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QUANTIFICATION OF PRETERM INFANT FEEDING COORDINATION: 

AN ALGORITHMIC APPROACH 

 

BY PALLAVI RAMNARAIN, PhD. 
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Major Director: DR. PAUL A. WETZEL 
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Oral feeding competency is a primary requirement for preterm infant hospital release. 

Currently there is no widely accepted method to objectively measure oral feeding. Feeding 

consists primarily of the integration of three individual feeding events: sucking, breathing, and 

swallowing, and the objective of feeding coordination is to minimize aspiration. The purpose of 

this work was to quantify the infant feeding process from signals obtained during bottle feeding 

and ultimately develop a measure of feeding coordination. Sucking was measured using a 

pressure transducer embedded within a modified silicone bottle block. Breathing was measured 

using a thermistor embedded within nasal cannula, and swallowing was measured through the 

use of several different piezoelectric sensors. In addition to feeding signals, electrocardiogram 

(ECG) signals were obtained as an indicator of overall infant behavioral state during feeding. 

Event detection algorithms for the individual feeding signals were developed and validated, then 

used for the development of a measurement of feeding coordination. The final suck event 



 
 

 
 

detection algorithm was the result of an iterative process that depended on the validity of the 

signal model. As the model adapted to better represent the data, the accuracy and specificity of 

the algorithm improved. For the breath signal, however, the primary barrier to effective event 

detection was significant baseline drift. The frequency components of the baseline drift 

overlapped significantly with the breath event frequency components, so a time domain solution 

was developed. Several methods were tested, and it was found that the acceleration vector of the 

signal provided the most robust representation of the underlying breath signal while minimizing 

baseline drift. Swallow signal event detection was not possible due to a lack of available data 

resulting from problems with the consistency of the obtained signal. A robust method was 

developed for the batch processing of heart rate variability analysis. Finally a method of 

coordination analysis was developed based on the event detection algorithm outputs. 

Coordination was measured by determining the percentage of feeding time that consisted of 

overlapping suck and breath activity. 
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Introduction 

In 2006 there were 4.6 million recorded infant hospital stays in the United States, of 

which only 8% consisted of preterm infants [1]. However, during the same year, 47% of the total 

cost of infant hospitalizations was spent on preterm infants [1]. This is due in large part to the 

long hospital stay often associated with preterm infancy. The mean length of stay for preterm 

infants is 12.9 days, while term infants have an average length of stay of 1.9 days [1]. The 

American Academy of Pediatrics includes oral feeding competency as a primary criterion for 

hospital discharge for preterm infants [2]. Concurrently, ineffective oral feeding is one of the 

primary reasons preterm infants experience delayed discharges [3]. Many times, complications 

resulting from infant prematurity negatively affect the neurological maturation required for 

feeding control [4]. Keeping preterm infants beyond the time when normal discharge 

requirements are met has been shown to neither reduce post discharge costs nor improve post 

discharge outcomes [5]. With this in mind, it is of the utmost priority to find an appropriate 

quantitative measurement for feeding competency that is reliable.  

A hallmark of competent oral feeding is the coordination of sucking, swallowing, and 

breathing. Safe feeding for preterm infants involves the transference of formula from the oral 

cavity to the gastrointestinal tract with minimal aspiration [6]. This process is complex. It 

involves the use of 26 pairs of muscles, 5 cranial nerve systems, and multiple cervical and 

thoracic segments [7]. All of the involved anatomic regions exist in close proximity and must be 

functionally integrated for coordinated feeding to occur. Stimulation of specific areas can elicit 

muscular activity along reflex pathways [8]. However, the use of “natural” forms of stimulation 
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is preferred because it preserves the physiologic nature of recruitment patterns [9]. These 

patterns are an integral part of the motor learning process. Sometimes the life-saving 

interventions that preterm infants need can compromise the development of effective oromotor 

control [9]. This is because the presence of multiple items in contact with the face and external 

feeding areas of preterm infants can stimulate them in a way that hinders the development of 

proper oromotor patterns, especially for sucking [7].  

The purpose of this project is to create computational algorithms to assess the level of 

coordinated behavior expressed by preterm infants during bottle feeding. However, in order for 

feeding coordination to be properly determined each type of feeding event (suck, swallow and 

breath events) must first be located, making event detection the mandatory first step of 

coordination analyses. After a brief explanation of how the data were acquired, each chapter 

provides an in-depth analysis of the individual feeding signals and heart rate variability. The 

final chapter integrates the output of the event detection algorithms to provide a measurement of 

coordination. 

This project was completed as part of an NIH sponsored biobehavioral interventional 

study called Feeding Readiness in Preterm Infants, referred to as the PRO Study (NIH 

R01NR005182, Pickler, PI). The PRO Study enrolled 109 infants over a period of five years. 

The scope of this project was limited to writing the programs to analyze the collected data. This 

included event detection and classification. The signals of concern included the suck signal, 

breath signal, swallow signal, and electrocardiogram (ECG) signal.  
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Specific Aims 

1. Breath Event Detection 

Sub Aim A was to identify individual breath events. Breath modulation is an important indicator 

of feeding competency. An algorithm was developed to interpret the thermistor output as 

individual breath events.  

2. Suck Event Detection 

Sub Aim B was to identify individual suck events. Infant sucking capability is indicative of oral 

neuromuscular development and is a primary component of feeding coordination. An algorithm 

was developed to parse the output of the Medoff-Cooper Nutritive Sucking Apparatus into 

individual suck events. 

3. Swallow Event Detection 

Sub Aim C was to identify individual swallow events. Swallow observation provides verification 

of transference of food boluses to the stomach. Currently there is no accepted approach to 

measurement of swallow in preterm infants.  

4. Heart Rate Variability Analysis 

Heart rate variability (HRV) is well documented as a state indicator as well as an indicator of the 

maturation of the autonomic nervous system. The aim was to develop an automated approach to 

HRV analysis that enables the batch processing of files.  

5. Event Coordination 

The primary aim of this work was to provide a quantitative measure for the purpose of feeding 

coordination assessment. For the purpose of this work, feeding coordination assessment was 
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based upon patterns in breathing activity and sucking activity, as well as the interactions of these 

functions. 
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Data Acquisition 

Hardware 

All signals were acquired using the BIOPAC MP150, a 16-bit analog to digital converter 

that has 16 analog input channels. All signals were sampled at 1000 Hz. To acquire the breath 

signal, a thermistor (US Sensor Model H1744) embedded within a nasal cannula was used. The 

sucking signal was obtained through the use of a proprietary modified bottle with an embedded 

pressure transducer [10]. Swallow signals were obtained using various piezoelectric sensors, all 

developed by Dymedix. Finally, ECG and SaO2 measurements were obtained using standard 

NICU sensors connected to the Criticare monitoring unit (Scholar III, Criticare Systems, 

Waukesha, WI) (see Figure 1: Data Acquisition Flow Diagram).  

 

 

Figure 1: Data Acquisition Flow Diagram 
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Software 

All post processing was done using a combination of BIOPAC's AcqKnowledge software 

(v. 3.9.1), MATLAB, and proprietary programs written for use in the lab. During data 

acquisition, the BIOPAC ACQKnowlege software provided real-time data displays, while also 

accepting event marker inputs from the data collectors. Event markers consisted of coded 

function keys on the laptop used to mark important points in time. The primary event markers 

were used to mark the beginning and end of feeding intervals. In addition, there were event 

marker keys coded to allow data collectors to mark visually detected feeding events, such as 

sucks or swallows, to aid in later data analysis.  

All data acquired with the BIOPAC are stored in .acq file formats with accompanying 

event files. First, all event files were cleaned to remove any extra event markers. Then the 

feeding periods marked with "begin" and "end" event markers were extracted from the ACQ file 

using a program written by Dr. Wetzel. Finally individual feeding intervals were combined into 

one, continuous file that represents the full feeding time of each feeding observation. This was 

done in DOS (See Figure 2: Software Processing Flow Diagram). 

 

Figure 2: Software Processing Flow Diagram 
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Suck Event Detection 

 Background 

Sucking is the primary form of nutrition acquisition for infants. Infants exhibit two types 

of sucking behavior: nutritive and nonnutritive suck. There is a common assumption that 

nonnutritive sucking assists with infant state modulation [11] and while nonnutritive sucking 

movements form the cornerstone of nutritive sucking movements, nutritive sucking exhibits a 

slower suck cycle and less bursts than nonnutritive sucking [12]. The most significant difference 

between nutritive sucking and nonnutritive sucking is that nutritive suck requires coordination 

with swallow and breath.  

Mature nutritive sucking is composed of two phases: suction and expression [7]. The 

maturation of suction musculature is characterized in the literature through the use of the 

following measures: suction rate, amplitude, the first derivative of the suction signal, and the 

length of suck runs. Suction rate and the first derivative of the suction signal are considered to be 

indicative of the synchrony of the underlying musculature involved in suction. Suction amplitude 

is an indicator of the maximum suction force generated. Suck runs, or bursts, are generally 

defined as being 3 or more events in succession where interevent intervals are less than 2 

seconds [13]. Stability and length of suck runs are indicative of how long an infant can maintain 

the synchronization for effective sucking.   

It is widely believed that sucking behavior changes with maturation, and that this change 

can be used as an indication of maturation [4] [3] [7] [14] [6] [15] [10]. It has been shown that 

feeding outcomes are strongly related to the number of sucks in the first suck burst [16]. Vice & 
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Gewolb found that suck maturation can be divided into three major stages [13]. In the first stage, 

the infant exhibits rapid, patterned, low-amplitude nascent sucking activity. In the second stage 

the shape of suck pressure waveform progresses to irregular deflections at a rate of 2 to 3 events 

per second. In this stage sucking behavior is not necessarily coordinated to or linked with 

swallowing. In the final stage, the suck rate slows to 1 suck per second, the shape of the 

waveform stabilizes, and there is a more regular pairing of suck and swallow events. Barlow, 

however, described suck maturation as consisting of five phases [9]. Phase one is characterized 

by arrhythmic expression with no suction activity present. Phase two consists of the transition to 

rhythmic expression and the appearance of arrhythmic suction activity. In phase three rhythmic 

suction starts to be evident. Phase four is the progression to an alternating pattern of suction and 

expression, and phase five is marked by concomitant increases in suction amplitude and the 

duration of suck bursts. Combined these two different models of suck maturation provide useful 

hallmarks of the progression of suck maturation. 

The development of a reliable measurement methodology to measure sucking would be a 

useful clinical tool to assess the normal development of suck patterns [17]. There have been 

several approaches to measuring sucking in preterm infants. Pickler et al. used a mercury strain 

gage [4]. Miller and Kang used B-mode ultrasound to assess the lingual movements associated 

with suck [11]. Amaizu measured suck through the use of two intranipple catheters connected to 

pressure transducers, which was very similar to the setup used by Vice & Gewolb [6] [13]. All of 

these assessment methods are either invasive or cumbersome.  

Signal Acquisition  

The sucking signal was obtained through the use of a modified nipple block with an 

embedded pressure transducer (see Figure 3: Pressure Transducer Embedded Within Nipple 
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Block). The nipple block was modified to induce laminar flow through the pressure transducer 

for accurate pressure assessments. In addition to containing the pressure transducer, the nipple 

block provided attachment points for standard infant formula reservoirs and for a modified 

silicone nipple. The nipple was modified to contain a center capillary that served as a 

continuation of the nipple block channel to ensure laminar flow. The pressure transducer’s output 

signal was minimally filtered and amplified before acquisition. The BIOPAC MP150 was used 

for data acquisition in conjunction with the associated AcqKnowledge program, which provided 

a real time display of the output signal. The sucking signal was sampled at a rate of 1000 Hz.  

 

 

Figure 3: Pressure Transducer Embedded Within Nipple Block 

Suck Event Characterization Study 

A study was completed to assess the physical characteristics of individual suck events. 

This was done to provide basic quantifiable characteristics for use as event detection parameters. 

Bottle reservoir 

attaches here 

Transducer embedded 

within this silicone chamber 

Bottle nipple 

attaches here 
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A total of 6695 individual measurements were made by hand from 36 different feedings. Each 

event was measured for type and classified into categorical groups by shape (see Figure 4). Type 

A consisted of events comprised of an increase in pressure followed by a decrease in pressure, 

with no change of direction between the initial increase and final decrease. Type B events were 

those where at the peak pressure of the event there existed a change of direction in the signal, 

and Type C events were a specialized subgroup of Type B where the change of direction 

included a return to baseline. From these measurements it was observed that the most commonly 

occurring type of event was Type B (see Figure 5: Representation of Distribution of Measured 

Suck Event Types and Table 1: Distribution of Suck Event Types). The ANOVA showed that 

there was a significant difference between the mean event durations for the three types of events 

(F = 10.97, DF = 2, p < 0.0001).  Tukey’s HSD showed that there was a significant difference 

between the mean event durations of Type A and Type B events. Type B events were found to be 

longer in duration by 48 ms (SE = 10.8, p < 0.0001) than Type A events. However, Type C event 

durations were not found to be statistically significantly different from Type A or Type B (see 

Table 2: Means and Confidence Intervals for Event Durations by Suck Type). 

 

 

 

 

Figure 4: Examples of Suck Event Types 

Suck 

Activity 
Suck 

Activity 

Baseline 

Activity 

Type C Type B Type A 
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Figure 5: Representation of Distribution of Measured Suck Event Types 

Table 1: Distribution of Suck Event Types 

Level  Count Probability 

A 1009 0.15 

B 5353 0.80 

C 333 0.05 

Total 6695 1.00 
 

Table 2: Means and Confidence Intervals for Event Durations by Suck Type 

Level Number Mean Std Error Lower 95% Upper 95% 

A 1009 506.893 9.908 487.47 526.32 

B 5353 554.844 4.302 546.41 563.28 

C 333 520.750 17.247 486.94 554.56 

 

Evolution of the Suck Algorithm 

The suck signal is an approximation of intraoral pressure from the direct result of the 

effects of the pressure transducer characteristics and acquisition hardware. While it is usually a 

stable signal, with little drift, the inherent noise characteristics are inseparable from the 

underlying signal. The signal is comprised of baseline activity and true events (see Figure 4), 

both of which have overlapping frequency components. Baseline activity includes all detected 

pressure activity that cannot be classified as a true suck event. To be classified as a true suck 

event, the event must meet minimum amplitude and duration requirements.  
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Visually, experts described the amplitude requirements as simply “significantly greater 

than baseline”. Duration requirements were implied from the anatomical restrictions and were 

derived from descriptive statements. One such example is the statement “A sucking rate can 

never be as high as 5 sucks per second,” which leads to the constraint that to be a true event, a 

suck must be longer than 200 ms in duration.  

