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ABSTRACT 

AN APPROACH TO ANALYZING HISTOLOGY 

SEGMENTATIONS USING SHAPE DISTRIBUTIONS 

Jasper Zhang 

David E. Breen, Ph. D. 

 Histological images are the key ingredients in medical diagnosis and prognosis in 

today’s medical field.  They are imagery acquired by analysts from microscopy to 

determine the cellular structure and composition of a patient’s biopsy.  This thesis 

provides an approach to analyze the histological segmentation obtained from 

histological images using shape distributions and provides a computationally feasible 

method to predict their histological grade. 

 This process provides a way of generating suggestions using segmented images in 

a way that is independent of the segmentation process.  The process generates 

histograms for each image that describes a set of shape distributions generated from 

eight metrics that we have devised.  The shape distributions are extracted from a 

learning set that the user provides.  The shape distributions are then analyzed by 

querying a classification for each case using K-nearest-neighbor.  The quality of the 

classifications is measured by a composite measure composed of precision and recall 

based on the query. 
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C h a p t e r  1   

INTRODUCTION 

  Computational histology is a new and emerging field in medical imaging in 

today’s world and for a good reason.  The demand for histological analysis is becoming 

increasingly large while the number of providers of such a service has stayed about the 

same [54] [3].  To cope with this increasing problem of consumer vs. producer, more 

and more pathologists have turned to automating their work through computational 

histology [53].  But as research has shown, it is not easy to extract meaningful 

information from a histological slide [7].  This paper proposes a way to acquire 

information from a histological segmentation and suggest histological grading for new 

cases. 

1.1 Pathology and histology 

  Pathology (also known as pathobiology), under the definition of American 

Heritage Science Dictionary, is “the scientific study of the nature of disease and its 

causes, processes, development, and consequences.”  What that means for the 

everyday person is that pathologists are the people that can definitively say what 

disease, if any, we have and what the diagnosis and prognosis of the disease are.  The 

pathologist is one of the crucial specialists in treating a patient who has a disease.  
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Though it is not always like this, the process of patient care can be generalized into 

Figure 1-1. 

 

Figure 1-1 Medical process 

  As we can see from the diagram, a pathologist doesn't come into the picture in 

the lab process until after a biopsy or sample of the patient is extracted.  This means 

the pathologist is only dealing with samples of the patient, not inferring anything from 
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just symptoms.  So what this brings up is that pathologists are really dealing with 

histology when they do their job.  Histology, under the definition of American 

Heritage Science Dictionary, is “the branch of biology that studies the microscopic 

structure of animal or plant tissues.”  This definition allows for some development on 

the computational front mainly due to the key phrase “microscopic structure”.  What 

that implies is that it is a study of the shapes and geometry of an image.  This is what 

allows us to consider our work in this thesis. 

  The information that a pathologist gains from a histological study allows them to 

generate diagnosis and prognosis for the patient.  This diagnosis can fall under many 

different histological grades.  The histological grades are determined by an existing 

heuristic specifically designed for the disease and allow the pathologist to easily come 

up with a diagnosis that is fitting for the patient. 

1.2 Shape distribution 

  The main objective of this thesis is to develop a computational method that is 

capable of discriminating between histological images based on their geometry.  This 

objective can only be achieved by giving each image a set of metrics that allows them 

to be compared.  The obvious problem of this operation is the comparison itself.  

How can you compare a dataset, such as an image, with another in a meaningful way?  

Shape distribution gives a suitable solution to this problem.  A shape distribution is a 

signature of the image in a fashion that allows for quantitative comparisons.   
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  A shape distribution of an image is a sample of that image based on the 

application of a shape function that measures the local geometric properties and 

captures some global statistical property of an object.  What this means is that the 

shape distributions will represent the image in a way that describes the statistical 

occurrences resulting from a shape function.  That shape function can be anything; it 

can be passing a line through the image, how likely you are to sample a certain color 

when a random pixel is picked, how big each area of certain criteria is, etc. 

  The objective of this thesis is to build shape functions (that we call metrics) that 

can generate shape distributions that can aid in classifying histological segmentations.  

The helpfulness or success of a shape function is described by how well it can identify 

similar shapes as similar and how well it can identify dissimilar shapes as dissimilar 

while all at the same time be able to operate independently of any reorientation and 

repositioning that can happen to the image [42]. 

1.3 Previous work 

  Most of the work done in this area in the past has been focused mostly on 

segmentation.  A majority of the reason why it hasn’t moved on is based on the fact 

that biological images are still a challenge to segment.  It is one of the hardest 

problems facing computer vision and image analysis to this day [34].  Part of the 

reason is that due to the over abundance of information it is hard to segment images 

from medical domain to medical domain using the same process [31] [43].  Many ad 
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hoc techniques were developed for problem specific application to overcome this 

problem [7] [41] [45].  

  Due to the problem of segmenting the images many experts have used 

information on geometry and other analysis-based information to help segment the 

image [56] [14].  This leads to a hybrid approach between analysis and segmentation 

that has both happening at the same time.  This leads to a solution to analysis and 

segmentation at the end of the whole process.  This approach, too, is limited to a 

specific problem domain. 

  In recent years many experts have given up on trying to fully automate 

segmentation and reverted to using only semi-automatic techniques [40] [37] [38] [19] 

[33].  These techniques involve having human intervention as well as a mix of 

techniques stated above.  Thought these techniques involve human intervention, they 

will almost always guarantee a satisfactory result for the user, at least in areas that the 

user is concerned with.  This approach introduces a new problem of human computer 

interaction with the need of a well defined user interface that is easy and fast to use 

[36] [46]. 

  The topic of segmentation is already hard to work with, as we have seen, which 

leads to the sparse field of segmentation analysis.  A majority of this work has been 

done in conjunction with segmentation, as stated earlier, but there are some works that 

have been done on segmentations only [16] [32].  The results of the studies are very 
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data-centric.  The analysis themselves can only be as good as the segmentations 

themselves. 

1.4 Our goal 

  The ultimate goal in this research is to create a process that can take, as inputs, 

segmentations of histological images and output a suggested histological grade of an 

unknown case.  The classifications will be defined by the user by giving the system a 

learning set.  The specific histological grade outputted by the system is based on the 

Nottingham scoring system. 

 

Figure 1-2 A broad overview of the 
computational pipeline. 
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  This research also explores the usefulness of specific shape functions when 

applied to histology segmentations. Even if we don’t achieve the ultimate goal of 

suggesting histological grade, we would like to at least be able to state a quantitative 

success of a given shape function with the given histology segmentations. 

1.5 Our process 

  The work in this thesis falls under the last category in the previous work section.  

Our process generates analysis based on segmentations, not analysis parallel to 

segmentation.  The overall process that we propose is shown in Figure 1-2.  This 

process takes in a learning set to define classification groups and an unknown case or 

set of unknown cases whose histological grade will be predicted.  What this process 

involves is to first digitize the slides into digital images.  The digital images are then 

segmented to produce binary images that represent only the background and the areas 

of interest.  The binary images are then transformed into histograms that represent the 

shape distribution produced by applying geometric measures to the images.  The 

distributions are then analyzed and used to suggest the classification of the unknown 

cases. 
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Figure 1-3 Segmentation process 

  The first stage of the pipeline is the digitization of the slides (Figure 1-3).  The 

slides are given to us as a set of Hematoxylin and Eosion (H&E) stained slides.  The 

slides are then scanned one sub-region at a time to ensure maximum detail and 

resolution.  The individual images are then stitched together into a single large image 

that represents the slide. 

