8 research outputs found

    Development of a portable system for detection of leaf area in plants

    Get PDF
    Recently, the determination of leaf area and growth rates in plants through portable devices has become popular due to the advantages offered by artificial vision systems to identify and classify objects using images. The purpose of the research was to develop a portable system for measuring leaf area through image recognition. The methodology includes 3D designs, acrylic device building, determining the area in pixels by the technique of radial basis neural networks (RBFN) directly in the RGB color space and pixel conversion to cm2. The results obtained by analysis of variance for each species showed that the p-value was greater than 0.86 for each class of plants. Moreover, the system obtained coefficients of determination higher to 0.90 for Orange leaves, coefficients of determination higher to 0.95 for Patevaca leaves and coefficients of determination higher to 0.99 for Chirimoya leaves from a set of 30 leaves belonging to 3 species of plants with different sizes and areas compared to manual analysis. This system is a useful tool for the objective determination of leaf area in plants and becomes a nationwide alternative compared to existing expensive systems. Furthermore, the system is reprogrammable, flexible, not destructive and low cost

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    An approach to analyzing histology segmentations using shape distributions

    Get PDF
    Histological images are the key ingredients in medical diagnosis and prognosis in today’s medical field. They are imagery acquired by analysts from microscopy to determine the cellular structure and composition of a patient’s biopsy. This thesis provides an approach to analyze the histological segmentation obtained from histological images using shape distributions and provides a computationally feasible method to predict their histological grade.This process provides a way of generating suggestions using segmented images in a way that is independent of the segmentation process. The process generates histograms for each image that describes a set of shape distributions generated from eight metrics that we have devised. The shape distributions are extracted from a learning set that the user provides. The shape distributions are then analyzed by querying a classification for each case using K-nearest-neighbor. The quality of the classifications is measured by a composite measure composed of precision and recall based on the query.M.S., Computer Science -- Drexel University, 200

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Implementing Industry 4.0 in SMEs

    Get PDF
    This open access book addresses the practical challenges that Industry 4.0 presents for SMEs. While large companies are already responding to the changes resulting from the fourth industrial revolution , small businesses are in danger of falling behind due to the lack of examples, best practices and established methods and tools. Following on from the publication of the previous book ‘Industry 4.0 for SMEs: Challenges, Opportunities and Requirements’, the authors offer in this new book innovative results from research on smart manufacturing, smart logistics and managerial models for SMEs. Based on a large scale EU-funded research project involving seven academic institutions from three continents and a network of over fifty small and medium sized enterprises, the book reveals the methods and tools required to support the successful implementation of Industry 4.0 along with practical examples

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    Multidimensional Particle Swarm Optimization for Machine Learning

    Get PDF
    Particle Swarm Optimization (PSO) is a stochastic nature-inspired optimization method. It has been successfully used in several application domains since it was introduced in 1995. It has been especially successful when applied to complicated multimodal problems, where simpler optimization methods, e.g., gradient descent, are not able to find satisfactory results. Multidimensional Particle Swarm Optimization (MD-PSO) and Fractional Global Best Formation (FGBF) are extensions of the basic PSO. MD-PSO allows searching for an optimum also when the solution dimensionality is unknown. With a dedicated dimensional PSO process, MD-PSO can search for optimal solution dimensionality. An interleaved positional PSO process simultaneously searches for the optimal solution in that dimensionality. Both the basic PSO and its multidimensional extension MD-PSO are susceptible to premature convergence. FGBF is a plug-in to (MD-)PSO that can help avoid premature convergence and find desired solutions faster. This thesis focuses on applications of MD-PSO and FGBF in different machine learning tasks.Multiswarm versions of MD-PSO and FGBF are introduced to perform dynamic optimization tasks. In dynamic optimization, the search space slowly changes. The locations of optima move and a former local optimum may transform into a global optimum and vice versa. We exploit multiple swarms to track different optima.In order to apply MD-PSO for clustering tasks, two key questions need to be answered: 1) How to encode the particles to represent different data partitions? 2) How to evaluate the fitness of the particles to evaluate the quality of the solutions proposed by the particle positions? The second question is considered especially carefully in this thesis. An extensive comparison of Clustering Validity Indices (CVIs) commonly used as fitness functions in Particle Swarm Clustering (PSC) is conducted. Furthermore, a novel approach to carry out fitness evaluation, namely Fitness Evaluation with Computational Centroids (FECC) is introduced. FECC gives the same fitness to any particle positions that lead to the same data partition. Therefore, it may save some computational efforts and, above all, it can significantly improve the results obtained by using any of the best performing CVIs as the PSC fitness function.MD-PSO can also be used to evolve different neural networks. The results of training Multilayer Perceptrons (MLPs) using the common Backpropagation (BP) algorithm and a global technique based on PSO are compared. The pros and cons of BP and (MD-)PSO in MLP training are discussed. For training Radial Basis Function Neural Networks (RBFNNs), a novel technique based on class-specific clustering of the training samples is introduced. The proposed approach is compared to the common input and input-output clustering approaches and the benefits of using the class-specific approach are experimentally demonstrated. With the class-specific approach, the training complexity is reduced, while the classification performance of the trained RBFNNs may be improved.Collective Network of Binary Classifiers (CNBC) is an evolutionary semantic classifier consisting of several Networks of Binary Classifiers (NBCs) trained to recognize a certain semantic class. NBCs in turn consist of several Binary Classifiers (BCs), which are trained for a certain feature type. Thanks to its topology and the use of MD-PSO as its evolution technique, incremental training can be easily applied to add new training items, classes, and/or features.In feature synthesis, the objective is to exploit ground truth information to transform the original low-level features into more discriminative ones. To learn an efficient synthesis for a dataset, only a fraction of the data needs to be labeled. The learned synthesis can then be applied on unlabeled data to improve classification or retrieval results. In this thesis, two different feature synthesis techniques are introduced. In the first one, MD-PSO is directly used to find proper arithmetic operations to be applied on the elements of the original low-level feature vectors. In the second approach, feature synthesis is carried out using one-against-all perceptrons. In the latter technique, the best results were obtained when MD-PSO was used to train the perceptrons.In all the mentioned applications excluding MLP training, MD-PSO is used together with FGBF. Overall, MD-PSO and FGBF are indeed versatile tools in machine learning. However, computational limitations constrain their use in currently emerging machine learning systems operating on Big Data. Therefore, in the future, it is necessary to divide complex tasks into smaller subproblems and to conquer the large problems via solving the subproblems where the use of MD-PSO and FGBF becomes feasible. Several applications discussed in this thesis already exploit the divide-and-conquer operation model

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore