1,757 research outputs found

    The Use of Respiratory Effort Improves an ECG-Based Deep Learning Algorithm to Assess Sleep-Disordered Breathing

    Get PDF
    BACKGROUND: Sleep apnea is a prevalent sleep-disordered breathing (SDB) condition that affects a large population worldwide. Research has demonstrated the potential of using electrocardiographic (ECG) signals (heart rate and ECG-derived respiration, EDR) to detect SDB. However, EDR may be a suboptimal replacement for respiration signals.METHODS: We evaluated a previously described ECG-based deep learning algorithm in an independent dataset including 198 patients and compared performance for SDB event detection using thoracic respiratory effort versus EDR. We also evaluated the algorithm in terms of apnea-hypopnea index (AHI) estimation performance, and SDB severity classification based on the estimated AHI.RESULTS: Using respiratory effort instead of EDR, we achieved an improved performance in SDB event detection (F1 score = 0.708), AHI estimation (Spearman's correlation = 0.922), and SDB severity classification (Cohen's kappa of 0.62 was obtained based on AHI).CONCLUSION: Respiratory effort is superior to EDR to assess SDB. Using respiratory effort and ECG, the previously described algorithm achieves good performance in a new dataset from an independent laboratory confirming its adequacy for this task.</p

    Pervasive Detection of Sleep Apnea using Medical Wireless Sensor Networks

    Get PDF
    Abstract-The sleep apnea is a sleep disorder characterized by cessation of respiratory flow (apnea) or a reduction in the flow (hypopnea). This disorder is often invalidating and may in some cases lead to death. During the night, symptoms can include nocturnal choking, heavy snoring, sweating, restless sleep, impotence, and witnessed apnea. As the sleep centers for apnea detection are usually overloaded and inaccessible, an automatic apnea detection algorithm for portable devices is required for inhome detection. In this paper, we propose a lightweight approach for pervasive detection of sleep apnea using Wireless Sensor Networks. The experimental results show that our proposed approach achieves good detection accuracy with low delay and low false alarm rate

    A review of automated sleep disorder detection

    Get PDF
    Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand

    Accurate detection of sleep apnea with long short-term memory network based on RR interval signals

    Get PDF
    Sleep apnea is a common condition that is characterized by sleep-disordered breathing. Worldwide the number of apnea cases has increased and there has been a growing number of patients suffering from apnea complications. Unfortunately, many cases remain undetected, because expensive and inconvenient examination methods are formidable barriers with regard to the diagnostics. Furthermore, treatment monitoring depends on the same methods which also underpin the initial diagnosis; hence issues related to the examination methods cause difficulties with managing sleep apnea as well. Computer-Aided Diagnosis (CAD) systems could be a tool to increase the efficiency and efficacy of diagnosis. To investigate this hypothesis, we designed a deep learning model that classifies beat-to-beat interval traces, medically known as RR intervals, into apnea versus non-apnea. The RR intervals were extracted from Electrocardiogram (ECG) signals contained in the Apnea-ECG benchmark Database. Before feeding the RR intervals to the classification algorithm, the signal was band-pass filtered with an Ornstein–Uhlenbeck third-order Gaussian process. 10-fold cross-validation indicated that the Long Short-Term Memory (LSTM) network has 99.80% accuracy, 99.85% sensitivity, and 99.73% specificity. With hold-out validation, the same network achieved 81.30% accuracy, 59.90% sensitivity, and 91.75% specificity. During the design, we learned that the band-pass filter improved classification accuracy by over 20%. The increased performance resulted from the fact that neural activation functions can process a DC free signal more efficiently. The result is likely transferable to the design of other RR interval based CAD systems, where the filter can help to improve classification performance

    Obstructive Sleep Apnea Detection using Frequency Analysis of Electrocardiographic RR Interval and Machine Learning Algorithms

    Get PDF
    Background: Obstructive Sleep Apnea (OSA) is a respiratory disorder due to obstructive upper airway (mainly in the oropharynx) periodically during sleep. The common examination used to diagnose sleep disorders is Polysomnography (PSG). Diagnose with PSG feels uncomfortable for the patient because the patient’s body is fitted with many sensors. Objective: This study aims to propose an OSA detection using the Fast Fourier Transform (FFT) statistics of electrocardiographic RR Interval (R interval from one peak to the peak of the pulse of the next pulse R) and machine learning algorithms.Material and Methods: In this case-control study, data were taken from the Massachusetts Institute of Technology at Beth Israel Hospital (MIT-BIH) based on the Apnea ECG database (RR Interval). The machine learning algorithms were Linear Discriminant Analysis (LDA), Artificial Neural Network (ANN), K-Nearest Neighbors (K-NN), and Support Vector Machine (SVM). Results: The OSA detection technique was designed and tested, and five features of the FFT were examined, namely mean (f1), Shannon entropy (f2), standard deviation (f3), median (f4), and geometric mean (f5). The OSA detection found the highest performance using ANN. Among the ANN types tested, the ANN with gradient descent backpropagation resulted in the best performance with accuracy, sensitivity, and specificity of 84.64%, 94.21%, and 64.03%, respectively. The lowest performance was found when LDA was applied.  Conclusion: ANN with gradient-descent backpropagation performed higher than LDA, SVM, and KNN for OSA detection