  The next stage in the process is the segmentation stage where the raw image is 

taken and a binary image will be the output.  The process will first take an image and 

convert it into our optimal color space and a user interface will guide the user in 

helping the system determine the proper segmentation of the image.  The user “trains” 

the system based on the definition of cells, as we are only interested in studying the 

morphology of cells within our slides in this study. 
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  Once a binary image has been segmented out of the original H&E image, we are 

ready to convert it into shape distributions.  The shape distributions are digital 

signatures that are produced by the computational pipeline when the geometric 

measures are applied to the segmentations.  Several metrics will be used to generate 

multiple histograms per image for both the learning set and the unknown cases. 

  Our final stage is the analysis stage where we take our learning set’s histograms 

and form classification groups that may be used to classify any unknown cases using 

the unknown cases’ histograms.  The result of this stage will be purely based on the 

segmentations. 

1.6 Thesis structure 

  This thesis is structured into five chapters.  This first chapter gives an 

introduction to the topic covered in this thesis.  The second chapter will discuss the 

overall computational pipeline with specific emphasis on the generation of the shape 

distributions.  The third chapter is dedicated to the processing of the segmentations 

prior to the generation of shape distributions and the filtering of the shape 

distributions before the analysis.  The fourth chapter outlines our approach to 

analyzing the shape distributions after all the filtering described in chapter three have 

been applied.  The final chapter makes a few final remarks on our work. 
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C h a p t e r  2   

COMPUTATIONAL PIPELINE 

 The computational pipeline that we are working with starts with a scanned section 

of a biopsy.  We make no assumptions about the color corrections or the 

magnifications of the image when it is first presented.  We assume the user to be the 

responsible party for assuring data coherency. 

 The input data must be segregated into two groups: the learning set and the 

unknown case(s).  The learning set will also need to be segregated into classification 

groups.  The classification groups will determine the set of all possible categories into 

which an unknown case can be placed.  The pipeline will not take into account all 

subcategories that may exist within a group.  If subcategories do exist within a group 

then the user must define them as separate classification groups. 

 The user must also take into consideration at scale of which images were scanned 

before processing.  The scale of the image will ultimately determine the performance 

of certain metrics within the shape distribution stage.  More on the scale of the input 

images will be explained in the analysis section of this paper. 

  The computational pipeline (Figure 1-2) consists of processing all input images 

through the segmentation and shape distribution extraction stages before performing 
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the final classification analysis on an unknown case.  This whole pipeline is modular 

and can be done piecewise.  Each image can be described as its own pipeline; allowing 

multiple images to be computed in parallel, if the computing environment allows for 

this. 

  The segmentation process is essentially any process that takes a raw image and 

converts it into a binary image.  The raw image could be binary to start out with, or 

could use as many bits as necessary to describe the subject, as long as the segmentation 

process knows how to handle it.  The main goal of the segmentation process is to 

reduce any input into two partitions per image: the regions of interest and the 

background [57]. 

  The shape distribution extraction process, which will be discussed in more detail 

later on, involves multiple geometric metrics that will generate a set of shape 

distributions that can describe each image, which capture geometric features in the 

image.  The shape distribution extraction stage depends on specified regions of interest 

within a segmented image.  Each metric within the extraction stage will generate its 

own histogram that can be used later for analysis.  Most metrics within the shape 

distribution extraction stage can be computed independently of one another, allowing 

for parallel computation. 
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Figure 2-1. Input images 

  The final stage of the pipeline is the analysis process that will take all histograms 

(from both the learning and unknown set) and predicts the classification of the 

unknown case.  By this point in the pipeline the entirety of the learning set and the 

unknown set are all represented in the form of shape distributions.  The shape 

distributions will then be put into the system for determination of its quality in aiding 

the classification process.  The shape distributions, themselves, may also not be fully 
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qualified to classify either.  So for example, a shape distribution could have only a 

certain percentage of itself used for classification and the rest will be discarded.  The 

goal of this stage is to use the given shape distributions and generate the best possible 

prediction. 

2.1 Segmentation 

  The segmentation process is not the focus of this paper but to fully treat this 

topic the segmentation process that was used will be described briefly.  The 

segmentation for this thesis has been provided to us by Sokol Petushi and the 

Advanced Pathology Imaging Laboratory (Drexel University School of Medicine). 

  The segmentation technique that was used to generate the data for this paper was 

done using a semi-unsupervised technique.  It is used to extract all nucleuar structures 

within a section of a biopsy.  The images that were given to us were from breast cancer 

patients ranging from histological grade of one to three with no healthy specimens 

(Figure 2-1).  All images were stained using the Hematoxylin and Eosion (H&E) 

process.  The images were all scanned in at a magnification of 10x at a pixel resolution 

of 6,000 pixels2 per slide block.  We then choose only one slide block out of the 

numerous images acquired per slide for the segmentation process.  We choose the 

slide block based on what our pathologist deems to be the greatest region of interest 

within the slide.  Our reasoning is that no pathologist will look at everything in a whole 

slide but only areas of interest within a slide. 
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Figure 2-2. Segmentation screenshot 

  The segmentation process, using a graphical user interface, allows the user to 

“train” the system into automatically segmenting an image (Figure 2-2).  The user is 

prompted to specify what is defined as a cell.  The user will then be shown a 

segmentation result of what the default settings would give them for the area that they 

have defined as a cell.  The user, at that point, will be able to define, visually, what 

threshold values they want for the specified cell.  This process is refined iteratively as 

the user defines more cells and manually adjusts the threshold to fit their needs. 

  After the user has defined up to ten or so cells they can signify the threshold to be 

accurate for the whole image and run the segmentation on the entire image.  The 

image is then saved as a binary lossless image (Figure 2-3) that can be passed on to the 

next stage of the pipeline. 
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Figure 2-3. Output segmentations 

2.2 Shape distribution extractions 

  The shape distribution extraction process assumes all input images to be in binary 

format and will always produce a one dimensional shape distribution, represented as a 

histogram, as its output.  Most of the shape functions’ computations runs 

independently of each other and can be computed in parallel given the appropriate 

computational environment.  Some metrics may depend on others or could use the 
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results of other metrics to optimize its own computations.  Some of these decisions are 

made due to computational constraints. 

  The shape distributions produced by applying the shape functions can be viewed 

as probability density functions associated with the given image when analyzed with a 

certain shape function.  Each bucket, or a location in the one dimensional histogram, 

represents the number of occurrences (or probability) of a measurement while using 

that shape function.  For instance, if we are trying to determine how many people are 

age 25 in a group of people, we would bin everyone with the age of 25 to the bucket of 

25.  The values in each bucket represent the count of the occurrences of that value 

within the image when applying the metric.  So taking our example of people of age 

25, our histogram would have a value of five at the location of 25 if there are five 

people who are 25 years old.  Taking the example further, we would have one 

histogram for every demographic group that we are working with.  Each histogram 

will be the distribution of age in that particular group. 

  The metrics that we have defined and implemented for generating shape 

distributions are inside radial contact, line sweep, area, perimeter, area vs. perimeter, 

curvature, aspect ratio and eigenvector.  The remainder of this section describes how 

these shape functions have been implemented to generate shape distributions that 

capture geometric features in histology segmentations. 
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Figure 2-4. Concept of inside radial contact 

2.2.1 Inside radial contact 

  Inside radial contact is a metric that has been used in previous works in geometric 

matching [29] [18] [47].  The idea behind inside radial contact is to gain insight into the 

size distribution of an image by probing it with disks.  We treat each inside pixel as the 

center of a disk that is used to probe the shape.  The algorithm will determine the 

maximum radius of a disk that can be fit inside the shape from that pixel (Figure 2-4). 