The various attempts at event detection evolved as a function of the understanding of the 

true signal. The first signal model employed envisaged the signal as being composed of a stable 

baseline with distinct, singular events protruding from it. The failure of the first attempts at event 

detection led to an investigation of the true characteristics of the signal, the results of which 

showed that the signal was composed different types of suck events as well as baseline activity 

that resembles suck events on a smaller scale. A deeper understanding of this model led to the 

final event detection algorithm. 

As described previously, there are three main types of suck events. These different event 

types usually exist simultaneously within a single feeding. Their varying characteristics lead to a 

wide range of amplitudes and durations for true suck events, and the overlapping spectrums of 

the baseline activity and sucking activity make the implementation of traditional filtering 

techniques impossible. Also, filtering can introduce amplitude and phase changes that would 

negatively impact the necessary physiologic parameters and coordination analyses.  

The first version of the suck algorithm attempted to determine event onsets and ends from 

the first derivative, or velocity vector, of the signal. Unfortunately the velocity vector proved too 

susceptible to noisy baseline activity and provided a signal in which it was not possible to 

distinguish true events from noise. Since smoothing and filtering were not options, subsequent 

attempts at event detection focused on methods that could be employed on the raw signal. 
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The next attempt at a suck event detection algorithm used a thresholding technique on the 

raw signal. The first thresholding technique involved the use of a moving average window. 

Averages within shorter windows were artificially inflated by the amplitude of suck events, 

while larger windows resulted in too much data loss. Roughly 10 seconds of data were needed in 

order to approximate baseline, and that comprised of a minimum of 1/30
th

 of the data segments.  

The next thresholding attempt involved the use of the overall mean of the signal, or the 

DC value. This is depicted in Figure 6 where the threshold (shown in red) is overlaid on a 

portion of suck data. Green circles mark event onsets while blue circles mark event ends. While 

this thresholding technique resulted in a closer approximation of baseline than the moving 

average threshold, the static threshold value was a poor approximation of baseline when there 

were discrete changes in the signal offset.  

The final approach combined the previous thresholding approaches. Baseline was first 

modeled as the mode of the data in 10 second windows. An event amplitude threshold was then 

set as a combination of the statistical properties of the signal and the calculated baseline. 

Everything below the threshold was zeroed, introducing the assumption that events had to have 

amplitudes above the value of the threshold. Approximate onsets and ends were determined from 

the zeroed signal. Those values were then used to determine true event onsets and ends from the 

original signal. This approach is visually described in Figure 7.  
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Figure 6: Example of Suck Event Detection Using DC Threshold 
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Figure 7: Algorithmic Flow Diagram for Suck Algorithm 

Event Detection Validation 

Preliminary analysis of the suck data showed a very low Type I error rate (mean = 3%), 

resulting in an average event detection rate of 97% (see Table 3: Suck Validation Results). The 

high Type II error rate was found to be the direct result of the combination of event definitions 

(with respect to characteristics like event duration and amplitude) and assumptions incorporated 

in the algorithm and expert inconsistency.  In order to explore the cause for the difference 

Divide Data into 10s 
Windows 

Calculate Mode for 
Each Data Window 

Set Baseline and 
Threshold Values 

Zero Signal Below 
Theshold 

Determine Approximate 
Event Onsets and Ends 

Return to Original 
Signal 

Calculate True Onsets 
and Ends 

Save Event Output File 
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between the number of points the expert detected versus the number of points algorithmically 

detected was found to be an application of inconsistent detection rules by the expert versus the 

absolute application of consistent detection rules in the automated detection. A possible cause of 

the inconsistencies in applied detection criteria may be the validation process. For the validation 

process the expert manually marked and examined sucking signals within the ACQKnowledge 

program. Differences in applied scaling during scrolling can lead to variations in detection 

criteria as events are determined through an inherent visual comparison with the rest of the 

signal. Figure 8 shows an example of expert inconsistency. The highlighted event was identified 

as an event by both the expert and the algorithm. The expert did not identify the following event 

(marked in red) but did identify the third event (marked in green), while the algorithm identified 

both events. The algorithm, however, used absolute values for baseline and threshold 

measurements, which enabled uniform application of detection criteria throughout the signal. 

 

Figure 8: Example of Expert Inconsistency 
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Table 3: Suck Validation Results 

File 
# Expert 

Events 

# Algorithm 

Events 

Matched 

Points 

False 

Positives 

% Type I 

Error 

% Type II 

Error 

03398 42 69 42 27 0 39 

03699 157 195 157 38 0 19 

03799 203 217 203 14 0 6 

03898 288 295 288 7 0 2 

04098 180 210 180 30 0 14 

04398 186 259 186 73 0 28 

04599 192 225 192 33 0 15 

04699 160 153 153 0 4 0 

05098 121 165 121 44 0 27 

05298 153 110 110 0 28 0 

Total 1682 1898 1632 266 3 14 
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Breathe Event Detection 

Background 

Breathing is a vital function intrinsic to the survival of any human being. With preterm 

infants it is an important indicator of maturation and feeding competency, which is a hallmark 

for hospital release. Respiratory patterns in infants vary greatly from adults.  

The increased metabolic rate of newborn mammals, including human infants, necessitates 

an increase in ventilation [18]. This increase in ventilation can result from an increase in tidal 

volume, an increase in breathing frequency, or a combination of the two. All of the options have 

mechanical constraints. An increase in tidal volume results in an increase in the elastic 

component of breathing work and an increase in the distortion of the compliant chest wall. An 

increase in breathing frequency results in an increase in the frictional work of breathing, and it 

requires strenuous efforts during inspiration to adequately ventilate the lungs in a shorter period 

of time. The time constant of respiratory systems in newborn infants is approximately 220 ms 

[18]. The breathing pattern in newborn infants is highly variable. It can consist of occasional 

deep or very shallow breaths, slow breathing periods, rapid bursts, short apnea and interruptions 

of expiratory flow [18].  

Preterm infants switch suddenly between breathing patterns as a function of state of 

consciousness [13]. There are two primary respiratory patterns in preterm infants: regular and 

periodic. Periodic refers to periods of ventilation that are interrupted by brief apnea [13]. Cohen 

et al. established measurements of periodicity as important features to be included in 

classification of the maturation of preterm infants. 
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Respiratory patterns in preterm infants during feeding change as a function of maturation. 

Swallow influences respiration through the shared musculature and anatomical spaces involved. 

At the onset of feedings Vice & Gewolb noted a reduction in breathing rate and tidal volume, 

and as the feeding progressed the respiratory airflow pattern increased in irregularity [13].  

The inherent variations in respiratory patterns necessitate the use of a measuring device 

capable of accurately measuring these dynamic changes. Thermistors provide a semi-

quantitative, indirect way to measure respiration [19]. A thermistor is a device where electric 

resistance varies as a function of temperature [20]. As the speed of airflow passing the thermistor 

increases, the change in the thermistor’s temperature increases and approaches that of the passing 

air [8]. Also, thermistors are recommended by the American Thoracic Society Guidelines for the 

measurement of airflow in pediatric applications [21].   

Thermistors are classified as semi-quantitative because the flow output signal they 

provide is not a direct measurement of actual nasal airflow. Instead it is a combination of nasal 

airflow and the time constant of the sensor. In 1998 Farre et al. found that thermistors could not 

accurately measure actual flow, and that the relationship between the peak to peak amplitude of 

thermistor and respiration signals was nonlinear [22]. They also found that the response of a 

thermistor depends heavily on the airflow pattern, distance from nose and section of nostrils. The 

thermistor output signal is a direct measurement of the change in temperature of the actual 

thermistor, and, with correct placement, an indirect measure of nasal airflow resulting from the 

change in temperature between inspiration and expiration. The amplitude of the output signal is 

not an accurate reflection of actual airflow magnitude because of the effects of the associated 

time constant [21]. The temperature change sensed by a thermistor results from convective heat 

transfer, and Farre et al. found that the true breathing airflow signal and the sensor temperature 
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signal were related by a nonlinear differential equation [22]. They also found that the most 

influential factor affecting the accuracy of the thermistor output was air convection around the 

device.  Respiratory efforts can be inferred from thermistor measurements, but they are really a 

measurement of nasal airflow. It has been found that thermistor measurements significantly 

underestimate apneic events [19]. Also, the presence of a nasal cannula can significantly increase 

the nasal airway resistance in subjects with narrow nares or deviated nasal septum [19]. 

The physical geometry of the thermistor sensor can also play a role in its response time 

and accuracy. Primiano et al. found that when the surface temperature of the thermistor was less 

than the dew point of the gas it was measuring, a small layer of condensation coated the sensor, 

delaying its response time [22]. As the temperature reaches the dew point, the sensor output 

stabilizes until the condensation evaporates, and the resulting dry thermistor tracks temperature 

properly. This is less of concern with the thermistors used in this study as the surface area of the 

sensing portion was so small that any condensation effects were negligible.  

In 2009 Series et al. found that current thermistor technology is accurate enough to detect 

apnea [23]. They also noted, though, that a decrease in thermistor output could be the result of 

either an apnea or mouth breathing. Their definition of an apnea was a 50% decrease in 

thermistor signal for 10 seconds or more and/or an accompanying 2% decrease in SaO2.  

The temperature difference within a thermistor is so small that it is negligible, and as 

such a lumped heat capacity model can be used when modeling its response [24]. Storck found 

that the thermistor temperature does not directly describe the respiratory phase in a meaningful 

way, but its time derivative illustrates respiration well [24]. This is because the derivative 

describes heat flux, which changes more rapidly than temperature.  
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One of the biggest challenges in processing nasal airflow signals obtained from 

thermistors is accurately eliminating artifact. Artifact is evident primarily as signal offset and 

baseline drift, although at times 60 Hz power line interference can also be observed. The closest 

physiologic signal comparison is the electrocardiogram (ECG). ECGs often exhibit similar forms 

of signal noise as respiration. Noise sources that result in baseline wandering in ECG signals 

include power line interference, electrode contact noise, and EMG. Respiration can also 

contribute to ECG baseline drift. Like ECG signals, baseline drift in respiration signals is in-band 

noise, meaning the frequency of the signal drift falls within the frequency range of the actual 

signal itself.  

To investigate these issues, Afsar et al. compared 7 techniques for baseline removal in 

ECG signals: cubic spline curve fitting, linear spline curve fitting, median filtering, finite 

impulse response high pass filtering, adaptive filtering, wavelet adaptive filtering, and empirical 

mode decomposition [25]. For their application wavelet adaptive filtering worked best because 

their goal was to remove baseline drift while preserving the morphology of the ST wave. These 

seven approaches constitute the usual approaches to baseline removal. High pass filtering is not a 

viable solution for this application because the frequency range of the baseline drift overlaps 

with the frequency content of the signal.  Wavelets are inappropriate for this application for the 

same reason.  

In choosing the final method for baseline drift removal, a comparison was done between 

linear approximation, cubic spline approximation, an adaptive filter, a first derivative based 

approach, and a fifth approach described as a second derivative signal modeling approach.  
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Signal Acquisition 

Data was collected from 9 preterm infants during bottle feedings. This data was a subset 

of a larger study of preterm infant feeding (NIH R01NR05182, RH Pickler, PI). All respiratory 

data was collected using thermistors made by U.S. Sensor (model H1744). Figure 9 shows the 

thermistor and Figure 10 is a schematic of the thermistor. The thermistors were embedded in 

modified pediatric nasal cannula. The signal passed through a bridge circuit (see a simplified 

representation in Figure 11: Example Thermistor Bridge Circuit) was then differentially 

amplified through an instrumentation amplifier (Analog Devices, AD-524) then filtered through 

an active 2
nd

 order low pass filter (fc = 10 Hz) before being digitized. The BIOPAC MP150 was 

used to sample the thermistor signals at a rate of 1000 samples/sec. Post processing was done 

using MATLAB (© Mathworks, Ltm). The four methods were compared to a data expert’s 

findings. For this analysis one instance of data was used, file 01901. 

 

 

Figure 9: Photograph of Thermistor [26] 

 

Figure 10: Schematic of Thermistor [26] 
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Figure 11: Example Thermistor Bridge Circuit 

 

 

Figure 12: Depiction of Sensor 

Event Detection Algorithm 

The same event detection algorithm was used to compare all the methods. The algorithm 

sets a threshold based on the statistical properties of the signal, and then zeros the signal below 

that level. All points where the signal crosses the threshold are treated as potential onset of 

Plug 
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breath locations. Maximums for each region where the signal crosses the threshold are 

calculated. These calculated points serve as the event markers, except for instances where the 

points are closer than 200 ms.  

Baseline Drift Attenuation 

Due to the characteristics of this signal, before accurate event detection could be 

achieved, a reliable baseline drift removal technique had to be developed. Four different methods 

of baseline drift attenuation were compared. The first three methods selected all attempted to 

model the baseline drift in order to subtract it. These included a linear approximation, a cubic 

spline interpolated approximation, and a recurrent neural network approach mimicking an 

adaptive filter. The final method for comparison involved calculating the first and second 

derivatives of the signal in order to attenuate the baseline drift.  

Linear Approximation 

Linear approximation of baseline drift was chosen as a method for comparison due to its 

ease of implementation. The raw thermistor output was interpolated using a linear approximation 

that included downsampling to 2 Hz. Downsampling enabled a smoothing of the waveform that 

better approximated the baseline drift. Frequencies above 2 Hz started to mimic the true nasal 

airflow signal, which would result in dramatic signal loss. Once the linear approximation of 

baseline drift was calculated, it was subtracted from the original thermistor output signal, and the 

final result was visually examined to gage the efficacy of the methodology. The event detection 

algorithm was run using the subtracted signal as an input and points were matched to an expert’s 

opinion. 

Figure 13 shows the linear approximation of the thermistor output signal. Unfortunately 

the linear interpolation did not closely approximate the signal drift in all instances (see Figure 
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14: Discongruencies in the Baseline Approximation of the Linearly Interpolated Signal). The 

linearly interpolated signal was subtracted from the original thermistor output signal, resulting in 

a clear removal of the thermistor signal’s DC component (see Figure 15: Comparison of 

Thermistor Output to Subtracted Linear Interpolation). However this approach was not able to 

eliminate the underlying signal drift (see Figure 16: Evident Residual Baseline Drift after 

Subtraction of Linear Approximation).  

