. Commonly, the design approach for ultrasonic systems neglects to account for the mutual effects of physically-coupled components in the system vibration. The design of systems also neglects the nonlinear dynamic effects which are inherent in high power systems due to the nonlinearities of piezoelectric transducers. The first issue is tackled by considering the vibration behaviour of the whole system and the influence of individual components and, particularly, offers design improvements via modification of block horns and cutting blade components, which are modelled and validated. The issue of nonlinearity is addresses by identifying the mechanisms of energy leakage into audible frequencies and characterising the common multimodal responses. For this study, design modifications focused on reducing the number of system modes occurring at frequencies below the tuned system frequency. As a consequence of these approaches, insights for the design of multiple-component systems in general are provided

    Liquid rocket engine turbines

    Get PDF
    Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included

    The 1994 Silver Anniversary of APOLLO 11: From the Moon to the Stars

    Get PDF
    This report summarizes the technology transfer, advanced studies, and research and technology efforts in progress at Marshall Space Flight Center (MSFC) in 1994

    Improved turbine disk design to increase reliability of aircraft jet engines

    Get PDF
    An analytical study was conducted on a bore entry cooled turbine disk for the first stage of the JT8D-17 high pressure turbine which had the potential to improve disk life over existing design. The disk analysis included the consideration of transient and steady state temperature, blade loading, creep, low cycle fatigue, fracture mechanics and manufacturing flaws. The improvement in life of the bore entry cooled turbine disk was determined by comparing it with the existing disk made of both conventional and advanced (Astroloy) disk materials. The improvement in crack initiation life of the Astroloy bore entry cooled disk is 87% and 67% over the existing disk made of Waspaloy and Astroloy, respectively. Improvement in crack propagation life is 124% over the Waspaloy and 465% over the Astroloy disks. The available kinetic energies of disk fragments calculated for the three disks indicate a lower fragment energy level for the bore entry cooled turbine disk
    corecore