  This algorithm can be implemented in multiple ways but it is most efficiently 

calculated using a distance field transformation of the image [49] [4].  One of the 

efficiency comes from preserving some information about the image that can be used 

later for other metrics, for example the curvature metric. 

  Methods for obtaining a distance field include passing the image through a 

convolution [30] [24], solving it as a Hamilton-Jacobi equation [5], processing it with a 

fast marching method [31], or applying the Danielsson distance transform [13] [28].  

These approaches are good if the image size is not excessively large.  In the case of our 
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dataset, the size can get prohibitively large for this approach.  Most of our problems 

originate back to trying to transform an image more than 10,000 pixels2.   

 

Figure 2-5. Potential error in distance 
transform using square flood fill 

  Because of our hardware issues we had to step back and approached this problem 

in a temporally less efficient but spatially more efficient manner.  Our approach was to 

take each pixel and do a square flooding on the area, which could detect changes in the 

pixel color (Figure 2-6).  After it found the first pixel of changed color it will then keep 

expanding past the current location, compensating for the increased distance that may 

occur along the diagonal (Figure 2-5). 

for p: all pixels in image 
 while distanceList is empty OR there is a distance in 
        distanceList that is greater than radius 

 for x_val: (p.x–radius) � (p.x+radius) 
  if pixel[x_val, p.y+radius] = color_change OR 
     pixel[x_val, p.y-radius] = color_change 
     add( distanceList, sqrt( (p.x-x_val)2 + radius2 )); 

 
 for y_val: (p.y-radius) � (p.y+radius) 
  if pixel[p.x+radius, y_val] = color_change OR 
     pixel[p.x-radius, y_val] = color_change 
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     add( distanceList, sqrt( (p.y-y_val) 2 + radius 2 )); 
add (finalDistances, max( distanceList )); 
 

Figure 2-6. Implementation of square 
flooding in inside radial contact 

  Applying the distance transform generates a distance field for the image.  The 

distance field is then transformed into a shape distribution by rounding from all values 

into the nearest bucket within the representative histogram.  Each bucket in the shape 

distribution represents the minimum distance from a point inside each blob to the 

contour of the blob. 

2.2.2 Line sweep 

  The idea behind line sweep is similar to that of the inside radial contact in that we 

are trying to probe the shape of an object with another geometric shape.  The way we 

propose to do this is to pass a line through the whole image and see how many regions 

of interest it intersects (Figure 2-7).  This is inspired by previous work done in [47].  

The shape function measures the length of each segment of intersection between the 

line drawn and the region of interest that it intersects.  Each bucket in the shape 

distribution is a count of how many lines drawn has a segment of intersection that has 

the length specified by the bucket. 
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Figure 2-7. Conceptual definition of line 
sweep 

  Computationally, the metric will calculate lines from every boundary pixel of the 

image to all other boundary pixels, ensuring that the start and end pixels are not the 

same boundary (Figure 2-8).  This guarantees that all possible lines that can be 

processed are processed since the problem is symmetrical, a line going in the direction 

of point A to point B will produce the same result as that going from point B to point 

A. 

  boundary = all pixels at the edge of the image 
  for i: 0 � size(boundary) 
   for j: i+1 � size(boundary) 
     if ( NOT isOnSameSideAs( boundary[i], boundary[j] ) ) 
       shootLine( boundary[i], boundary[j] ) 
 

Figure 2-8. Implementation of visiting 
boundary pixel for line sweep 
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  The actual line processing algorithm can be any line drawing algorithm that the 

implementer chooses.  The line drawing algorithm we chose to use is the Bresenham 

line raster algorithm [6].  We chose it because it is fast and the most commonly used 

line raster algorithm.  The only difference with our approach is that instead of drawing 

a pixel at every raster we do a look at function that determines if there is a transition of 

colors (Figure 2-9).  This keeps track of the starting and ending locations of a line 

segment that is drawn contiguously through a region of interest.  We compute the 

Euclidean distance between the start and end locations. 

LOOKAT x, y, I 
 if I[x,y] = inside 

  if NOT isInside 
   isInside = TRUE 
   p1 = Point[x,y] 

   
 if I[x,y] == outside 

  if isInside 
   incrementBucket( lengthList, distance(p1, Point[ x,y]) ) 
   isInside = FALSE 
 

Figure 2-9. Implementation of look at in 
line sweep 

  Another special concern is usage of image libraries.  From many experiments we 

have discovered that an image library that involve built in virtual swapping should be 

avoided (in our case, the Image Magick API).  Using this library causes problems  

because this algorithm will sweep the whole entire image every iteration.  So if the 

library swaps in only a portion of the image at any given instance, anticipating localized 

computation, it will have to clean out the whole image cache in memory repeatedly 
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every iteration.  This will produce excessive over utilization of the processor and 

memory bus for needless operations.  This, however, requires the system to have 

enough memory to store the whole image at once as well as control over the caching 

of the image library API.  If the system memory can’t hold the full image then it is 

highly advised that the developer implement their own caching scheme that will 

minimize on demand paging within each iteration.  Another concern with image 

libraries is that it is a good idea to avoid any that use class hierarchies and other object 

oriented overhead, such as the Image Magick API [9] [12] [25].  The computation is 

already extensive, taking a minimum of eight hours on a 60,000 pixel2 image; adding 

object oriented overhead would drastically increase runtime. 

  The final computation concern of the line sweep algorithm is parallel 

computation.  After some experiments we have discovered that threading the line 

processing procedure will not improve the computation time at all.  After analyzing the 

system monitor we discovered that when the whole image is in memory with a singly 

threaded build, CPU utilization is always near maximum with almost no wait time for 

I/O access.  But when we employ a multi-threaded build that utilizes symmetric 

multithreading (better known as Hyper-threading in the Intel core) the CPU utilization 

of both cores dropped below 60%.  From this we can infer that the main memory bus 

is only able to provide enough throughput for a single core computation.  Anything 

more would cause I/O wait time for the process. 
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2.2.3 Area 

  The area metric is computationally the simplest of all metrics.  It finds the area, in 

pixels, of all regions of interest (defined by inside regions) within the image (Figure 

2-11).  Applying the area metric produces a profile of the size distribution of regions of 

interest in the given image.  The difference between area and inside radial contact is 

that inside radial contact finds a size distribution on the pixel level whereas the area 

metric finds a size distribution on the regions of interest level.  The shape distribution 

generated by area produces a histogram that measures the area of a complete blob.  

Each bucket within the area shape distribution represents the count of blobs of the 

specified area. 

  The implementation of the area metric is very simple in that it depends heavily on 

a recursive procedure.  Once it finds an inside pixel it will try to flood the area looking 

for other inside pixels until it hits an outside pixel.  It will do this until no more inside 

pixels can be explored within the region of interest, in which case it will count the 

number of pixels inside the region and bin itself into the appropriate bin and move 

onto an inside pixel of the next region of interest.  This implementation uses a residual 

image to insure that no region of interest is binned twice.  This residual image will keep 

track of all pixels visited by the algorithm already.  It needs to be looked at along side 

the actual image simultaneously.  This image can be the same size as that of the 

original image, if memory allows, or it could be a block of the image.  Some form of 
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book keeping is needed to make sure that the residual image matches up with the 

location of the current read in the original image (Figure 2-10). 