 

 

Figure 13: Linear Approximation of Baseline Drift 



 
 

26 
 

 

Figure 14: Discongruencies in the Baseline Approximation of the Linearly Interpolated Signal 

 

Figure 15: Comparison of Thermistor Output to Subtracted Linear Interpolation 
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Figure 16: Evident Residual Baseline Drift after Subtraction of Linear Approximation 

Cubic Spline Approximation 

The cubic spline approximation of baseline drift was chosen as a method for comparison 

because its approximation is more accurate than the linear method due to its incorporation of 

every point of the signal. A cubic spline interpolation of the raw thermistor output signal was 

calculated. The resulting signal was then down sampled to 1 Hz. The sampling rate of the cubic 

spline signal was chosen to be 1 Hz in an attempt to only approximate the baseline wandering 

and exclude the actual respiratory signal. After the cubic spline was calculated, it was subtracted 

from the thermistor output signal, and the resulting waveform was visually examined for 

validity. The subtracted signal was then used as the input for the event detection algorithm, and 

the final output points were matched to those of an expert’s opinion.  

Figure 17 shows the cubic spline approximation of the thermistor output signal. From this 

figure it is clear that this polynomial-based approach was a more accurate approximation method 
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than the linear spline. Figure 18 shows how the subtraction of the cubic spline approximation 

from the original thermistor output signal eliminated the bulk of the thermistor signal’s DC 

component. A closer inspection, though, shows that the baseline drift is still present in the signal, 

although to a much lesser extent than with the linear approximation method (see Figure 19: 

Residual Baseline Drift after Cubic Spline Subtraction).  

 

Figure 17: Cubic Spline Approximation of Baseline Drift 
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Figure 18: Effect of Cubic Spline Subtraction on Thermistor Signal 

 
Figure 19: Residual Baseline Drift after Cubic Spline Subtraction 
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Adaptive Filter (Elman Network) Approximation 

An adaptive filter is a filter that changes its coefficients as a function of the input signal. 

It is self-adjusting and can use many different types of training algorithms. Figure 20 shows a 

standard arrangement for an adaptive filter. The input (x[n]) goes to both an unknown system (H) 

and to the finite impulse response (FIR) filter (W). The filter’s output (y[n]) is compared to the 

unknown system’s output (d[n]), which is the desired signal. An error is calculated (e[n]) and the 

coefficients of the FIR filter are adjusted accordingly.  

 

Figure 20: Diagram of an Adaptive Filter [27] 

The most commonly used form of an adaptive filter uses the least mean-square algorithm. 

That approach was inappropriate for this set of data as it assumes the underlying process is 

stationary and requires that the solution space to be linearly separable. The adaptive filtering 

approach chosen to approximate the underlying baseline wander embedded in the thermistor 

output signal used the Elman neural network architecture. This was chosen because it is a 

recurrent neural network, which makes it suited to handle time series data, and because its 

architecture was developed for the purpose of amplitude detection. Recurrent neural networks 

store information in their hidden nodes that impact subsequent training epochs.  



 
 

31 
 

The goal of the network was to track the gross signal amplitude changes to approximate 

the baseline drift for subsequent removal. Two inputs went to a hidden layer of 10 nodes. The 

inputs were a 10 second sample of the thermistor output signal and an amplitude approximation 

signal that served as the network target. The 10 second data segment was chosen because 

MATLAB was unable to process longer segments of data. The network was trained with the data 

over 1000 epochs, and the final resulting weights were used to approximate the data.  

The neural network did not reach convergence. Convergence was defined as occurring at 

the epoch after which the error rate stayed below 0.01. Figure 21 shows the mean squared error 

of the Elman network plotted by epoch number. The final error rate did not reach the target error 

rate of 0.01. Figure 22 shows the original data, the amplitude approximation signal that served as 

the network target, and the actual network output. From this figure it is clear that the neural 

network approach was not practical for the removal of signal drift. The output of the neural 

network could not be analyzed using the event detection algorithm because a final approximation 

of the baseline drift was never achieved, so it was not possible to subtract the network 

approximation from the original breath signal. 
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Figure 21: Mean Squared Error of the Elman Network Training 

 

Figure 22:  Comparison of the Thermistor Signal, Amplitude Approximation, and Neural 

Network Output 
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Second Derivative Based Signal Modeling Approach  

Breathing is a nonstationary process [28].  As such, breathing signals can be modeled as 

the sum of two sinusoids and a constant.  

Equation 1: Model of Breathing Signal 

       (   )       (   )    

The constant is the DC offset. One sinusoid is the actual breathing waveform, with a 

frequency of approximately 1 Hz, and it is superimposed over the second sinusoid, of a much 

lower frequency, which is the baseline drift. When the first derivative of the signal is calculated 

it removes the DC offset.  

Equation 2: First Derivative of Breathing Signal 

           (   )          (   ) 

The second derivative does not completely remove the baseline drift, but it attenuates the 

amplitude to near zero.  

Equation 3: Second Derivative of Breathing Signal 

          
    (   )      

     (   ) 



 
 

34 
 

Griffiths et al. first explored this model of nasal airflow in 2005 [21]. Figure 23 shows 

example outputs for this approach. From this figure it is clear that the DC component of the 

original nasal airflow signal is removed in the velocity calculation. It is also clear that the 

baseline drift attenuates to near zero with the calculation of the acceleration signal. For these 

reasons, the second derivative modeling approach was selected for the removal of baseline drift 

in the thermistor nasal airflow signals.  

 

Figure 23: Comparison of Each Stage of the Algorithmic Flow  
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Analysis of Accuracy of Second Derivative Signal Modeling Approach 

Figure 24 shows the algorithmic flow used. First the velocity signal was calculated from 

the original digitized thermistor output signal using a 20 point central difference method. The 

velocity signal was then smoothed using a 100 point rectangular window moving average 

technique. The same steps were repeated for the calculation and smoothing of the acceleration 

signal. The number of points chosen in both the derivative and smoothing techniques were 

empirically chosen. The resulting acceleration signal was filtered to remove any remnants of 

high frequency noise with a 10
th

 order Butterworth low pass filter. This filter and order were 

chosen out of the need prevent amplitude distortion while minimizing the amount of introduced 

phase distortion. The filter cutoff frequency was 10 Hz, which was selected to prevent the 

distortion of event transitions, while leaving the bulk of the spectral content of the signal (which 

is primarily from 0 to 2 Hz) unaffected.  The filtered acceleration signal was then used as the 

input to the event detection algorithm previously described. Positive peaks were located as they 

mark the onset of inhalation while negative peaks mark the onset of exhalation. The outputs were 

then compared to an expert’s opinion. A match was described as being within 400 ms of the 

expert detected point. The data files used to test the algorithm were chosen such that each was 

free of any noise source not directly related to the signal acquisition process (free of data 

collection anomalies).  
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Figure 24: Algorithmic Flow 
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Baseline Drift Attenuation Method Comparison Results 

Figure 25 shows the signal outputs at each stage of analysis. It is clear that the velocity 

signal does not contain the signal offset that is contained in the original thermistor output signal. 

Furthermore, the acceleration signal has less baseline drift and resembles the original signal’s 

morphology more accurately, with only a slight phase shift. Table 4 shows a comparison of three 

of the methods described. While the cubic spline approximation approach detected more points 

than the linear approximation method, it had a higher Type I error rate. Type I errors consisted of 

points detected by the expert that were not detected by the algorithm. The most accurate method 

is the second derivative method (Type I Error = 18%).  

Table 5 shows the results for the analysis of accuracy of the second derivative method. 

The differentiated signal modeling approach combined with the described event detection 

algorithm yielded an average accuracy rate of 78%.  

 

 

Figure 25: Comparison of Algorithmic Event Detection Using Second Derivative Method and 

Expert-Detected Points 

 

Table 4: Comparison of Each Method’s Output to Expert’s Findings for File 01901 
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Method 

Expert's 

 # Points 

Detected  

# Points 

% Type I  

Error 

Linear Interpolation 304 251 54% 

Cubic Spline 304 277 59% 

Second Derivative 304 308 18% 

 

Table 5: Analysis of Second Derivative Method 

Subject 

Expert's 

# Points 

Algorithm's 

# Points 

% Type I 

Error 

1205 233 277 4% 

1599 179 187 16% 

01901_alt 304 308 18% 

2098 324 321 17% 

2398 353 260 37% 

2498 240 288 36% 

2599 217 197 21% 

02698_alt 247 240 39% 

2798 320 258 27% 

7112 299 370 8% 

AVG 271.6 270.6 22% 
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Swallow Event Detection 

Pharyngeal Structure and Function 

Effective swallow is crucial to feeding. Swallowing is the transfer of a bolus from the 

oral cavity to the gastrointestinal tract. The act of swallowing is essentially a pumping motion in 

which the tongue can be considered an incompressible muscular hydrostat [29]. There are two 

functional components to a swallow: an oral phase and a pharyngeal phase, also referred to as 

oral transfer and esophageal transfer [29]. The oral phase is considered to be largely voluntary 

and can vary greatly based on factors like taste, environment, hunger, and motivation. In the oral 

phase the bolus is formed in the central groove of the tongue and then propelled backwards. The 

pharyngeal phase is the actual swallow response. Swallowing is a complex motor event. The 

pharyngeal phase is initiated by the elevation and retraction of the soft palate, resulting in the 

closure of the nasopharynx. This is followed by laryngeal displacement and close at the epiglottis 

level. Then the upper esophageal sphincter (UES) must relax in order to open. Effective oral 

feeding requires that enough intrabolus pressure must be generated to open the UES [30]. Only 

after all of these conditions are met can bolus propulsion occur. The pharyngeal phase ends when 

the bolus has cleared the pharynx in its entirety.  

In order for swift and safe swallow to occur, the swallowing mechanism must be an 

adaptive process to accommodate variables like bolus size and respiratory requirements [3]. One 

of the primary requirements for adaptation is that is that the UES opening must accommodate 

bolus size with regard to both opening dimension and duration. The pharynx is mechanically 

optimized for larger bolus volumes. When the tongue is stressed there is an increase in intrabolus 
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pressure and increase in the vigor of bolus expulsion. One of the primary ways bolus size is 

accommodated is through a gradient of tongue actions. However, as bolus volume changes the 

significance of the roles played by the various anatomical components changes as well. With 

larger volumes the tongue plays a more important role in bolus propulsion, while with smaller 

volumes the pharyngeal constrictors are more important.  

There are 5 main functional elements of swallow: laryngeal closure, nasopharyngeal 

closure, UES opening, bolus propulsion, and pharyngeal clearance. Malfunction of any of these 

functional elements leads to different feeding obstructions. Improper laryngeal closure leads to 

aspiration. Incomplete nasopharyngeal closure leads to nasopharyngeal regurgitation. If the UES 

opening does not occur completely or adequately, it can lead to dysphagia, post swallow 

aspiration, or diverticula formation. Improper bolus propulsion leads to a sluggish, misdirected 

bolus, and incomplete pharyngeal clearance leads to post swallow residue and aspiration. 

The inherent variability in the swallow response makes it difficult to establish normative 

values for the duration or the timing of the events that comprise swallow activity. Of all of these 

inconsistencies, the most consistent is the duration and propagation of the contraction by the 

pharyngeal constrictors associated with pharyngeal clearance. For this reason Kahrilas suggests 

that any timeline of the subevents of swallow activity must start with the end of the swallow 

event instead of the beginning [31].  

Earlier literature assumed that swallow induced peristalsis was complete [32]. Since it 

has been found that while persistalsis can be complete in preterm infants, the process remains 

immature at term [32]. Swallowing changes as infants grow older. Rommel et al. (2011) made 

two significant biomechanical observations with respect to how swallowing changes with infant 

age [33]. First there is a reduced pharyngeal peak pressure about 1 cm above the upper 
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esophageal sphincter. Second, they observed changes in the amount of time it takes the UES to 

relax. This indicates the development of consistency in this motor mechanism. An indicator of 

swallow maturation is swallowing rate [6].  

Goldfield et al. found that swallow coordination is organized around patterns of relative 

phase [29]. They also found that the increased and decreased lag between different anatomical 

structures may be a means for changing the efficiency of conversion of muscular effort to 

mechanical action. The tongue and soft palate movements are in antiphase, creating space for the 

bolus while blocking the nasal passages. This activity is believed to enhance the piston like 

movement that initiates swallow [29]. 

Deglutition Apnea 

A primary requirement for safe and effective swallow is the cessation of breath activity. 

This is referred to as the obligatory deglutition apnea [7]. Swallows generally vary in duration 

from around 350 ms to 700 ms [7], so the deglutition apnea must respond and adapt to the factors 

that affect swallow duration. In order for the deglutition apnea to occur, the respiratory generator 

in the brainstem must be temporarily suppressed [7](Barlow). Without proper coordination, the 

deglutition apnea can be risky for infants [6]. To decrease risk, swallow must occur during a safe 

phase of respiration [6]. Unlike term infants, preterm infants favor swallowing during the 

inspiratory phase of respiration, and it is believed that air suction during inspiration helps propel 

the bolus down the pharynx [3]. The general observed pattern for swallow-respiration 

coordination is: inhale, swallow apnea, and exhale (Barlow). This pattern prevents aspiration of 

residual food in the pharynx [7]. 

Swallowing is controlled through a network of cortical areas that share loci with other 

ororhythmic movements, like speech [7]. The stimulation of oral and pharyngeal sensory 
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afferents during suck can stimulate swallow, however in the absence of peripheral sensory input, 

interneurons in the brainstem can generate a basic swallow pattern [7]. In neonates, the control 

mechanisms for the striated and smooth muscle in the esophagus are not fully developed [32].  

Measurement 

Due to anatomical constraints and underdeveloped musculature, measuring swallow in 

infants has been very difficult to achieve. Measurement attempts have included a pressure drum 

placed over the hyoid [6] [3], invasive micomanometry [30], pharyngeal pressure measurements 

made with a pressure transducer embedded within the nasogastric feeding tube [13], multiple 

intraluminal impedance measures (MII) [34], and video fluoroscopy [29]. In addition to these 

methods, Barlow mentions the use of microphones, accelerometers, and motor evoked potentials. 

Most of the measurement methods are invasive and require the placement of a measuring device 

inside of the infant. The non-invasive methods, such as a pressure drum placed over the hyoid, 

have shown inconsistent results at best.  

Currently there is no widely accepted method to accurately measure swallow events with 

repeatability. This is due largely to constraints imposed by the anatomy of the infant. The 

underdeveloped musculature of the preterm infant generates a weak swallow signal. 

Measurement of this weak signal is further complicated by sensor placement limitations. The 

area of interest is on the scale of only a few centimeters. Finally, the skin on the neck of infants 

is so loose that even good placement doesn't ensure proper contact. Often you can see a slippage 

of the sensor in relation to the muscle group generating the signal of interest.  

The first method applied was the use of electromyography (EMG) with electrodes placed 

over the hyoid. While this seemed promising in theory, and in adult models, in application there 
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was too much noise and too high impedance. Also, optimal sensor placement was difficult due to 

the previously stated anatomical realities. 

The next attempted method involved the use of a piezoelectric sensor referred to as "the 

yellow pad" (Dymedix). The yellow pad was able to pick up on what appeared to be a swallow 

signal in low noise environments when coupled with correct sensor placement. The negative 

aspects of the yellow pad were that it was very sensitive to electrical noise and that it was both 

too stiff and too large. The stiffness and size of the yellow pad contributed to a "cuffing" effect, 

where the sensor would form into a cuff-like shape causing decreased contact and inhibiting the 

infant's range of movement. 

After seeing the capabilities and limitations of the yellow pad, other commercially 

available piezoelectric sensors from the same company were explored. The first in this series was 

the Pediatric Snore Sensor, a self-adhesive piezoelectric sensor that was used with a lateral 

orientation directly over the hyoid. In comparison to the yellow pad, the Pediatric Snore Sensor 

was significantly more compliant. The sensor's compliancy coupled with its self-adhesive nature 

enabled better adherence to the region of interest. Unfortunately the Pediatric Snore Sensor 

proved to be a little too small to ensure consistent placement. Also, with the increased 

compliance of the sensor's backing material led to an increase in sensitivity to common noise 

sources. These include motion artifact and electrical interference.  

Ultimately the Adult Snore Sensor was found to be the most viable commercially 

available sensor. Like the Pediatric Snore Sensor, the Adult Snore Sensor was self-adhesive and 

far more compliant than the yellow pad, but unlike the pediatric sensor, the adult sensor was 

larger, enabling more consistent placement across subjects. Furthermore, an exploration into the 

nature of the piezoelectric material led to the realization that optimal sensor orientation was 
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longitudinal (in reference to the main axis of the infant’s body) and slightly offset to the hyoid. 

This sensor and methodology combination yielded the highest quality and most consistent 

swallow signals. Unfortunately, the signal acquired with the Adult Snore Sensor is still largely 

undecipherable. 

There are four main contributing factors to the quality of the swallow signal. These are 

motion artifact, electrical noise, placement, and orientation. Motion artifact is the result of any 

movement unrelated to the movement associated with the signal of interest. Examples include 

neck flexion, extension, or rotation during feeding. Figure 1 shows an example of swallow data 

that likely consists of the underlying true event signal overlaid with various noise sources, 

including motion artifact. Electrical noise comes from various sources. Power line interference is 

readily identifiable and easily addressed. More complex is the fact that the NICU is full of 

wirelessly transmitted electrical signals. The full extent to which they affect the signal is largely 

indeterminable due to the lack of information regarding the specific nature of these signals. 

Orientation and placement of the sensor both impact the time domain shape of the acquired 

signal and subsequently the frequency components. While orientation and placement were 

optimized after the implementation of the Adult Snore Sensor, the various iterations of 

experimental determination for optimum application greatly limit the amount of consistent data 

available for analysis.  

In addition, each iteration of measurement attempts that involved a change in the 

placement of the piezoelectric sensor or its orientation impacted the shape of the signal. Data 

experts were unable to determine unique signal characteristics that could be used for event 

detection parameters. The potential for event determination based on activity in other feeding 

signals, primarily suck and breath signals, was explored. It was found that there were no readily 
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identifiable time domain or frequency domain event characteristics. Due to the lack of event 

characteristics, swallow data was not analyzed.  

 

Figure 26: Example of swallow data. The swallow signal (seen in the second row) often exhibits 

unidentifiable noise that is indistinguishable from the true signal. 

 

Figure 27: Example of swallow data. This is a common example of a noisy acquired swallow 

signal. 
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Heart Rate Variability (HRV) Analysis 

Background 

Heart rate variability (HRV) is a noninvasive measurement of cardiac and autonomic 

nervous system output and functionality. It has been widely used as a measure of behavioral state 

in both clinical and research settings. HRV is not measured directly. Instead it is calculated from 

an electrocardiogram (ECG) signal. The general process involves the repeated detection of a 

specific point of the cardiac wave, and then calculating the distance between each successive 

occurrence. The most commonly used characteristic is the R peak, and the distances between 

each successive occurrence is referred to as R-R intervals. A signal is generated from the R-R 

intervals, and the variation of that signal is what is referred to as heart rate variability. 

Until the 1970s, heart rate variability was considered noise by most scientists [35]. It 

wasn't until after that time that HRV was shown to correlate to the neurological control system.  

Heart rate variability is controlled by several mechanisms, all of which are under the control of 

the autonomic nervous system. These include the respiratory sinus arrhythmia and blood 

pressure Mayer waves as well as overall autonomic responsiveness, or how quickly the 

autonomic nervous system is able to adapt to changes [36]. Another possible influence on HRV 

is the presence of electromagnetic fields produced by infant incubator motors [37]. HRV exhibits 

both short and long term complexities. Nonlinear methods can be used to extract information 

regarding complexity [38]. The average R-R interval is around 350ms in preterm infants, which 

corresponds to a heart rate of about 170 bpm [36]. It has been shown that decelerations in heart 

rate precede acute neonatal illness [36]. Flower et al. found a previously uncharacterized 
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oscillatory heart rate deceleration pattern in preterm infants [36]. The ratio of low frequency to 

high frequency power of the R-R interval signal is often reported as a measure of autonomic 

stability as it represents the balance between the parasympathetic and sympathetic components of 

the autonomic nervous system. Kreuger et al. found that from 28 to 34 weeks the relative 

influence of the parasympathetic branch of the autonomic nervous system on cardiac activity 

increases linearly [39]. 

Methodology 

The algorithmic flow diagram for heart rate variability (HRV) processing is depicted in 

Figure 28. After acquisition, the data was imported into MATLAB where a bandpass filter was 

applied. Filter specifications: FIR, 5-15 Hz, Tukey Window. The filtered files were saved as text 

files.  

Originally R peak extraction was performed using a program called GetHRV, written by 

Dr. Wetzel. This program generated an output file containing all of the R-R intervals as well as 

locations of R Peaks. Each output file had an associated log file that had to be checked for data 

irregularities. When the program reached a portion of data that it could not process, it simply 

stopped running, and the only way to learn of that occurring was to manually examine the log 

files. In instances where the program could not process the entire file, the filtered version of that 

particular data file had to be opened in ACQKnowledge, adjusted manually (if possible), and 

resaved. Then the program had to be rerun for each such file. Finally, all the R-R intervals files 

had to be loaded into MATLAB for frequency analysis. 

Fairly early on it was evident that this process was too time consuming. Instead a 

streamlined approach was developed using a modification of an open source R-peak extraction 

program. The modified R-peak extraction program ran within MATLAB, was able to process 
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files in batch, and generated “.mat” files that were faster to save and load within MATLAB. The 

R-peak detection portion of the program used a template based matching approach, where 

portions of high correlations corresponded to a template match, and therefore an R-peak 

detection. The generated output file consisted of R-R intervals and R-peak locations. This was 

used to create an unevenly sampled secondary signal.  

A cubic spline was applied to the signal to even the sampling distance. During this 

process the signal was upsampled to 200 Hz. The signal was then downsampled to 2 Hz to 

provide the frequency resolution needed to accurately see the shape of power spectral density 

(PSD) curve. Binned frequency analysis was done using the Yule-Walker autoregressive method. 

This method was chosen because the ECG signal is nonperiodic and because it is the most 

prevalent parametric PSD estimation method in literature. The power contained within the low 

frequency and high frequency bins as well as the ratio of low frequency to high frequency were 

computed, and all output measures were written to a single output summary file in text format.  
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Figure 28: Algorithmic Flow Diagram for HRV Analysis 

DOS 

MATLAB 
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Interactions Respiration and HRV 

Respiration is a main contributor to the high frequency peak in HRV power spectra. 

Respiratory induced heart rate variability is referred to as respiratory sinus arrhythmia (RSA). 

Many studies have explored the interaction between respiratory rate and heart rate variability 

[40] [41] [42] [43] [44] [45] [46]. Heart rate generally increases during inspiration and decreases 

during expiration, due to the negative relationship between respiratory rate and vagal power [47]. 

The sino-atrial node (SA node) can be considered a self-sustaining oscillator which resets upon 

receiving a volley of vagal stimuli, prolonging the time between heartbeats [47]. The vagus 

activity is inhibited during inspiration and disinhibited during expiration [47].  

In preterm infants cardiac output is largely dependent on heart rate, and spontaneous 

respiratory efforts are irregular [48]. Rassi and Indic have both illustrated the presence of 

synchronous oscillations of heart rate and respiration in preterm infants, but both have shown 

that the interaction is inconsistent at best [48] [49]. Effective cardiac-respiratory system 

integration is a hallmark of development in preterm infants and is often used as a contributing 

criterion for release from the neonatal intensive care unit [16] [13]. Indic found that the 

respiratory patterns of preterm infants were irregular with a wide range of periodicities 

interspersed with frequent breath apnea [49]. Most studies have focused on time domain 

interactions and only used spectral estimations as secondary measurements of temporal systemic 

relationships [48] [49] [16] [13]. Any relationship between these signals in the time domain 

should also be evident in the frequency domain. As such, the interaction of respiration and HRV 

in the frequency domain was examined for a subset of the subject population. 

Data from the first sample were from five minute observations of 10 preterm infants (9 

African American, 1 Caucasian) obtained during bottle feedings once clinical feeding 
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competency had been achieved. All subjects were in sinus rhythm. Half of the subjects were 

male and half were female. Average weight at time of observation was 2.3 kg. After receiving 

written informed parental consent, data were acquired using methods approved by the VCU IRB. 

The subjects used for this study were a subset of a larger study of preterm infant feeding (NIH 

R01NR005182, Pickler, PI).  

Infant respiration was measured indirectly from nasal airflow measurements obtained 

from a thermistor implanted in nasal cannula. ECG signals were obtained with three electrodes in 

a standard Type I arrangement. The data were acquired using the BIOPAC
TM

 MP150 data 

acquisition system. All data were sampled at a rate of 1000 Hz. The ECG signal was bandpass 

filtered from 5 to 15 Hz to remove signal drift and artifact using the BIOPAC
TM

 AcqKnowledge 

software. R-peaks were identified using a standard moving average threshold approach, 

developed by the authors, and R-R intervals were calculated. The corresponding respiration 

signal was processed in MATLAB. A second derivative modeling approach was used as the 

basis for breath event detection. The second derivative was calculated to eliminate signal offset 

while attenuating the drift to near zero. The resulting waveform was a model of the true nasal 

airflow signal. Breath events were defined as the onset of inhalation. After detection, the time 

between breath events was calculated to generate a signal similar to the R-R interval signal used 

in HRV analysis, called the respiratory tachogram.  

The tachograms are plots of interval duration (seconds) by time of event occurrence 

(seconds).  After DC removal, both the heart and respiratory rate tachograms were interpolated to 

200 Hz using a cubic spline approach (MATLAB function SPLINE) to compensate for the 

uneven spacing of the samples. The signals were then downsampled to 2 Hz. Power spectral 

densities (PSD) were estimated using the Yule-Walker AR parametric estimation method 
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(MATLAB function PYULEAR) with an order of 20 and NFFT = 256. The model order 20 was 

chosen as recommended by ESC/NASPE Task Force [50]. The correlation between the PSD of 

the respiratory rate tachogram and the PSD of the heart rate tachogram was subsequently 

determined for each subject using the MATLAB function CORRCOEF. 

Table 6 shows the means and variances of the infant heart and respiratory rate intervals. 

The average number of heart beats detected during five minutes was N = 825.6 beats, the mean 

R-R interval duration was 0.35 s with an average variance of 56.1 ms
2
. The average number of 

breaths detected was N = 295.9 breaths, the mean inter-breath interval duration was 1.165 s, with 

an average variance of 449.0 ms
2
. 

Table 6: Means and Variances of Infant Heart Rate and Respiratory Rate Intervals 

 HR Interval RR Interval 

 

 

Subject 

N 

[beats] 
Mean [sec] Variance [ms

2
] 

N 

[breaths] 
Mean [sec] Variance [ms

2
] 

01599 855 0.352 1.1 576 0.522 1187 

02098 912 0.328 2.2 321 0.922 31.8 

02398 747 0.402 3.9 368 0.815 23.4 

02698 264 0.374 23.4 187 1.569 440.3 

02798 805 0.383 36.6 232 1.323 199.8 

04598 881 0.348 8.8 426 0.719 36.5 

04898 796 0.386 222.4 154 1.762 1079.5 

05098 1213 0.247 126.5 220 1.342 390.1 

05298 967 0.309 54.8 180 1.650 1017. 

06499 816 0.373 1.7 295 1.030 84.2 

Average: 825.6 0.35 56.1 295.9 1.165 449.0 
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Table 7 shows the correlation between the heart and respiratory rate PSDs . The overall results 

obtained showed statistically significant low correlations for infants (R = 0.44, SD = 0.19, p = 

0.002). 

 

Table 7: Heart Rate PSD and Respiratory Rate PSD Correlations by Subject 

Subject R p 

01599 0.53 <0.0001 

02098 0.73 <0.0001 

02398 0.34 0.0001 

02698 0.51 <0.0001 

02798 0.22 0.0001 

04598 0.26 0.025 

04898 0.78 <0.0001 

05098 0.33 <0.0001 

05298 0.28 0.002 

06499 0.39 <0.0001 

Mean 0.44 0.002 

S.D. 0.19   

 

The physiological relationships between the cardiac and respiratory systems were not 

evident in the frequency domain for this sample of subjects. This section explores why the results 

do not show the relationship between the cardiac and respiratory systems. 