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    QUANTIFICATION OF PRETERM INFANT FEEDING COORDINATION: AN ALGORITHMIC APPROACH

    Get PDF
    Oral feeding competency is a primary requirement for preterm infant hospital release. Currently there is no widely accepted method to objectively measure oral feeding. Feeding consists primarily of the integration of three individual feeding events: sucking, breathing, and swallowing, and the objective of feeding coordination is to minimize aspiration. The purpose of this work was to quantify the infant feeding process from signals obtained during bottle feeding and ultimately develop a measure of feeding coordination. Sucking was measured using a pressure transducer embedded within a modified silicone bottle block. Breathing was measured using a thermistor embedded within nasal cannula, and swallowing was measured through the use of several different piezoelectric sensors. In addition to feeding signals, electrocardiogram (ECG) signals were obtained as an indicator of overall infant behavioral state during feeding. Event detection algorithms for the individual feeding signals were developed and validated, then used for the development of a measurement of feeding coordination. The final suck event detection algorithm was the result of an iterative process that depended on the validity of the signal model. As the model adapted to better represent the data, the accuracy and specificity of the algorithm improved. For the breath signal, however, the primary barrier to effective event detection was significant baseline drift. The frequency components of the baseline drift overlapped significantly with the breath event frequency components, so a time domain solution was developed. Several methods were tested, and it was found that the acceleration vector of the signal provided the most robust representation of the underlying breath signal while minimizing baseline drift. Swallow signal event detection was not possible due to a lack of available data resulting from problems with the consistency of the obtained signal. A robust method was developed for the batch processing of heart rate variability analysis. Finally a method of coordination analysis was developed based on the event detection algorithm outputs. Coordination was measured by determining the percentage of feeding time that consisted of overlapping suck and breath activity

    Sleep Apnea Detection Using Multi-Error-Reduction Classification System with Multiple Bio-Signals.

    Full text link
    INTRODUCTION: Obstructive sleep apnea (OSA) can cause serious health problems such as hypertension or cardiovascular disease. The manual detection of apnea is a time-consuming task, and automatic diagnosis is much more desirable. The contribution of this work is to detect OSA using a multi-error-reduction (MER) classification system with multi-domain features from bio-signals. METHODS: Time-domain, frequency-domain, and non-linear analysis features are extracted from oxygen saturation (SaO2), ECG, airflow, thoracic, and abdominal signals. To analyse the significance of each feature, we design a two-stage feature selection. Stage 1 is the statistical analysis stage, and Stage 2 is the final feature subset selection stage using machine learning methods. In Stage 1, two statistical analyses (the one-way analysis of variance (ANOVA) and the rank-sum test) provide a list of the significance level of each kind of feature. Then, in Stage 2, the support vector machine (SVM) algorithm is used to select a final feature subset based on the significance list. Next, an MER classification system is constructed, which applies a stacking with a structure that consists of base learners and an artificial neural network (ANN) meta-learner. RESULTS: The Sleep Heart Health Study (SHHS) database is used to provide bio-signals. A total of 66 features are extracted. In the experiment that involves a duration parameter, 19 features are selected as the final feature subset because they provide a better and more stable performance. The SVM model shows good performance (accuracy = 81.68%, sensitivity = 97.05%, and specificity = 66.54%). It is also found that classifiers have poor performance when they predict normal events in less than 60 s. In the next experiment stage, the time-window segmentation method with a length of 60s is used. After the above two-stage feature selection procedure, 48 features are selected as the final feature subset that give good performance (accuracy = 90.80%, sensitivity = 93.95%, and specificity = 83.82%). To conduct the classification, Gradient Boosting, CatBoost, Light GBM, and XGBoost are used as base learners, and the ANN is used as the meta-learner. The performance of this MER classification system has the accuracy of 94.66%, the sensitivity of 96.37%, and the specificity of 90.83%
    corecore