... 
for p: every pixel in the image 
if NOT findArea(p.x, p.y, I, R) = 0 

    add (finalArea, findArea(p.x, p.y, I, R)); 
... 
 
findArea x, y, I, R 

area = 0 
 if I[x,y] == inside AND R[x,y] == notRead 

  area = area + 1; 
  R[x,y] = Read 

 else 
  return 0 

 
 area = area + findArea (x+1, y, I, R); 
 area = area + findArea (x+1, y+1, I, R); 
 area = area + findArea (x+1, y-1, I, R); 
 area = area + findArea (x, y-1, I, R); 
  
 area = area + findArea (x-1, y, I, R); 
 area = area + findArea (x-1, y+1, I, R); 
 area = area + findArea (x-1, y-1, I, R); 
 area = area + findArea (x, y+1, I, R); 

 
return area 
 

Figure 2-10. Implementation of area 

 

Figure 2-11. Concept of area and perimeter 
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2.2.4 Perimeter 

  The perimeter metric is similar to the area metric in that it also deals with 

individual regions of interest instead of pixel by pixel statistics.  This metric counts all 

interface pixels in a region of interest (ROI) (Figure 2-11).  An interface pixel is a pixel 

that is in a ROI and where there is a change from inside to outside at a neighboring 

pixel.  The reason for this metric is to measure the distribution of surface areas of the 

regions of interest, since this is a cross section of a three dimensional object.  

Biologically this is important in that it measures how much nutrients a region can get.  

The more surface something has the more nutrients it will get. 

  There are several choices of implementation for this metric.  Some of them could 

be detecting all edges after passing the image through edge detection using such things 

as the Laplace filter and its equivalent [26] [27].  But due to the fact that we have 

already find all the ROI from the area metric we can apply that information to make 

this metric more efficient.  Starting with each ROI we can check all of its pixels with 

an interface test that checks for the crossover from inside to outside (Figure 2-12).  

Each pixel that gets picked up gets added to the perimeter size count for that region of 

interest, which is then binned to the final histogram. 

... 
for b: all blobs in image 

pixelCount = 0; 
for p: all pixels in b 

 if isInterface(p.x, p.y, I) 
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pixelCount = pixelCount + 1; 
add( finalPerimeter, pixelCount ); 
... 

 
isInterface x, y, I 
if I[x,y] == outside 
return FALSE 

 
 if NOT I[x-1,y] == I[x,y] 

  return TRUE 
 else if NOT I[x,y-1] == I[x,y] 

  return TRUE 
 else if NOT I[x+1,y] == I[x,y] 

  return TRUE 
 else if NOT I[x,y+1] == I[x,y] 

  return TRUE 
 else if NOT I[x+1,y+1] == I[x,y] 

  return TRUE 
 else if NOT I[x-1,y-1] == I[x,y] 

  return TRUE 
 else if NOT I[x-1,y+1] == I[x,y] 

  return TRUE 
 else if NOT I[x+1,y-1] == I[x,y] 

  return TRUE 
else 
 return FALSE 
 

Figure 2-12. Implementation of interface 
detection in perimeter 

2.2.5 Area vs. Perimeter 

  Area vs. perimeter is a metric that combines the previous two metrics into one 

metric.  The reasoning behind this metric is to try to determine the surface to volume 

ratio of a region of interest.  This is one of the major metrics in determining the 

aggressiveness of a biological object.  The more surface area a cell has per volume of 
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mass the more aggressive it can grow.  This happens because more surface area is in 

contact with its surroundings, further advancing its nutritional acquisition. 

  The implementation of this metric is fairly straight forward.  The ratio is the area 

divide by the perimeter for each ROI and the ratio is then binned.  A post process 

must be applied to the value but that will be discussed later in this paper. 

2.2.5 Curvature 

  The curvature metric is very similar to the area vs. perimeter metric in that it is 

trying to determine the relative relationship between the surface area and the volume 

of a region of interest, since the rougher a surface is the more surface area it must have 

to produce the roughness.  The difference between this metric and area vs. perimeter is 

that this is a distribution of roughness along individual perimeter pixels.  This can give 

us a different measurement of the ratio between surface and volume since it is a whole 

magnitude smaller in scope than area vs. perimeter. 
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Figure 2-13. Conceptual definition of 
curvature 

  Curvature can be defined by the smallest circle that can fit a given local area of a 

curve at a specific interval (Figure 2-13) [10].  Curvature is 1 / (radius of the circle).  

What this essentially comes down to is that the larger the approximation circle’s radius 

is the smoother the curve is at a given point, and the lower the curvature.  What we 

found is that if we take the distance field generated from the inside radial contact 

metric we can easily apply a methodology from volume graphics to solve this problem.  

We have thus proposed to use the level set curvature formulation [31] to solve our 

problem (Equation 2-1) on a blurred image of the binary segmentation. 
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Equation 2-1 Level set curvature 
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  The implementation of this formulation is straight forward on a blurred gray scale 

image produced with a convolution.  The binary image is passed through a Gaussian 

kernel one ROI at a time, so as to never duplicate more than one percent of the image 

during any one calculation.  The kernel width was two pixels with a sigma of three.  

Once we obtained a Gaussian blurring of the binary image for a specific ROI, we 

calculate Equation 2-1 at the perimeter pixels using the intensity values of the blurred 

copy (Figure 2-14). 

... 
for p: all pixels in the image 
if isInterface(p.x, p.y, I) 
add(finalCurvature, abs(signedCurvature(p.x, p.y, I)); 

... 
 
signedCurvature x, y, I 

 dx = (I[x+1,y] – I[x-1,y]) / 2.0 
 dy = (I[x,y+1] – I[x,y-1]) / 2.0 
 
 dxx = ((I[x+2,y]-I[x,y])/2.0 – (I[x,y]-I[x-2,y]/2. 0) / 2.0 
 dyy = ((I[x,y+2]-I[x,y])/2.0 – (I[x,y]-I[x,y-2]/2. 0) / 2.0 
 
dxy = ((I[x+1,y+1]-I[x-1,y+1])/2.0 - (I[x+1,y-1]-I[ x-1,y-

1])/2.0) / 2.0 
 
return (dxx*dy*dy - 2*dx*dy*dxy +dyy*dx*dx)/ pow(dx*dx + 

dy*dy, 3.0/2.0) 
 

Figure 2-14. Implementation of curvature 

  All curvature values from perimeter pixels are binned without sign.  The sign of 

the curvature is irrelevant for our computation since we are only concerned about the 

absolute curvature of a pixel.  
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Figure 2-15. Conceptual definition of 
aspect ratio 

2.2.7 Aspect Ratio 

  Aspect ratio is a metric that evaluates the overall shape and dimensions of an 

object.  It divides the object’s shortest span by its longest span.  The concept can be 

visualized by tightly fitting of a rectangle around an object and dividing the shortest 

edge by the longest edge (Figure 2-15).  This measure is applied to all regions of 

interest individually. 

  Aspect ratio is one of the two metrics that depends on eigen systems.  Aspect 

ratio is the ratio between the length of the major and minor axis of an object.  It is 

inherently independent of directions, as it builds its own reference coordinate system.  