The preterm infants used in this study were performing a physically demanding task, 

bottle feeding, at the time of data collection. The difficulty of the task is manifested in the data in 

the forms of periods of apnea, irregular breathing bursts, and periods of increased heart rate. 

Figures 29 and 30 show the heart and respiratory rate raw tachograms  for two subjects and their 

corresponding PSDs. Subject 02098 and subject 02798 respectively represent examples of high 

and low correlations detected (see Table 7: Heart Rate PSD and Respiratory Rate PSD 

Correlations by Subject). From Figures 29 and 30 it is evident that irregular breathing patterns 
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shifted the frequency content of the respiratory tachogram, resulting in the low correlations 

observed.  

It should be noted that the measurement technique employed for respiration observation, 

mainly the use of a thermistor to measure nasal airflow, has limitations that could affect this data. 

Detected apneic periods may actually be periods of mouth breathing and not true apnea. This is 

evident in the subjects with a low number of breaths detected (see Table 6: Means and Variances 

of Infant Heart Rate and Respiratory Rate Intervals). Also the R-R peak detection algorithm was 

limited by the irregularity of the ECG signal, which may cause extremely high or low R-R 

intervals (see Table 6: Means and Variances of Infant Heart Rate and Respiratory Rate 

Intervals). ECG signal irregularities stem from artifact during signal acquisition.    

Although the correlations observed were statistically significant, they were modest in 

strength. These results were consistent with the limitations of the populations being examined. 

This suggests that the lack of correlation is more likely a result from deviations from normal 

physiologic functioning than from an underlying inherent disintegration of the cardiac and 

respiratory systems. 
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Figure 29: Raw tachograms and PSD comparison for Subject 02798 

Irregular heart rate and respiratory patters led to the low PSD correlation exhibited by this 

subject. 

 

Figure 30: Raw tachograms and PSD comparison for Subject 02098  

A far more regular heart rate and respiration rate led to the high correlation exhibited by this 

subject. 
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Coordination Chapter 

Background 

Feeding coordination can be thought of as existing in two levels. The first level is 

comprised of only the temporal relationships between feeding events, resulting in overall feeding 

ratios that have been shown to be indicative of infant maturation. The second level of 

coordination integrates the temporal relationships between events with an overall state indicator, 

in this case heart-rate variability (HRV), providing a measure of the overall level of effectiveness 

for the safe transference of food to the digestive tract.  

Safe oral feeding is defined as coordination of feeding events such that the aspiration of 

food is minimized [6] [7]. Roughly 40% of the patients in feeding clinics are preterm infants [7]. 

The primary factors that affect preterm feeding are: gestational age, muscle tone, heart rate, 

respiratory state, behavioral state, energy level, and sucking behaviors [4]. It has been found that 

the quantitative assessment of feeding patterns may enable the prediction of general neurological 

impairment as well as resulting feeding dysfunction [13]. As such, feeding patterns have been 

speculated to be a predictive measure of short and long-term feeding and developmental 

difficulties [51] [7]. Better feeding outcomes are most strongly predicted by feeding experiences 

[4]. This is because preterm infants do learn from environmental experiences, so the quality and 

quantity of bottle feeding experience can impact their transition from nasogastric feeding to oral 

feeding [4]. Also, the timing of the introduction of oral feeding has been shown to contribute to 

the organization of early sucking patterns [15].  
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Effective feeding coordination requires the maturation and synchronization of muscles 

within each feeding function as well as the safe coordination between each feeding function. In 

this context, synchronization is limited to include only those interactions of muscles within the 

same group of musculature, as defined by the event (suck, swallow, breathe) [6]. Coordination 

refers to the interactions of muscles between the different musculatures associated with each 

event [6]. Effective feeding coordination can be considered as achieved when the infant can take 

oral feedings with no sign of aspiration, oxygen desaturation, apnea or bradycardia [7]. Typically 

accepted feeding event coordination ratios are (suck:swallow:breath) 1:1:1 or 2:2:1 [7]. 

Successful coordination of suck/swallow/breathe may be an indicator of neurological maturation 

in preterm infants [4]. The three main feeding events are tightly coupled motor behaviors. As 

such, coordination is essential to effective feeding. Suck, swallow, and respiration and their 

coordination mature at different rates [6].  

Traditionally, ex utero maturation has been treated as equivalent to in utero maturation 

despite environmental differences [6]. This trend is slowly reversing through the discovery of 

new research regarding the effect of environmental stimuli on the maturation of feeding skills. 

Feeding maturation in preterm infants has been shown to be enhanced by early introduction to 

oral feeding [15]. The overall maturation process would suggest the presence of a dynamic 

neural control mechanism to regulate the closely occurring feeding events [7].  

Suck-swallow maturation can be used as an index of overall feeding readiness. It consists 

of the ratio of sucks to swallows, and the intervals between peak suction and the onset of 

swallow and between peak expression and the onset of swallow [6]. The presence of an 

immature swallow reflects immature sucking ability and an immature state of the coordination of 

suck/swallow/breathe events [7]. As suck-swallow maturation progresses, there is an increase in 
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the stability of suck rhythms and an increase in the aggregation of suck and swallow events into 

“runs” [51]. This pattern supports the idea that rhythmic stability is a sign of maturation. Suck or 

swallow runs are defined as 3 or more events in succession with interevent intervals being less 

than 2 seconds [51]. The ideal rate of suck and swallow runs is one event per second with an 

event occurrence ratio of 1:1 [6].  

Swallow-breathe maturation is mainly determined by the respiratory phase during which 

swallows occur, with the primary sign of maturation being the occurrence of swallow events 

during safer phases of respiration [6]. The idea behind this is that as preterm infants mature, they 

should have less feeding apnea [7]. Before coordination can be assessed, though, proper event 

detection for the individual feeding events must occur. 

Coordination is defined as the emergence of order from interactions among component 

parts, and it occurs at multiple levels of the motor system [29]. Coordination patterns can be 

based on muscle activation patterns or on kinematic variables. Rhythmically moving components 

tend to influence each other. In accordance with this, Goldfield’s description of coordination as 

being when “components enter stable patterns that persist temporarily under specific conditions, 

resist perturbation under certain kinds of change, and then rapidly reorganize when conditions 

exceed task-specific boundaries” seems to be the most fitting description of infant feeding 

coordination. During infant feeding, the various individual components must occur within rapid 

succession of each other while accommodating changes in respiration, bolus size, and overall 

physiologic state.  

Methodology 

Coordination was defined as overlapping temporal patterns of suck and breath events. 

Three different methods of generating a measure of coordination were investigated before one 
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was chosen. The first method was to examine coordination within instances of burst activity. 

Burst activity was defined as periods of consecutive events in which events are less than 2 

seconds apart. As part of the parameter outputs for both the suck and breath signals bursts were 

determined. This method of coordination assessment was not chosen because it was found that 

suck bursts do not necessarily coincide with breath bursts, making this a measure that could not 

be uniformly defined or applied.  

The second method investigated was to look at the temporal patterns between event 

occurrences across signals. The goal would be to determine some sort of pattern of breath and 

suck event occurrences. This method was not selected because the discrete data generated was 

not of clinical significance.  

The final method, which was ultimately chosen, determined the amount of time spent in 

overlapping events. Within this approach there were two different ways to assess total time spent 

feeding. The first method, referred to as total feeding time, consisted of the sum of the individual 

feeding intervals, as extracted and marked by the event files. The second method, referred to as 

total time spent in feeding activity, consists of a subset of total feeding time defined as the total 

amount of time during which sucking or breathing activity occurred.  

This coordination assessment was made using the validated outputs of the breath and 

suck event detection algorithms, and as such was not independently validated. Binary vectors 

were composed for each feeding behavior. Each vector started as a 1 by n array of zeros (n= 

number of sample points in the original full feeding file). In the suck vector, 1's replaced the 

zeros for all sample points during which sucking activity occurred as determined by the 

previously obtained event onset and end times. In the breath vector, 2's replaced zeros for all 

sample points between an onset of inhalation and an onset of exhalation. A coordination vector 
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was made by adding across the elements of the individual event vectors. In the coordination 

vector zeros correspond to instances where neither sucking nor breath activity is occurring, ones 

correspond to the presence of sucking activity alone, twos correspond to the presence of only 

breath activity, and threes mark the points where suck and breath both occur. From the 

coordination vector a series of event parameters were calculated and saved in an external file. All 

three vectors were combined to make a coordination matrix, which was saved for future analysis. 

The individual event parameter files were combined into a summary text file. This process is 

summarized in Figure 31. 

 

Figure 31: Coordination Flow Diagram 

Results 

Overall, 1101 full feeding files were processed using the coordination algorithm. Files 

were chosen by the availability of both suck and breath event files. This list was further limited 

by the exclusion of all event files that contained less than 3 events. Files were not excluded for 

any other reasons. Of the 1101 files processed, only 85 correspond to discharge feedings, where 

infants were assumed to be competent feeders. Anecdotally, it was observed that there was 

actually a higher percent overlap of feeding activity out of full feeding time in the discharge 

feedings, although assessment of the significance of this difference was biased by the 

disproportionately small sample size of discharge feedings. The mean proportion of time spent in 

feeding activity that was spent in overlapping activity was found to be 0.58 (SD = 0.186), and the 

mean percent of total feeding time spent in overlapping events was found to be 12.6% (SE = 
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0.37). This means that on average over half of the time spent in feeding activity consisted of 

overlapping events while that same amount of time made up less than 13% of the total feeding 

time.  

 

Figure 32: Distribution of Percent Overlap of Full Feeding Time (mean = 12.6, SD = 12.27) 

 

Figure 33: Distribution of Proportion of Time Spent in Overlapping Feeding Activities out of 

Total Time Spent in Feeding Activity (mean = 0.58, SD = 0.186) 
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Discussion 

The primary purpose of this project was to use the event detection outputs to generate a 

measure of coordination, and as such the basis for coordination measurement was the location 

and duration of individual feeding events. In order to assess coordination, event detection 

algorithms were developed. Both the final algorithms for breath and suck event detection were 

the result of an evolutionary process in which signal models were iteratively updated.  

The suck algorithm evolved in relation to the understanding, and therefore modeling, of 

the suck signal. As the nuances and varied characteristics of the signal were established, they 

provided valuable parameters for event detection. Unlike the measurement of the other feeding 

signals, measurement of sucking behavior was largely uniform in implementation. This was 

achieved through the standardized application of a singular measurement device. Despite this 

high level of measurement consistency, there were still data inconsistencies. These were largely 

due to differences in infant sucking patterns and capabilities. In some instances, signal saturation 

occurred when the detected oral cavity pressure exceeded the pressure transducer’s maximum 

detected pressure. In other cases infant sucking activity was so weak that many events were not 

greater than the detection threshold and therefore went undetected.  

While the characterization of suck event types provided insight into favored behaviors, 

there were suck events that were not explored. Of particular interest would be the small events 

with maximum amplitudes below the detection threshold. These events were referred to as 

“nibbles” by the primary data collector. The activity seemed to indicate some transference of 

fluid but without the generation of the pressure necessary for a true suck. This may be a form of 
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expression without suction, or a learned behavior in which an infant uses their tongue to extract 

milk from a bottle nipple without exerting the muscular effort to generate suction pressure.  

There were several factors to consider when examining preterm infant respiration signals 

obtained with thermistors during bottle feedings. One such factor was the heating of sensor 

surroundings from the temperature of the formula used during feeding. This could be a 

contributing factor to signal drift seen by the thermistor. Another factor to consider was the 

placement of the sensor on the infant. If the thermistor was not placed in close proximity to the 

infant’s nostril, the acquired signal would be of very low amplitude and have a low signal to 

noise ratio. Sometimes infant movement during feeding caused the sensor to slip in relation to 

the nostril. The final major factor that affected signal quality before acquisition was the 

placement of the thermistor within the nasal cannula. If the sensing portion of the thermistor was 

too far inside the cannula, the sensor would have a low signal to noise ratio and low signal 

amplitude resulting from a decrease in the variations of the temperature. A portion of the sensing 

part of the thermistor could also end up contained within the hot glue, which would have a 

detrimental effect on the overall function of the sensor by insulating the sensor from variations in 

temperature, increasing thermal mass. If the thermistor was too far outside of the cannula, a lot 

of artifact could be introduced from excessive movement of the sensor or from the sensor not 

being within the flow of airway currents. All of these factors contributed to the quality and 

consistency of the signal that was obtained during data acquisition. 

For the breath event detection algorithm, four methods of baseline removal were 

compared. The results show that the second derivative modeling approach was far more accurate 

than the linear approximation or cubic spline approximation, and the Elman network was never 

able to generate an approximation of baseline drift. While the double differentiation technique 
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was the most effective method at removal of baseline drift, there were several weaknesses to this 

approach. One such weakness was when the original signal had a portion of low amplitude event 

occurrences and a portion of high amplitude even occurrences. Here the algorithm failed to 

detect events because they fell below the detection threshold. To compensate for this weakness, 

the number of events detected could be compared to an average preterm infant respiratory rate. If 

the value is significantly under a reasonable level, then it can be identified as potentially 

erroneous. The second derivative signal can be plotted, and a more appropriate threshold can be 

visually determined and implemented.  

Another weakness of this approach was that there was no way to distinguish true apnea 

from instances of mouth breathing. Also, when the algorithm indicated the presence of an apneic 

episode, there is a chance that it could be that the amplitude of the signal was so low it passed 

below the algorithmic threshold, which can indicate shallow breathing and does not necessarily 

indicate a full cessation of breath. Both of these are due to the placement of the thermistors 

outside of the nasal cavity. While there are other ways to measure breath and respiration, this 

thermistor and nasal cannula technique is the least invasive and least cumbersome. As such it is 

best to address these weaknesses by simply being mindful of them during data analysis and 

interpretation.  

Anecdotally, it was observed that at times the double differentiation of the original signal 

made it possible to detect breath events that were hidden in the noise of the original signal, 

meaning at times this algorithmic approach was able to “salvage” otherwise unusable data. 

Further evaluation of this approach would benefit from a quantification of this phenomenon. 

While this double differentiation modeling and algorithmic event detection approach has its 

downsides, it provided the most effective method of baseline drift removal.  
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Repeatable, reliable measurement of swallow has yet to be achieved using non-invasive 

techniques. While swallow parameters exist in the literature, they are primarily the result of 

invasive measurements, and therefore do not necessarily translate well to external observations. 