The mathematical reason behind using such a system is that each region of interest 
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may align itself in a different direction to the image but for every one of them we still 

want to extract an aspect ratio that is true to the region.  The eigen system takes in all 

data points, in our case all pixels from the region of interest, and defines both the 

eigenvalues and eigenvectors (Figure 2-16) [55].  The eigenvectors are the normalized 

vectors that define the local reference coordinate (to be discussed more in the next 

metric) and the eigenvalues describe how far the dataset stretches along the 

eigenvectors. 

 

Figure 2-16. Definition of eigen systems 
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  In building the eigen system we must first build a covariance matrix before we 

can extract the eigenvalues and eigenvectors [8].  The covariance matrix is a matrix that 

defines the variance within a set of random elements [15].  In our case our random 

elements are the pixels in each region of interest.  The variance within our system is 

the distance between each pixel and the centroid, center of mass, in a ROI.  The 

covariance matrix that we can construct will be the overall covariance of a ROI 

(Equation 2-2). 
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Equation 2-2 Definition of covariant matrix 
in terms of a ROI’s pixels’ x and y 

coordinate 

  After the covariance matrix is generated the eigenvalues and eigenvectors must be 

extracted from it.  The technique used is the real symmetric QR algorithm described 

by Golub and van Loan [21].  The eigenvalues and eigenvectors are then sorted by 

eigenvalues to distinguish between the major and minor axis.  The final computation is 

produced by dividing the eigenvalue of the minor axis (the one with the smaller value) 

by the eigenvalue of the major axis (the one with the greater value).  We divide the 

minor axis by the major axis (as opposed to major by minor) to produce consistent 

results in the range of 0.0 and 1.0 for the final value.  The final aspect ratios for each 

ROI are then binned. 
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2.2.8 Eigenvector 

  The eigenvector metric is related to the aspect ratio metric in that it may make use 

of the other half of the eigen decomposition (Figure 2-16).  This metric measures the 

distribution of shape alignments within an image.  It takes each ROI and measures the 

angle between (cosine of the angle to be exact) the ROI’s direction and the average 

direction of all regions within an image.  The biological reason behind this is that this 

analysis is what many pathologists use behind the scenes.  From my interview with 

John Tomaszewski (a pathologist at the University of Pennsylvania) I discovered that 

the Gleason indexing system for prostate cancer is almost completely based off of the 

measurement of structural entropy within a given section.  The more randomness 

exists within a section the higher the grade.  He also claimed that this measure helps 

distinguish between cases in many other specimens as well.  So inspired by this 

concept we have devised a metric that attempts to capture this aspect of histology. 

  The implementation of this metric first determines the average the major axis of 

all the ROI in an image.  The major axis of the ROI is the eigenvector associated with 

the greatest eigenvalue of the ROI.  After obtaining the average major axis of all the 

ROI it then calculates the dot product of all the ROI major axes with the average 

major axis.  The dot product is the representation of the cosine of the angle between 

the average major axis and the major axis of each region to be binned [55].  The 
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resulting dot product is then binned into the histogram after having 1.0 added to it (to 

keep the values positive since it ranges from -1.0 to 1.0). 

2.3 Computational Performance 

  For a full treatment of how well our pipeline performs we will first state the 

computational environment that we are working with: 

� CPU: AMD Athlon 64 X2 4400+ (Dual core, 2.2 GHz, 64-bit) 
� Memory: 3 GB, DDRAM, PC3200 (400 MHz) 
� Hard drive: 475 GB, Hardware RAID 5, SATA I over PCI interface 
� Operating System: Fedora Core 6 x86_64 build, 20 GB swap space 
� Compiler: GCC 4.1.2 x86_64 build 
� Image library: Image Magick (Magick++) 6.2.8 x86_64 build 

 

  The following are the average runtime of all our metrics when given an image of 

60,000 pixels2: 

Table 2-1 Performance of all metrics 

Metrics Runtime

Inside radial contact 7 min

Line sweep 8.5 hours
Area 3 min

Perimeter 3 min
Area vs. Perimeter 3 min

Curvature 20 min
Aspect Ratio 2.5 min
Eigenvector 3 min  
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  It should be noted that, computationally, the distance transform is the bottleneck 

of both inside radial contact and the curvature metric.  The time taken by the curvature 

metric is much greater than that of the inside radial contact due to the “lazy” approach 

taken by the inside radial contact.  The inside radial contact metric only completed a 

distance transform for the inside pixels only, whereas curvature has to do both.  

Aspect ratio and eigenvector metrics are both bottlenecked on the eigen 

decomposition of the covariant matrix.  Line sweep takes the time indicated to run on 

our system primarily due to the number of cache misses that force the system to over-

utilize the north-bridge of the system bus. 

2.4 Distribution analysis 

  After the shape distributions were generated they were processed by a variety of 

analysis to determine the usability of the measures as well as the overall performance 

of our pipeline.  The analysis process involved both manual and automatic schemes as 

we considered all outcomes. 

  The first step involved was post-processing the histograms to insure that the data 

are not sparse or noisy.  This will be described in more detail in section 3.2.  After the 

post processing we viewed all the histograms in the form of a graph.  The graphs were 

laid out in a form that has the bins on the X axis and the counts in each bin as the Y 

axis.  Each histogram starts at the first non-zero bin.  We also looked at the graphs of 

all cases laid out together to determine if any trends were evident.  Overall we found 
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Grade 2: Inside radial contact
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Figure 2-17 Histogram of inside radial 
contact and eigenvector 

some metrics appeared to be suitable and others were not as.  

  For example, we present the shape distributions for inside radial contact and 

eigenvector metrics in Figure 2-17 in all Grade 2 samples.  For histological grade 

prediction, it is clear that there is some consistency between the inside radial contact 

distributions, whereas there is a great deal of variability within eigenvector distributions 

with a high amount of local oscillation.  

  In later chapters we apply K-nearest-neighbor classification to the shape 

distributions using the Earth Mover’s Distance as our edit distance, which is explained 

later in Chapter 4.  We then take the classifications produced by the K-nearest-

neighbor algorithm and examine the results using the cluster analysis metrics of 

precision, recall and F-measure. 
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C h a p t e r  3   

DATA PROCESSING 

  The data entering the computational pipeline begin as binary segmentations of 

the histological slide images and are then transformed into shape distributions, 

represented as histograms, that capture the structure of the entire image in a series of 

numbers that can be viewed as a signature of the image.  These histograms are a 

description of how often a certain value occurs when a certain geometric metric is 

applied to the image.  Based on how certain metrics perform, not all pixels in the 

binary segmentations are desirable as well as not all numbers generated by each 

measure are needed for or relevant to the final decision making process.  Besides the 

undesirable results of the immediate input there may also be undesirable results that 

are attributed to processing much earlier in the whole process.  This chapter will 

address and talk about all these concerns of the computational pipeline. 

3.1 Preprocessing 

  During the segmentation process there is a possibility of capturing some regions 

that are truly regions of interest.  This may happen for a variety of reasons due to the 

fact that segmentation is an optimization process.  Utilizing the traditional 

segmentation metric, the Mumford-Shah framework [39] for measuring the 

performance of a specific segmentation, there are three functionals that measure the 
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degree of match between an image, ( )yxg , , and its segmentation, ( )yxf ,  (Equation 

3-1). 

( ) ( ) Γ+−+∇=Γ ∫∫∫∫ Γ−
νµ

RR
dxdygfdxdyffE 22,  

Equation 3-1 Mumford-Shah framework 

  In the three functionals in Equation 3-1, we observe that the first functional 

represents the energy still remaining in the image, the second functional represents the 

difference between the original image and the segmentation and the last functional 

represents the length of the boundaries of each region (Γ ).  Within this formulation 

there are two constants that a segmentation can modify to tailor its specific needs, µ  

and ν .  The constant µ  specifies the amount of error that the final segmentation can 

have from the original image and the constant ν  specifies how smooth the boundaries 

can be. 

  So given the classic segmentation analysis we can see that the two constants 

specifying the correctness of a segmentation are purely based on two factors of the 

segmentation, how big (which also implies how many) and how smooth are each 

regions of interest within the segmentation.  This adds a complication since every 

image has its own unique segmentation.  As we have discussed earlier in our 
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computational framework, we depend on the accuracy and precision of those two 

properties for each region of interest. 

Table 3-1 Data preprocess 

 Inside 
radial 
contact 

Line 
sweep 

Area Perimeter Area vs. 
Perimeter 

Curvature Aspect 
Ratio 

Eigenvector 

Examine inside 
pixels only X  X X X X X X 

Consider only 
when 
64<Area<1500 

X X X X X X X X 

Consider only 
when 1:6<Aspect 
Ratio 

X X X X X X X X 

Examine 
perimeter pixels 
only 

   X X X   

 

  To keep qualities consistent in our images for the analysis stage, we have applied 

the filtering of information presented in Table 3-1.  This filtering will narrow the range 

for each image down to appropriate values for each individual metric.  For most 

metrics it was not necessary to look at outside pixels except for line sweep.  The line 

sweep metric needs to process all pixels during its sweeping process. 

  The reasoning behind the area filter is to make sure that we are not introducing 

noise or segmentation errors in the shape analysis.  We observed our segmentations 

closely and discovered that regions of interest smaller than 64 pixels in area are too 

small to be of a nuclear structure, but instead are products of over segmentation.  The 

regions of interest that are larger than 1500 pixels in area tend to be several nuclear 
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structures clumped together, an artifact of under segmentation.  Another cause of large 

regions of interest within the segmentation can be caused by tubular formations 

(Figure 3-1) or other non-nuclear structures within the tumor.  Those are not what we 

wish to analyze in this study and to fall into structures larger than 1500 pixels in area.  

By filtering out those two size categories of regions of interest, we were able to 

maintain some form of quality control over what is passed into the shape distribution 

process. 

 

Figure 3-1 Segmentation error with large 
tubular formations 

  The aspect ratio filter was used to filter out anything that is too “skinny” and may 

resemble more noise.  This may at first seem like a good way to get rid of strands of 

dust particles or other form of pollutants that may get onto the slide during the 

scanning process... and it may very well do that if the slides were not scanned in 

cleanly... but more importantly it is used to further filter errors from the segmentation.  

This could potentially help filter out background noise that many biological images 

may have.  If for example you have many cells lined up like a wall along some 
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membrane and you were trying to segment the image.  If the background is a similar 

color to the nucleus structure, the segmentation process would not necessarily pick 

that up as a region of interest.  This filter would essentially eliminate those “mistakes” 

from the segmentation. 

  The perimeter filter is for optimization purposes.  It is used so that all metrics that 

perform a computation at a perimeter pixel do not waste computation on unnecessary 

pixels.  The only two metrics this would affect is the area vs. perimeter and the 

curvature metric.   

Table 3-2 Histogram binning 
multipliers 

 Multiplier 

Inside radial 
contact 1x 

Line sweep 1x 
Area 0.10x 
Perimeter 1x 
Area vs. 
Perimeter 

10x 

Curvature 50x 
Aspect Ratio 100x 
Eigenvector 50x 

 

3.2 Post process 

  After we have generated all the shape distributions from the filtered 

segmentations we observed that some of the results of applying the metrics didn’t fall 

naturally into a significant number of integer bins.  To increase precision we then 
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multiplied all metric results, to increase the number of bins needed to represent the 

data.  We decided that a reasonable bin count was between 100 and 350, with the 

exception of inside radial contact (which had a count of up to 21).  This was done so 

that details would not be lost and to ensure that all shape distributions had 

approximately the same bin count.  This is especially important in metrics where we 

always divide a smaller number by a larger one, e.g. aspect ratio.  The range of outputs 

for those will always be from 0.0 to 1.0.  It must be multiplied by a larger number to 

keep everything from binning to 0.  So to deal with that problem we have applied 

multipliers to the results produced by applying the metrics in order to properly scale 

the range of the metrics’ output (Table 3-2). 

Table 3-3 The before and after of the data range 
after post processing 

 Before After 

Inside radial 
contact 

1-22 1-22 

Line sweep 1-141 1-141 

Area 64-1500 6-150 
Perimeter 28-450 0-350 
Area vs. 
Perimeter 

0.12-1.02 12-102 

Curvature 0-21 0-349 
Aspect Ratio 0.1667-1.0 17-100 
Eigenvector 0.0-2.0 0-100 

 

  The multipliers for inside radial contact, line sweep and perimeter were kept at 

one because their bin counts were acceptable.  The original range for the area metric 

went up to over one thousand, which was too large for our system to handle 
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computationally using the Earth Mover’s Distance (details in chapter 4), and had to be 

scaled down to allow for a more manageable size.  Everything else had to be expanded 

due to their extremely small original range.  After the expansion, we had to do a 

preliminary cutoff in the higher ranges for curvature and perimeter due to the obvious 

sparseness of the data after a certain value where there are large gaps between values 

that lead to only small bucket sizes.  Aspect ratio had to be scaled by 100 due to the 

fact that it originally ranges from 0.0 to 1.0.  Eigenvector had to be scaled by fifty due 

to the fact that it ranges from 0.0 to 2.0 from the linear shift of 1.0.  Aspect ratio 

originally ranges from 0.0 to 1.0 because at best, it can be square, where the ratio is 1:1  

Table 3-4 The before and after of the bucket 
count after post processing  

 Before After 

Inside radial 
contact 

21 21 

Line sweep 140 140 

Area 1436 144 
Perimeter 422 350 
Area vs. 
Perimeter 

1 90 

Curvature 21 349 
Aspect Ratio 1 83 
Eigenvector 2 100 

 

and the worst is actually only 1:6 due to filtering imposed during the preprocessing.  

The eigenvector metric always produces results from -1.0 to 1.0 before the linear shift 

due to the nature of the metric definition.  Because of the way that it is set up the 
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eigenvectors can only range between 0 and 180 degrees from the average direction.  

The reason is that if it is more than 180 degrees or less than 0 degrees of the major axis 

it would become redundant since the definition of an eigen system defines that the 

eigenvectors that forms it is the orthonormal basis of the vector space [55].  The value 

of cosine(0) in degrees is 1.0 and cosine(180) in degrees is -1.0.  The ranges of values 

produced by each metric before and after scaling are presented in Table 3-4.  The 

bucket counts produced by each metric before and after scaling are presented in Table 

3-4. 

  We discovered that logarithmic scale is better than a linear one to one mapping of 

the values within each bucket.  One of the initial reasons for doing this is that 

everything in natures seems to be either in an exponential scale or logarithmic scale.  

Take for example sound decay (exponential) and population growth (exponential).  We 

also discovered that a variety of image analysis texts also suggests a logarithmic scale 

over linear one to one scale [11] [58] [22] [17].  After observing our data, we did see an 

exponential growth in value in most cases.  