In the Data Acquisition section event markers were explained. It is important to note that there 

were several feeding observations where data collectors marked swallows as they were observed 

visually. To mark an event, the event had to be visually confirmed, the appropriate function key 

on the laptop had to be found, and finally pressed. All of these processes occurred after the event 

had occurred. The reaction time from visual confirmation to the motor execution of pressing the 

button was greater than the event duration. This led to an unpredictable degree of time lag 

between the true time of event occurrence and the time marked by the event marker, which made 

the event markers less than useful in post collection data analysis. It is worth noting, however, 

that because visual confirmation of swallow by trained nurses is possible, there remains hope for 

the development of a consistent, non-invasive measurement technique, provided the visual cues 

for swallow detection can be translated into a measurement apparatus.  

Heart rate variability processing proved to be surprisingly difficult. The most glaring 

issue was ECG signal noise. Most commonly this appeared in the form of movement artifact that 

rendered portions of the ECG signal useless through muscle activity overlap and signal 

saturation. Another frequent data issue that occurred was an inversion of the signal, which 

consistently caused failure across all the attempted R-peak detection methods. This happened 

when the order of the two chest leads was reversed. The final source most common source of 

signal noise was baseline drift, but this was easy to attenuate through traditional filtering 

techniques because the frequency components of the signal components of interest (the R-peaks) 

were clearly different than those of the baseline drift. Any time shift that may have been 
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introduced in the application of digital filters during data processing posed no concern to the 

final HRV result. This is because the final measures of HRV were calculated as a descriptive 

summary of the signal in its entirety, as opposed to the individual events. In addition, the timing 

of the individual events did not have to be rematched to feeding events for any type of analysis, 

so minute time shifts did not have the ability to exert larger effects on further steps of data 

processing. A potential way to avoid a lot of the HRV signal processing difficulties would be to 

use a cardiac tachometer. This would be less susceptible to noise while providing a pulse signal 

from which HRV can be determined. Also, the full characteristics of an ECG signal are not 

needed for HRV analysis. HRV only needs one consistently detectable feature of the ECG 

waveform, in this case the R-peaks, to generate a tachogram. Since the tachogram is the signal 

that is ultimately processed for HRV analysis, a cardiac tachometer would provide enough 

information while bypassing the ECG signal processing phase of HRV analysis.  

The interactions between HRV and respiratory rate variability (RRV) were examined as 

another assessment of neurological maturation. In a fully mature infant, one would expect to see 

the cardiac and respiratory systems changing in relation to each other to compensate shifts in 

activity. In this case, however, it was observed that even at discharge feedings in which feeding 

competency was assumed to exist, the correlations between HRV and RRV were relatively low. 

This seemed to indicate that neurologic integration had yet to be fully achieved in these subjects.  

The purpose of this project was to develop a quantifiable measurement of coordination. 

To that end the coordination algorithm proposed achieved this goal by quantifying the degree of 

overlap of feeding events, namely sucks and breaths. There are limitations to this approach, 

however. The most significant limitation stems from the way in which breath events were 

defined. A breath event was defined as starting at the onset of inhalation and ending at the onset 
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of exhalation. This time span can include breath holds or deglutition apneas. It would be more 

accurate to detect two separate breath events, inhalation and exhalation, and count the breath 

activity as occurring only during those particular phases of respiration. Unfortunately, given the 

measurement device employed, this is not possible. The rapid response time of the thermistor 

employed yields a very accurate representation of inhalation and exhalation, which can contain 

rapid changes in signal amplitude. However, the rapid response time of the thermistor prevents it 

from depicting the steady state no flow output during breath holds and deglutition apneas. 

During those instances the response of the thermistor decays and/or rises to ambient temperature. 

Due to the properties of the thermistor employed, the acquired signal most accurately represents 

respiration during periods of rapid or constant breathing and yields less accurate representations 

of breath during periods when there is a high likelihood of cessation of breath for any reason.  

There were several limitations to the event detection algorithms. The suck event detection 

algorithm was limited by its inability to adapt to rapid changes in baseline. It was also limited by 

the static threshold values. Future work related to event detection should include an adaptive 

baseline as well as an adaptive threshold. In addition, an exploration of the different types of 

suck events would be interesting. One study claimed that the change in direction at the peak of 

the Type B and Type C events is the result of pressure changes from swallow activity. Future 

work may be able to identify such events based on duration and then use them as indirect 

markers of swallow activity.  

Another possible future exploration could look at the time decay properties of the 

thermistor used, with a focus on detection of breath holding behavior. Since the thermistor 

measures the change in temperature between inhalation and exhalation, it would be interesting to 

see how rapidly the sensor changes its output in the absence of airflow. 
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Of utmost importance, regarding the event detection attempts, is the development and 

testing of a piezoelectric swallow measuring device. A custom sensor that optimizes stiffness, 

uniform placement, and orientation (to maximize the advantage of the sensing material’s 

mechanical properties), should be developed. In addition, testing must be completed to determine 

time domain characteristics of the swallow signal, like shape and duration. Only after the signal 

can be modeled can an event detection algorithm be developed.  

Immediate future work should look at the interactions of maturity and the coordination 

measure as well as the interactions of maturity and HRV. Those interactions are part of the 

primary goals of the PRO Study. In addition, once significant interactions between maturity and 

other feeding and state variables have been determined, it could be possible to develop some sort 

of scale or indicator of coordination.  

Long term contributions of this work to the literature include providing support to the 

dynamic systems approach (DSA) to the development of cognition and action in early childhood. 

Current theories of development assume an end state before development has even occurred. For 

example, in the case of this work the assumed end state would be a particular pattern of 

coordination. From that it is assumed that all individual subjects are developing towards a 

common goal. This developmental rigidity is also rooted in the use of central pattern generators 

as a means to explain developmental patterns. DSA varies from this approach in that it builds 

upon the principals of chaos theory and nonlinear system dynamics to model and assess the inter-

subject variance in developmental patterns. So while traditional theories of development are 

based on a model in which the infant is a system and developmental variance is noise, DSA 

proposes that this developmental variance is what forms the basis of cognition and as such plays 

a fundamental role in overall development. While the literature regarding preterm infant 
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maturation is still fundamentally rooted in the traditional theoretical framework, more and more 

studies seem to be exploring this variance in development. DSA cannot be considered a 

developmental theory as of yet due to a lack of empirical evidence. This work, however, may 

provide another description of developmental variance with which may support the dynamic 

systems approach to development.   
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Appendix 1: Protocol for Data Pre-Processing 

1. Make a batch file (see ExtractAcq.bat) to run the program in each subdirectory from the 

root directory. 

2. Place the batch file that calls the ExtractACQ program in each subdirectory (see D.bat). 

3. Set the associated .inf file to calculate intervals based on the clean text event files.  

4. Use ZTree to insert “-0000” between the subject i.d. and the “clean.txt” in each clean text 

file’s filename, so that the event files all have the same root name as the associated ACQ 

files.  

5. Open the DOS prompt and direct it to the root directory. 

6. Call the first batch file (ExtractAcq.bat). This should result in the generation of all of the 

event files (in a text format) for each feeding file. Event files are appended with a capital 

E and the number of the event (for example “_E01.txt” would mark the first interval of a 

feeding file). 

7. Return the clean text files to their original naming structure using ZTree. 

8. Open each subdirectory and make a list of the directory contents from the dos prompt.  

9. Use this list to make a concatenation file (see concat.bat) that generates the FULL files, 

consisting of all of the event files concatenated together.  

10. Create a batch file for the root directory that will be used to open each subdirectory and 

run the concatenation file.  
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Appendix 2: Suck Event Detection and Parameter Generation 

Filename: skBatch3.m 

%Last Modified: 10/24/11 

%Changes made: Run E01 and Full files separately (without matching) 

 

directory = 'E:\SkFileCorrection'; 

cd(directory); 

file1 = dir('*_E01.txt'); 

fileF = dir('*_FULL.txt'); 

 

    for n = 1:length(file1); 

        InputFileName = file1(n).name; 

        skMaster7(InputFileName) 

    end 

    for n = 1:length(fileF); 

        FullFileName = fileF(n).name; 

        skMaster8(FullFileName) 

    end 

Filename: skMaster7.m 

function skMaster7(InputFileName) 

%% Get event output for all E01 files 

alldata = load(InputFileName); 

suck = alldata(:,1); 
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events = skIdent3(suck); 

%events = reshape(events,numel(events),1); 

outname = [InputFileName(1:14) '_SuckEvents.mat']; 

%fid = fopen(outname, 'w'); 

%fprintf(fid, '%u\n', events); 

%fclose(fid); 

save(outname, 'events'); 

 

Filename: skMaster8.m 

function skMaster8(FullFileName) 

%% Get event output for all full files 

fid = fopen(FullFileName); 

alldata = textscan(fid,'%f %f %f %f'); 

fclose(fid); 

suck = alldata(:,1); 

suck = cell2mat(suck); 

events = skIdent3(suck); 

%events = reshape(events,numel(events),1); 

outname = [FullFileName(1:14) '_SuckEvents.mat']; 

%fid = fopen(outname, 'w'); 

%fprintf(fid, '%u\n', events); 

%fclose(fid); 

save(outname,'events'); 

Filename: skIdent3.m 

%Last edit: 10/11/11 
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%Chages between skIdent3 and skIdent2: 

%added for loop (line 98) to cell "get rid of overlapping stops/starts" 

%to accommodate instances where a middle event onset is lost during 

%processing. 

%things to add: what if we're missing more than one start value?  

function [events] = skIdent3(suck) 

%% Smoothing 

%w = 201;                                                                   %length of window 

%m = (1:(w-1)/2);                                                           %symmetry of window 

%suck_sm = zeros(length(suck),1); 

%for n = ((((w-1)/2)+1):(length(suck)-((w-1)/2)));                         %point of interest 

%    M1 = suck(n-m); 

%    M2 = suck(n+m); 

%    suck_sm(n) = (sum(M1)+sum(M2)+suck(n))/(w*.001); 

%end 

 

%% Find Baseline 

m = 10000; 

n = round(numel(suck)/10000); 

if round(numel(suck)/10000)*m < numel(suck) 

    n = round(numel(suck)/10000); 

elseif round(numel(suck)/10000)*m > numel(suck) 

    n = round(numel(suck)/10000)-1; 

end 

sk = suck(1:n*m);     
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sk = reshape(sk,m,n); 

a = mode(sk); 

 

%check to make sure there isn't too much baseline variation 

for n2 = 2:(length(a)-1); 

    c = abs(a(n2) - a(n2-1)); 

    if c > 0.5; 

        a(n2) = a(n2-1); 

    end 

end 

 

a = repmat(a,m,1); 

base = reshape(a,m*n,1); 

b = suck((m*n+1):numel(suck)); 

b = ones(length(b),1); 

b = b.*base(numel(base)); 

base = [base; b]; 

 

%% Zero Signal 

thresh = base + std(suck); 

suck_z = suck; 

suck_z(suck_z < thresh) = 0; 

 

 

%% Zero Begining & End of signal 
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suck_z(1) = 0; 

suck_z(end)=0; 

 

%% Detect Onsets & Ends (without for loops) 

 

a = ~suck_z; 

a = diff(a); 

onsets = find(a == -1); 

ends = find(a == 1); 

 

%% Find true event starts & stops 

start = zeros(length(suck),1); 

for n = 1:length(onsets); %indexes onsets 

    ref = onsets(n); %first reference point is the first value in onsets 

    for m = 1:ref; %indexes points from beginning of signal to reference point 

        if ref==1; % if the first point in onsets is the first sample point, the first start is the first 

sample point 

            start(ref) = 1; 

        elseif suck(ref) > suck(ref-1);  %if the signal value at the reference point is greater than the 

point before it 

            ref = ref-1; %shift the reference point one position left 

        elseif suck(ref)<=suck(ref-1); %if the signal value at the reference point is greater than or 

equal to the preceding point 

            start(ref-1)=1; %mark a start at the preceding point 

        end 

    end 
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end 

 

stop = zeros(length(suck),1); 

for n = 1:length(ends); 

    ref = ends(n); 

    for m = 1:ref; 

        if ref==length(suck); 

            stop(ref) = 1; 

        elseif suck(ref) > suck(ref+1); 

            ref = ref+1; 

        elseif suck(ref)<=suck(ref+1); 

            stop(ref+1)=1; 

         

        end 

    end 

end 

 

%% get rid of overlapping stops/starts 

%introduces the condition that one event must end before another begins 

e=find(start); 

f=find(stop); 

if length(e) == length(f) 

    events = [find(start) find(stop) find(stop)-find(start)]; 

elseif length(e) < length(f) 

    for n3 = 1:length(e); %added on 10/11/11 
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        if e(n3) < f(n3); 

            f(n3) = f(n3); 

        elseif e(n3) >= f(n3); % what if we're missing more than one value? 

            f(n3) = f(n3+1); 

        end 

    end 

    f = f(1:length(e)); 

    events = [e f f-e]; 

elseif length(e) > length(f) 

    e = e(1:length(f)); 

    events = [e f f-e]; 

end 

a = events(2:end,1); 

b = events(1:(end-1),2); 

c=a-b; 

c = c<0; 

events(find(c)+1,1) = events(c,2); 

 

%% Push Stops to next Start during burst sucking activity 

%introduces the condition that events less than 1s apart are continuous 

o = events(1:(length(events)-1),2); 

p = events(2:length(events),1); 

q = find(p-o<1000); 

r = q+1; 

events(q,2) = events(r,1); 
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%% Get rid of all events < 200 ms 

%introduces assumption that event last a minimum of 200ms 

events = events(events(:,3)>200,:); 

Filename: skParamBatch.m 

%This is the batch processing file for calculating all of the suck 

%physiologic parameters from the suck event files. Calls functions 

%"suckparam1" and "suckParam2". 