  The other question we considered was do we need analyze all bins in each 

histogram?  The histograms are very good in that they describe the structures in the 

entire image completely according to one metric, but are all the information contained 

in them significant?  Depending on the shape distribution we are working with, we 

argue that some of its bins may be discarded.  In certain cases we argue that using all 
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bins will add significant noise/randomness into the analysis, and this makes the 

analysis meaningless.  So to increase the significance of and to minimize noise, and 

therefore improve the predictability of the data, we propose to crop the shape 

distributions to those portions with less noise/randomness and deemed significant.   
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Figure 3-2 Example of inside radial 
contact’s histogram 

  A shape distribution generated by a metric that produces mostly “valid”, i.e. data 

with minimal noise, can be seen in Figure 3-2.  The example graph shows the 

histogram of a typical inside radial contact mapped with a logarithmic scale.  Inside 

radial contact produces an extremely well behaved shape distribution due to its small 

size (14 bins) and lack of local variation.  The bin size of all inside radial contact shape 

distributions does not exceed 21 buckets, making this an easy shape distribution to 

work with.  But for example, Figure 3-3 contains a shape distribution produced from 

the curvature metric that has a very sparse and noisy tail that could potentially produce 
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numerical instability during analysis.  As we will see later, the Earth Mover’s Distance, 

which is our shape distribution metric for similarity, has less error and performs much 

faster with smaller shape distributions. 

 

Figure 3-3 Example of curvature’s 
histogram 

  The approach taken to remove noisy tails from the shape distributions was to 

take all the images in each classification group (predefined by pathology, in our case 

the Nottingham indexing scale) and standardize the bin ranges for all the associated 

shape distributions.  This essentially means that we calculated the absolute bin range 

for each group and filled each shape distributions’ undefined bins with zero count.  

This will guarantee that every distribution within the same group will all start and end 

at the same bin location.  The maximum bin location for all shape distributions 
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produced by a particular metric is defined to be the maximum of all the first zero bin 

locations.  This effectively removes the “noisy tails” from the shape distributions.  If 

the shape distributions have zero bins preceding any significant portions then the 

minimum bin will be defined by the minimum zero bin of all the zero bins preceding 

the data.  By doing this we will ensure that all processed shape distributions have noise 

removed from their fronts and tails.  The only problem that this could cause would be 

an abnormal cutoff for shape distributions with a zero bucket in the middle.  

Fortunately for our data, this did not occur. 

  Generating the shape distributions from the breast cancer segmentations and 

applying our filtering and processing produced the shape distributions ranges as 

presented in Table 3-5. 

Table 3-5 Shape distribution ranges for all 
metrics 

 Total Span Usable region 
Inside radial 
contact 

1-22 1-20 

Line sweep 1-141 1-134 
Area 7-150 7-145 

Perimeter 0-350 0-242 
Area vs. 
Perimeter 

12-102 12-91 

Curvature 0-349 0-209 

Aspect 
Ratio 

17-100 17-92 

Eigenvector 0-100 0-100 
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3.3 Pre-segmentation dependencies 

  The last issue regarding data that needs to be mentioned are potential problems 

produced by the pre-segmentation phase of the pipeline.  Errors from this phase may 

have been propagated from the segmentation phase and could have skewed the 

distributions of our shape distributions and, ultimately, the predictive power of the 

final stage. 

  The first problem that we noticed throughout our work was that the level of 

magnification used during the scanning stage of the pipeline might skew the results of 

our metrics.  We see the ill effects of magnification mostly in the curvature metric 

where a majority of the shape distributions exhibit sparse, noisy tails.  Examining the 

segmentation in Figure 3-4 it can be seen that very little of the roughness in most 

structures is captured.  In fact only the major turns on the contour of each region is 

captured.  It is clear to see that this kind of segmentation can not differentiate very 

much between two histological images. 

  Despite of the error that this causes in the curvature metric, this could be the 

perfect magnification for other metrics.  So we do feel that it might be good idea to 

consider multiple levels of magnification when analyzing histology segmentations.  We 

need to discover the optimal level of magnification for each metric to increase the 

predictability of each metric.  This is also the procedure used by a pathologist when 

examining a section.  He/she will first view the slide at a low magnification, identify 
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the area of interest and zoom in to the region for further analysis.  Each level of 

magnification can lead the pathologist to a different conclusion about that section. 

  

Figure 3-4 Multiple segmentations at 10x 
magnification 

  The second and last concern for the pipeline prior to segmentation is the 

morphological distortion applied to the section when it is stored in a slide.  According 

to the pathologist we work with the shape of cells and different tissues can be distorted 

when it’s cut and compressed between two panes.  This distortion could lead to 

inaccuracies within the aspect ratio and the curvature metric.  This, however, should 

not cause any inaccuracies in the area and perimeter metric. 
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C h a p t e r  4   

ANALYSIS 

  Once the shape distributions are generated, they are analyze to determine how 

effectively each metric correlates an image to its histological grade.  We have devised a 

few methods for analyzing the histograms that represent the shape distributions.  The 

key to quantifying the effectiveness of a metric is to determine if it can correctly 

identify the classification of a sample of a known grade. 

  In our first approach we attempted to classify clusters of shape distribution in a 

high dimensional space.  We treated every case as a point in a high dimensional space 

and attempted to find clusters of classification groups using a L-2 norm.  This led us to 

unpromising data that does not seem to cluster well. 

  The second approach we took was to try to determine the classification of a case 

based on querying our known cases using K-nearest-neighbor.  We attempted to 

perform such an analysis on the whole histogram that represents the shape distribution 

and validated it against standard metrics used in information retrieval (precision, recall 

and F-measure [48]).  By performing the validations we discovered that by comparing 

windows of sub-regions within the histograms instead of the whole histogram we 

would be able to achieve better performance with each geometric metric. 
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  After performing the validation on all analysis of the sub-regions we were able to 

determine certain criteria that would potentially gain the best performance with our 

given data set for each geometric metrics.  Due to the size of our data we were able to 

only make suggestive claims as to how well each of our geometric measures performed 

in our given scenario.  All this and more will be described in this chapter. 

4.1 Earth mover’s distance 

  The Earth Mover’s Distance (EMD) is an algorithm devised in Stanford in the 

late 90s for distribution analysis [51].  The purpose of EMD is to compare two 

histograms and purpose a measure of the similarity between the two using an 

optimization algorithm.  Similarity, defined by EMD, is the minimal energy needed to 

transform one distribution into another.  It can be described using the analogy of 

trying to fill a set of holes by moving dirt from a mound of dirt.  We have chosen 

EMD over other algorithms primarily due to the success that was attributed to it in the 

computer vision domain [50]. 

  The reason that we chose to use EMD over all other measures was because it was 

considered the optimal algorithm for comparing two histograms.  One of the primary 

reasons why EMD is better for our purpose is due to EMD’s capability to compare 

between two histograms of varying lengths.  EMD has a nice property of treating all 

vectors given to it as distributions, where size differences do not cause computational 

problems as do most histogram based algorithms [51].   
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  After using EMD for awhile we also noticed a few properties of it that are worth 

noting.  One of them relates to the previously stated property that we have observed.  

When given two distributions of varying length EMD will treat them as if they are the 

same length starting at the same bin location.  What that means is that if you have one 

histogram starting at n and another starting at n+m, EMD will treat the histogram as if 

both started at the same location.  That is a problem if we are comparing regions.  Due 

to the displacement and potential scaling, padding in zeros in the front and back of a 

histogram to normalize the length will cause the EMD to produce a different result 

when compared to unpadded comparisons. 