%Input: suck event files 

%Output: parameter files 

%Last Edit: 4/27/11 

 

directory = 'E:\SkFileCorrection'; 

cd(directory); 

file1 = dir('*_E01_SuckEvents.mat'); 

fileF = dir('*_FUL_SuckEvents.mat'); 

 

for n = 1:length(file1); 

    InputFileName = file1(n).name; 

    suckparam3(InputFileName); 

end 

 

for n = 1:length(fileF); 

    FullFileName = fileF(n).name; 

    suckParam4(FullFileName); 
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end 

Filename: suckParam4.m 

%% suckParam4 

%Suck Parameters - Full File 

%calculates  parameters for: 

%total number of sucks 

%sucking duration (ms) 

% # bursts 

% #sk/burst 

% mean burst duration 

 

%Last Edit: 10/7/11 

%changes: load function, input data type (.mat) 

 

%% Function 

function suckParam4(FullFileName) 

%% get data 

events = load(FullFileName); 

events = events.events; 

 

%% fix event durations 

events(:,3) = events(:,2)- events(:,1); 

 

%% total number of sucks 

tot_sk = length(events(:,1)); 
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%% sucking duration 

suck_dur = sum(events(:,3)); 

 

%% find bursts 

if tot_sk <= 2; 

    num_bur = 0; 

    sk_per_bur = NaN; 

    mean_bur_dur = NaN; 

elseif tot_sk > 2; 

    o = events(1:(length(events)-1),2); %event ends 

    p = events(2:length(events),1); %event starts following previous event ends 

    %r = find(p-o < 2000); %finds events that are less than 2s apart 

    %s = diff(r)>1; %marks burst borders 

    s = find(p-o > 2000); %finds where the distance from one end to the next start is greater than 

2s 

    burStart = events((s+1),1); 

    burStart = [events(1,1); burStart]; 

    burEnd = events(s,2); 

    burEnd = [burEnd; events(length(events),2)]; 

 

    % number of bursts 

    num_bur = length(burStart); 

 

    % number of sucks/burst 
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    sk_per_bur = length(events)/num_bur; 

 

    % mean burst duration 

    mean_bur_dur = mean(burEnd-burStart); 

end 

%% write output files 

skParam = [tot_sk suck_dur num_bur sk_per_bur mean_bur_dur]; 

outname = [FullFileName(1:14) '_SuckParam.txt']; 

fid = fopen(outname, 'w'); 

fprintf(fid, '%f %f %f %f %f\n', skParam); 

fclose(fid); 
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Appendix 3: Breath Event Detection and Parameter Generation 

Filename: BreathProc2.m 

%% Breath Event File Generator & parameter fix 

%Last Updated: 2/6/12 

 

%% Directory Setup 

files = dir('*_FULL.txt'); 

load bwfilter.mat 

 

%% Batch Processing 

for n=1:numel(files); 

     

 InputFileName=files(n).name; 

  

 result = importdata(InputFileName); 

     

    colnum = length(result(1,:)'); 

 if colnum == 4 

  result = result(:,3); 

 elseif colnum == 5 

  result = result(:,4); 

 end 
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 %% Breath Processing Algorithm (Double Differentiation) 

     

    n = (11:length(result)-10); 

    vel = (result(n+10)-result(n-10))/(20*.001); 

     

 %vmovavg 

    w = 101; 

    m = (1:(w-1)/2);                                                            

    vavg = zeros(length(vel),1); 

    for n = ((((w-1)/2)+1):(length(vel)-((w-1)/2))); 

        M1 = vel(n-m); 

        M2 = vel(n+m); 

        vavg(n) = (sum(M1)+sum(M2)+vel(n))/(w*.001); 

    end 

 

    n = (2:length(vavg)-1); 

    acc = (vavg(n-1)-vavg(n+1))/(8*.001); 

 

    %movavg 

    w = 101; 

    m = (1:(w-1)/2); 

    avg = zeros(length(acc),1); 

    for n = ((((w-1)/2)+1):(length(acc)-((w-1)/2))); 

        M1 = acc(n-m); 
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        M2 = acc(n+m); 

        avg(n) = (sum(M1)+sum(M2)+acc(n))/(w*.001); 

    end 

 

    avg_filt = filter(bwfilter,avg); 

 

 %% Event Detection: Onset of Inhalation 

    %combined breathmax5 and breaths7 

 

    maxis = ones(length(avg_filt),1); 

    maxs = zeros(length(avg_filt),1); 

    minis = ones(length(avg_filt),1); 

    mins = zeros(length(avg_filt),1); 

 

    center = mean(avg_filt); 

    upper_thresh = center + std(avg_filt); 

    lower_thresh = center - std(avg_filt); 

 

    for n = (1:length(avg_filt)); 

        if avg_filt(n) < upper_thresh %threshold 

            maxis(n) = 0; 

        end 

    end 

     a = find(maxis); %indices of avg where there is probably a maximum 

    b = diff(a); %find breaks between max segments  
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    m = (1:length(b)); 

    d = find(b(m)~=1); 

    e = d-1; 

    e = e'; 

    e = [e (length(a))];  

    e = a(e);%interval end 

    f = d + 1; 

    f = f'; 

    f = [1 f];  

    f = a(f);%interval begin 

 for m = (1:length(f)); 

  x = avg_filt(f(m):e(m)); 

        y = max(x); 

  ind = find(x==y); 

  maxs(f(m)+ind) = 1; 

 end 

  

 breath = find(maxs); 

    breath = breath(diff(breath)>200); 

  

 %sequential exhalation onset detection 

  

 for o = 1:(length(breath)); 

   

  if o < length(breath); 
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   sig = (avg_filt(breath(o):breath(o+1))); 

   z = min(sig); 

   ind2 = find(sig==z); 

   mins(breath(o)+ind2) = 1; 

  elseif o == (length(breath)); 

   sig = (avg_filt(breath(o):length(avg_filt))); 

   z = min(sig); 

   ind2 = find(sig==z); 

   mins(breath(o)+ind2) = 1; 

  end 

   

 end 

  

 breath2 = find(mins); 

    events = [breath breath2]; 

    %output file 

    name = InputFileName(1:15); 

 name = [name '_BrEvent']; 

    save(name,'events'); 

 

 %% Rob's Function 

    %column names: 

'#Breaths','#BreathBursts','AvgBreaths/Burst','MeanBurstDur','IBIRange','IBIMean','IBIStdDev','

1stOnset','1stBreaths/Burst','1stBurstDur','5minBreaths/Burst','5minMeanBurstDur' 

  

 %Total Feeding Statistics 
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 BreathParam = zeros(1,12); 

 %numBreaths = length(breath); 

    interval = breath(2:end)-breath(1:end-1); 

    bursts = find(interval>=2000); 

    if bursts~=0 

        totBursts = length(bursts(:))-1; 

        numBreaths = length(breath((bursts(1)+1):bursts(end))); 

        BrPerBurst = numBreaths/totBursts; 

        avgBstDur = mean(breath(bursts(2:end))-breath(bursts(1:end-1))); 

        IBIs = interval(bursts(:)); 

        IBIRange = max(IBIs)-min(IBIs); 

        IBIMean = mean(IBIs); 

        IBIStdDev = std(IBIs); 

        %BreathParam(1:7) = 

(numBreaths,totBursts,BrPerBurst,avgBstDur,IBIRange,IBIMean,IBIStdDev); 

        %First Burst Statistics 

        onset1 = breath(bursts(1)+1)-breath(1); 

        BrPerBurst1 = bursts(2)-bursts(1); 

        BurstDur1 = breath(bursts(2))-breath(bursts(1)+1); 

        %BreathParam(8:10) = (onset1,BrPerBurst1,BurstDur1); 

    end 

 %First Five Minutes Statistics 

 E01_name = InputFileName(1:10); 

 E01_name = [E01_name '_E01.txt']; 

 E01 = load(E01_name); 
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 E01_end = length(E01(:,1)); 

  

    fiveMin = 0; 

    if (breath(end)-breath(1)) > E01_end 

        for i = 2:length(breath) 

            if fiveMin == 0 

                dur = breath(i)-breath(1); 

                if dur > E01_end 

                    fiveMin = i; 

                end 

            end 

        end 

        bursts5 = find(interval(1:fiveMin)>2000); 

        BrPerBurst5 = length(breath(bursts5(1)+1:bursts5(end)))/(length(bursts5(:))-1); 

        avgBurstDur5 = mean(breath(bursts5(2:end))-breath(bursts5(1:end-1))); 

        %BreathParam(11:12) = {BrPerBurst5,avgBurstDur5}; 

    else 

        %BreathParam(11:12) = (NaN,NaN); 

  BrPerBurst5 = NaN; 

  avgBurstDur5 = NaN; 

    end 

 %end Rob's Function 

 

 parameters = [numBreaths totBursts BrPerBurst avgBstDur IBIRange IBIMean 

IBIStdDev onset1 BrPerBurst1 BurstDur1 BrPerBurst5 avgBurstDur5]; 
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 namebeforedot = InputFileName(1:15); 

 outname = [namebeforedot '_BreathParam.txt']; 

    fid = fopen(outname,  'w'); 

    fprintf(fid, '%f %f %f %f %f %f %f %f %f %f %f %f\n', parameters); 

    fclose(fid); 

  

end 

Filename: Breath.m 

%% Directory Setup 

%files = dir('*.txt') in command window 

%load bwfilter.mat 

FULL = files(142:end); 

%assembles sampling pool 

 

%% Batch Processing by 'files' 

for n=1:numel(FULL); 

     

    InputFileName=FULL(n).name; 

    result = importdata(InputFileName); 

    result = result(:,3); 

    %specifiying the column for BreathFilter 

    

    n = (11:length(result)-10); 

    vel = (result(n+10)-result(n-10))/(20*.001); 
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%% Start of Breath Processing Algorithm 

%vmovavg 

    w = 101; 

    m = (1:(w-1)/2);                                                            

    vavg = zeros(length(vel),1); 

    for n = ((((w-1)/2)+1):(length(vel)-((w-1)/2))); 

        M1 = vel(n-m); 

        M2 = vel(n+m); 

        vavg(n) = (sum(M1)+sum(M2)+vel(n))/(w*.001); 

    end 

 

    n = (2:length(vavg)-1); 

    acc = (vavg(n-1)-vavg(n+1))/(8*.001); 

 

    %movavg 

    w = 101; 

    m = (1:(w-1)/2); 

    avg = zeros(length(acc),1); 

    for n = ((((w-1)/2)+1):(length(acc)-((w-1)/2))); 

        M1 = acc(n-m); 

        M2 = acc(n+m); 

        avg(n) = (sum(M1)+sum(M2)+acc(n))/(w*.001); 

    end 

 

    avg_filt = filter(bwfilter,avg); 
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%breathmax5 

    maxis = ones(length(avg_filt),1); 

    maxs = zeros(length(avg_filt),1); 

    center = mean(avg_filt); 

    thresh = center + std(avg_filt); 

    for n = (1:length(avg_filt)); 

        if avg_filt(n) < thresh %threshold 

            maxis(n) = 0; 

        end 

    end 

    a = find(maxis); %indices of avg where there is probably a maximum 

    b = diff(a); %find breaks between max segments  

    m = (1:length(b)); 

    d = find(b(m)~=1); 

    e = d-1; 

    e = e'; 

    e = [e (length(a))]; %interval end terms 

    e = a(e); 

    f = d + 1; 

    f = f'; 

    f = [1 f]; %interval begin terms 

    f = a(f); 

    for m = (1:length(f)); 

        x = avg(f(m):e(m)); 
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        y = max(x); 

        for l = (1:length(x)); 

            if x(l) == y 

    for p = 0:200; 

                    if (f(m)-1)+l < 200; 

                        maxs((f(m)-1)+l) = 1; 

                    elseif maxs(((f(m)-1)+l)-p) == 0; 

      maxs((f(m)-1)+l) = 1; 

     end 

    end  

            end 

        end 

    end 

    breath = find(maxs); 

 

%Rob's Function 

    BreathParam = cell(2,12);  

    BreathParam(1,1:12) = 

{'#Breaths','#BreathBursts','AvgBreaths/Burst','MeanBurstDur','IBIRange','IBIMean','IBIStdDev'

,'1stOnset','1stBreaths/Burst','1stBurstDur','5minBreaths/Burst','5minMeanBurstDur'}; 

%Total Feeding Statistics 

%numBreaths = length(breath); 

    interval = breath(2:end)-breath(1:end-1); 

    bursts = find(interval>=2000); 

    if bursts~=0 

        totBursts = length(bursts(:))-1; 
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        numBreaths = length(breath((bursts(1)+1):bursts(end))); 

        BrPerBurst = numBreaths/totBursts; 

        avgBstDur = mean(breath(bursts(2:end))-breath(bursts(1:end-1))); 

        IBIs = interval(bursts(:)); 

        IBIRange = max(IBIs)-min(IBIs); 

        IBIMean = mean(IBIs); 

        IBIStdDev = std(IBIs); 

        BreathParam(2,1:7) = 

{numBreaths,totBursts,BrPerBurst,avgBstDur,IBIRange,IBIMean,IBIStdDev}; 

        %First Burst Statistics 

        onset1 = breath(bursts(1)+1)-breath(1); 

        BrPerBurst1 = bursts(2)-bursts(1); 

        BurstDur1 = breath(bursts(2))-breath(bursts(1)+1); 

        BreathParam(2,8:10) = {onset1,BrPerBurst1,BurstDur1}; 

    end 

%First Five Minutes Statistics 

    fiveMin = 0; 

    if (breath(end)-breath(1)) > 300000 

        for i = 2:length(breath) 

            if fiveMin == 0 

                dur = breath(i)-breath(1); 

                if dur > 300000 

                    fiveMin = i; 

                end 

            end 
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        end 

        bursts5 = find(interval(1:fiveMin)>2000); 

        BrPerBurst5 = length(breath(bursts5(1)+1:bursts5(end)))/(length(bursts5(:))-1); 

        avgBurstDur5 = mean(breath(bursts5(2:end))-breath(bursts5(1:end-1))); 

        BreathParam(2,11:12) = {BrPerBurst5,avgBurstDur5}; 

    else 

        BreathParam(2,11:12) = {'Not 5 Mins. Long!','Not 5 Mins. Long!'}; 

    end 

%end Rob's Function 

 

parameters = [numBreaths totBursts BrPerBurst avgBstDur IBIRange IBIMean IBIStdDev 

onset1 BrPerBurst1 BurstDur1 BrPerBurst5 avgBurstDur5]; 

  format bank 

  parameters; 

namebeforedot = InputFileName(1:16); 

    outname = [namebeforedot '_BreathParam.txt']; 

    %save(outname, 'parameters', '-ascii'); TOOK THIS OUT 

    fid = fopen(outname,  'w'); 

    fprintf(fid, '%f %f %f %f %f %f %f %f %f %f %f %f\n', parameters); 

    fclose(fid); 

  

end 
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Appendix 4: Heart Rate Variability Analysis & Parameter Generation 

Filename: hrvProc.m 

%Batch Processing File 

 

%Calls subfunction "detectBeatsPR" 

 

files = dir('*_E01.mat'); %Change input file type to process 1st interval & Full files. 

def_dir=what; def_dir=def_dir.path; 

cd(def_dir) 

%% process files 

    for n= 1:length(files); 

        ecgin = load(files(n).name); 

        ecgin = ecgin.data; 

 

 

%% Detect RR-Intervals 

    [iR,ibi]=detectBeatsPR(ecgin); 

     

     

    %% write file 

    outname = files(n).name; 

    outname = outname(1:14); 

    outname = [outname '_ibi']; 
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    save(outname,'ibi') 

    end 

Filename: detectBeatsPR.m 

function [iR,ibi]=detectBeatsPR(ecgin) 

   

  % Detect beats 

        ut=0.4; 

        lt=0.35; 

        %warning off; 

        template = load('sample_template.mat'); %load template   

        template = template.template; 

        signal = ecgin(:,2); 

        %signal = decimate(signal,4); %decimate sampling rate to 256Hz to match template's 

sampling rate. 

    %% Match Template 

    if size(signal,1)<size(signal,2) %convert to vector 

        signal=signal'; 

    end 

    if size(signal,2)>1 %discard time column if present 

        signal=signal(:,2); 

    end 

    if nargin < 5 

        optRefine=0; 

        optSpeed=0; 

    end 
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    if nargin < 6 

        optSpeed=0; 

    end 

    lenS = size(signal,1); 

    lenT = size(template,1); 

    hw=(lenT-1)/2; %half width of template 

    cw=hw+1; %points to center of template 

    rxy=zeros(lenS,1); 

 

    for i = 1:10:(lenS-lenT); 

        %b=round(i); 

        a=corrcoef(signal(i:(i+lenT-1)),template);  

        rxy(i) = a(2); 

    end 

     

    %% Peak Detection 

        indices=peakDetect(rxy,.4,.35,10); 

         

    %% check for peaks that are close together...choose one with hightest rxy     

    %this section entirely from the original matchTemplate.m 

   optClose=1; 

    if optClose 

         

        bInd=true(length(indices),1); %logical array to hold which peaks to keep 

        ibi=diff(indices);     
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        %bout = locateOutliers([],ibi,'sd',4); 

        btmp = ibi<mean(ibi); 

        bout =  btmp; %add '& bout' if reintroduce line 47 

         

        d=diff(bout); 

         

        b=find(d>0); b2=find(d<0);    

        if length(b2)>length(b) %PR 

            b2 = b2(1:length(b)); 

        elseif length(b2)<length(b) 

            b = b(1:length(b2)); 

        end 

        runLen=b2-b; %length of adjacent nan runs 

        irun = find(runLen==2); %index of runs = 2 

        if sum(irun)~=0 %if there are runs = 2             

            bInd(b(irun)+2)=false; %remove peak             

        end 

         

        indices=indices(bInd); 

        iR = indices; 

   

     

    end 

     

    if length(iR)>2 %if more than one beat was detected 
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    % Calc IBI 

        ibi=zeros((length(iR)-1),2); 

        ibi(:,1)=iR(1:end-1); 

        rate = 1000; 

        ibi(:,2)=diff(iR./rate); %calc ibi (seconds) 

    else 

        ibi=[]; 

    end 

         

end 

 

Filename: peakDetect.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Copyright (C) 2010, John T. Ramshur, jramshur@gmail.com 

%  

% This file is part of ECG Viewer 

% 

% ECG Viewer is free software: you can redistribute it and/or modify 

% it under the terms of the GNU General Public License as published by 

% the Free Software Foundation, either version 3 of the License, or 

% (at your option) any later version. 

%  

% ECG Viewer is distributed in the hope that it will be useful, 

% but WITHOUT ANY WARRANTY; without even the implied warranty of 
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% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

% GNU General Public License for more details. 

%  

% You should have received a copy of the GNU General Public License 

% along with ECG Viewer.  If not, see <http://www.gnu.org/licenses/>. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function peaks=peakDetect(s,thPrimary,thSecond,skipWin) 

% peakDetect.m - detects peaks within the input signal s. A double  

% threshold is applied to s : It switches the output to a  

% high state when the input passes upward through the high threshold value  

% (thPrimary). It then prevents switching back to low state until the input 

% passes down through a lower threshold value (thSecond). 

% <INPUTS> 

%   s: input signal (vector) 

%   thPrimary: primary threshold for detecting locations of matched templates (0-100%) 

%   thSecond: secondary threshold for detecting locations of matched templates (0-100%) 

%   skipWin: min number of samples to skip over once a peak is found 

% <OUTPUTS> 

%   indices: locations of peaks 

 

    overPk = (s >= thPrimary); %logical array (1 or 0) of whether index is 

                               %above or below thPrimary 

    b=diff(overPk); % gives array of 0,1,or -1. passing above thr = 1, passing 
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                    % below thr = -1 

    b(end)=0;       %make sure last sample is not a peak (cannot be a peak)                 

     

    s1=find(b==1)+1; %find all samples/indexes passing above thresh        

     

    peaks=zeros(length(s1),1); %preallocate memory 

    x=1; 

    yy=zeros(length(s),1); 

    for i=1:length(s1)-1 

        %Skip to next peak if necessary. 

        %  This is useful if more than one SUCCESSIVE small peak 

        %  exist that didn't drop below the second threshold. 

        if x<=s1(i) 

            x=s1(i); 

            %loop until we drop below second threshold 

            while (s(x+1)>=thSecond) 

                x=x+1; 

                yy(x)=1; 

            end 

             

            %find location of peak value 

            tmp=find(s((s1(i):x))==max(s(s1(i):x))) + s1(i)-1; 

            tmp=tmp(1); %make sure there is only one peak 

            peaks(i)=tmp; 
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%             if i>5 

%                 skipWin=floor(0.4*mean(diff(peaks(i-5:i)))); 

%                 x=x+skipWin; 

%             end 

        end 

    end 

 

    %remove any empty indices 

    empty=(peaks==0); %find locations of empty peaks 

    peaks(empty)=[];  %delete elements that are empty 

 

end 

 

Filename: hrvProcPart2.m 

files1 = dir('*_ibi.mat'); 

 def_dir=what; def_dir=def_dir.path; 

 cd(def_dir) 

 

for m = 804:length(files1) 

    input = files1(m).name; 

    load(input); 

    VLF = [0,0.01]; 

    LF = [0.04,0.15]; 

    HF = [0.15,0.4]; 

    window =128; 
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    noverlap = 64; 

    nfft = 1024; 

    fs=200; 

    output = hrv(ibi,VLF,LF,HF,window,noverlap,nfft,fs); 

    outname = [input(1:14) '_HRV.txt']; 

    dlmwrite(outname, output, 'delimiter', '\t') 

end 

     

 

Filename: hrv.m 

function output = hrv(ibi,VLF,LF,HF,window,noverlap,nfft,fs) 

 

%Inputs  ibi = input file: two columns. col1 = time, col2=RR-interval duration 

%   VLF = two values specifying very low frequency range 

%   LF = two values specifying low frequency range 

%   HF = two values specifying high frequency range 

%   AR_order = model order --> not used bc no AR analysis 

%   window = #samples in window 

%   noverlap = #samples to overlap 

%   fs = cubic spline interpolation rate / resample rate 

%   nfft = # of points in the frequency axis 

%   methods = methods of calculating freqDomain. default is 3 methods. 

%Outputs:   output is a structure containg all HRV. One field for each PSD method 

%           Output units include: 

%               peakHF,LF,VLF (Hz) 
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%               aHF,aLF,aVLF (ms^2) 

%               pHF,pLF,pVLF (%) 

%               nHF,nLF,nVLF (%) 

%               PSD (ms^2/Hz) 

%               F (Hz) 

 

 

%check input 

    if nargin<8 

        error('Not enough input arguments!') 

    end  

 

    t=ibi(:,1)./1000; %time (s) 

    y=ibi(:,2); %ibi (s) 

    y=y.*1000; %convert ibi to ms 

    %assumes ibi units are seconds 

    maxF=fs/2; 

     

    %prepare y 

    y=detrend(y,'linear'); 

    y=y-mean(y); 

     

    %Welch FFT 

    [PSD,F]=calcWelch(t,y,window,noverlap,nfft,fs); 

    output=calcAreas(F,PSD,VLF,LF,HF); 
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function [PSD,F]=calcWelch(t,y,window,noverlap,nfft,fs) 

 %calFFT - Calculates the PSD using Welch method. 

 % 

 %Inputs: 

 % t = time vector associated with ibi, units = ms 

 % y = RR-intervals from ibi, detrended 

 % window = #samples in window 

 % noverlap = # samples to overlap 

 % nfft = # points on frequency axis 

 % fs = cubic spline sampling rate 

 %Outputs: 

 % PSD = power spectral density estimation 

 % F = frequency axis 

     

    %Prepare y 

    fs = 200; %sampling rate of cubic spline 

    t2 = t(1):1/fs:t(length(t));%time values for interp. 

    t2 = t2'; 

    y=spline(t,y,t2); %cubic spline interpolation 

    y=y-mean(y); %remove mean 

    y = decimate(y,100); %reduces sampling rate to 2Hz for PSD estimation 

     

    %Calculate PSD 
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    fs = 2; %specifies the new sampling rate 

    [PSD,F] = pwelch(y,window,noverlap,(nfft*2)-1,fs,'onesided'); %uses a hamming window     

end 

 

function output=calcAreas(F,PSD,VLF,LF,HF,flagNorm) 

%calcAreas - Calulates areas/energy under the PSD curve within the freq 

%bands defined by VLF, LF, and HF. Returns areas/energies as ms^2, 

%percentage, and normalized units. Also returns LF/HF ratio. 

% 

%Inputs: 

%   PSD: PSD vector 

%   F: Freq vector 

%   VLF, LF, HF: array containing VLF, LF, and HF freq limits 

%   flagNormalize: option to normalize PSD to max(PSD) 

%Output: 

% 

%Usage: 

%    

% 

%   Modified from Gary Clifford's ECG Toolbox: calc_lfhf.m    

 

    if nargin<6 

       flagNorm=false; 

    end 
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    %normalize PSD if needed 

    if flagNorm 

        PSD=PSD/max(PSD); 

    end 

 

    % find the indexes corresponding to the VLF, LF, and HF bands 

    iVLF= (F>=VLF(1)) & (F<=VLF(2)); 

    iLF = (F>=LF(1)) & (F<=LF(2)); 

    iHF = (F>=HF(1)) & (F<=HF(2)); 

       

    % calculate raw areas (power under curve), within the freq bands (ms^2)  

    aVLF=trapz(F(iVLF),PSD(iVLF)); 

    aLF=trapz(F(iLF),PSD(iLF)); 

    aHF=trapz(F(iHF),PSD(iHF)); 

    aTotal=aVLF+aLF+aHF; 

         

    %calculate LF/HF ratio 

    lfhf =aLF/aHF; 

             

    %create output structure 

    output = [round(aLF) round(aHF) lfhf]; 

   

end 

end 
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Appendix 5: Coordination Analysis & Parameter Generation 

Filename: corlistGen.m 

Dir1 = dir('*_BrEvent.mat'); 

Dir2 = dir('*_SuckEvents.mat'); 

 

corlist = zeros(length(Dir1),1); 

 

for n = (1:length(Dir1)); 

    name1 = Dir1(n).name; 

    name1 = name1(1:5); 

    for m = 1:length(Dir2); 

        name2 = Dir2(m).name(1:5); 

        if name2 == name1; 

            corlist(n) = 1; 

        end 

    end 

end 

 

a = find(corlist); 

a = Dir1(a); 

 

corList = a; 

for o = 1:length(corList); 
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    sk = [corList(o).name(1:5) '-0000_FUL_SuckEvents.mat']; 

    corList(o,2) = sk; 

end 

save('corList','corList') 

Filename: corMatGen.m 

%corMatGen 

 

load corlist.mat; 

 

for n = 983:length(corList); 

    input = corList(n).name(1:10); 

    skEv = load ([input '_FUL_SuckEvents.mat']); 

    skEv = skEv.events; 

    brEv = load (corList(n).name); 

    brEv = brEv.events; 

    full = [input '_FULL.txt']; 

    fid = fopen(full); 

    alldata = textscan(fid,'%f %f %f %f'); 

    fclose(fid); 

    full = cell2mat(alldata); 

     

    brCor = zeros(length(full),1); 

    for o = 1:length(brEv); 

        brCor(brEv(o,1):brEv(o,2)) = 1; 

    end 
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    skCor = zeros(length(full),1); 

    for m = 1:length(skEv); 

        skCor(skEv(m,1):skEv(m,2)) = 2; 

    end 

     

    corVec = brCor + skCor; 

    corMat = [skCor brCor corVec]; 

     

    outname = [input '_corMat.mat']; 

     

    save(outname,'corMat') 

end 

Filename: corParamGen.m 

%Coordination Parameters 

 

dir1 = dir('*_corMat.mat'); 

 

for n=1:length(dir1) 

 

    corMat = load(dir1(n).name); 

    corMat = corMat.corMat; 

    totTime = length(corMat); 

    totSk = length(find(corMat(:,1)==2)); 

    totSkPer = totSk/totTime*100; 
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    totBr = length(find(corMat(:,2)==1)); 

    totBrPer = totBr/totTime*100; 

    netSk = length(find(corMat(:,3)==2)); 

    netSkPer = netSk/totTime*100; 

    netBr = length(find(corMat(:,3)==1)); 

    netBrPer = netBr/totTime*100; 

    overlap = length(find(corMat(:,3)==3)); 

    overlapPer = overlap/totTime*100; 

    feedTime = length(find(corMat(:,3)~=0)); 

    feedTimePer = feedTime/totTime; 

     

    corParam = [totTime totSk totSkPer totBr totBrPer netSk netSkPer netBr netBrPer overlap 

overlapPer feedTime feedTimePer]; 

     

    outname = [dir1(n).name(1:10) '_corParam.txt']; 

        

    fid = fopen(outname,'w'); 

    fprintf(fid, '%f %f %f %f %f %f %f %f %f %f %f %f %f\n', corParam); 

    fclose(fid); 

 

end 
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