  Another issue with EMD is that due to the arbitrary offset and length it creates 

for two histograms it will view each bin as a percent of the total mass.  The sum of all 

bin values will sum to one.  This is a good property for histograms of small values but 

will get numerically unstable as the histogram bin count increases.  This is also a 

problem if the total sum of all values is large as well.  We have tackled this problem by 

converting all histograms to log scale.  A problem with log scale is that there is also a 

potential for sparse data to create numerical instability as well.  A sparse histogram will 

cause the algorithm to require a higher EPSILON to converge, which causes potential 

for more error in the final result. 

  The last issue with EMD that is worth mentioning is that it is not linearly additive.  

What that means is if you take histogram H1 and histogram H2 and you do an EMD 
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calculation on it, it will come up with result A.  But if you break up H1 and H2 to be 

four halves instead of two wholes, the sum of EMD(FirstHalf(H1), FirstHalf (H2) + 

EMD(SecondHalf(H1, SecondHalf (H2)) will not equal EMD(H1, H2).  The reason 

behind this is the fact that EMD is an optimization problem and therefore does not 

grow linearly.  Therefore there is no simple means to breakdown the histograms and 

compute it by parts.  This is important in that the EMD calculation will be directly 

constrained by the size of the problem.  Though this problem shouldn’t really be an 

issue due to the size of most problems, it can nevertheless be handled by either scaling 

or trimming ends of the histograms if the size of the problem really calls for it. 

4.2 Shape distribution sub-regions 

  The one consideration that needs to be taken into account is sub-regions within 

each distribution.  As discussed in data post processing, we hinted at the fact that 

maybe the entire histogram would not be needed for prediction and matching.  As we 

proceeded with our experimentations we discovered that we only need certain sub-

regions of a histogram to produce acceptable comparison results, even after filtering 

out the sparse regions (as explained in data post processing).   

  One of the key ideas behind finding a good sub-region for comparison is to find a 

region of good separation between classification groups.  A visual inspection, as shown 

in Figure 4-1, shows that it is clear that certain sub-regions are better separated than 

others.  The sub-region does not necessarily have to separate all classification groups in 
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any sub-region but only has to have a good consistent separation between at least two 

of the classification groups.  If any two or more geometric measures, on their own 

individual sub-regions of best separation, can eliminate two out of three grades that a 

case can be, we can still predict what grade a case is.  Figure 4-1 shows a visual 

representation of two average histograms that represents shape distributions of two 

histological grades for each individual geometric measure that we have implemented 

with the exception of eigenvector, which is ambiguous in respect to separation.  As we 

can see from Figure 4-1, we have at least one geometric measure that has a significant 

sub-region of good separation for every possible combination of pairing between the 

three histological grades. 
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Figure 4-1 Regions of good separations 

  It should also be kept in mind that if a sub-region gets too small it will not be able 

to capture enough information about the image.  Though this is domain and metric 

specific, we assume that if the sub-region shrinks below 40% it will start to become an 

inaccurate/incomplete description of the image.  Though sub-regions might seem to 

be a good estimation, it should not be a replacement for comparing the whole 

histogram after filtering out the sparse regions.  
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Figure 4-2 Sub-region sliding window 
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4.3 Information retrieval analysis 

  The final stage of this whole process is to analyze the relative success of our 

shape distributions and to do that we chose to use information retrieval methods.  Due 

to the consideration for the sub-regions of good separation we have decided to analyze 

all sub-regions within the final trimmed window of all histograms for each shape 

measure.  We performed this by sweeping a sliding window (Figure 4-2) over the 

cropped regions with a given window size by incrementing the starting location of the 

window one bucket location at a time.  The window size has been described earlier as 

50% to 100% in increments of 10%.  Each geometric measure will have every possible 

window in the cropped regions analyzed by the sliding window at every window size. 

 

Figure 4-3 K nearest neighbor 

  We would then perform EMD calculations for all the sub-region of the same 

window size against each other and attempt to validate our known histological grades 

associated with each case based on a K-nearest-neighbor query.  K-nearest-neighbor 
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takes a set of data points and using some form of edit distance finds the K closest 

points around an unknown point (Figure 4-3).  So in our case of analyzing the 

performance of a given sub-regions in a given geometric measure we would, for all 

cases, find the K nearest cases to a given case based on EMD distance and try to form 

a result for our K-nearest-neighbor query based on a vote between all K nearest cases.  

The final result of the query would be the histological grade with the highest vote [11] 

[17].  If there is a tie in the vote, the given case would be classified as “unknown”. 

  The K values that we chose for the classification process are 4, 7, and 10.  We 

chose these values in order to guarantee that only a two way tie is possible if a tie 

exists, eliminating the possibility of three way ties, as shown by K mod 3 producing 1 

for each K value.  We chose to omit the K value of 1 from our analysis because we 

observe that it wouldn’t be any different from just getting the closest case, providing 

an unreliable classification.  We did not go above 10 for the K value because we only 

have ten cases for each grade, providing us with no meaningful information. 

  The next step that we took was to take the queries of each sub-region of each 

geometric measure formed by K nearest neighbor and analyzing them using the 

metrics of precision, recall and F-measure.  As a precursor, we should define the 

following terms [48]: 

− True Positive (TP): In a given set of cases with known classification, how many 

cases were correctly classified into class X by a classifier. 
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− False Positive (FP): In the same set of cases, how many cases that don’t belong 

in class X were classified into class X by the classifier. 

− False Negative (FN): In the same set of cases, how many cases that belong in 

class X did not make it into class X. 

  Precision measure how many correct queries were performed for each 

histological grade in respect to all the queries that maps a case to that specific 

histological grade.  The precision of K nearest neighbor in histological grade jC  is 

generated by taking the sum of all correct queries (true positives, TP) and dividing it by 

the total number of queries performed (true positives + false positives, TP + FP) 

(Equation 4-1).  The goal of each window is to maximize precision [48]. 

Precision ( )
FPTP

TP
C j +

=  

Equation 4-1 Precision measure 

  The recall metric measures how many cases of a certain histological grade were 

able to get mapped back to their original classification using a query.  Recall is the ratio 

between the correct queries for the histological grade (TP) and all the cases that belong 

to the histological grade (TP + FN).  The goal of each window is to maximize recall 

[48]. 
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Recall ( )
FNTP

TP
C j +

=  

Equation 4-2 Recall measure 

  The F-measure is a metric that combines both precision and recall in a harmonic 

mean (geometric mean squared over arithmetic mean) to provide an overall 

performance measure that combines both individual measures (Equation 4-3).  The 

scale of the F-measure is from 0.0 to 1.0.  Almost 0.0 is the worst performance and 1.0 

is best [48] [35]. 

( )
recallprecision

recallprecision
CF j +

××= 2
 

Equation 4-3 F-measure 

  The full process of analyzing each window will consist of computing precision, 

recall and F-measure for each window.  Analysis for each window will be stored and 

ranked using F-measure as key.  A summary of the best performance, in respect F-

measure, can be found in Appendix A.  The metric for best performance is ranked 

primarily by F-measure and if there is a tie with the F-measure it will be ranked 

secondarily by window size second.  A visualization of this data can be seen below 

with Figure 4-4, Figure 4-6 and Figure 4-8 and descriptions. The full set of data for our 

images acquired from this process can be found in the link in Appendix B. 
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Figure 4-4 Maximum performance value of 
Grade 1 in respect to k-values. 

  The grade 1 analysis shows that curvature came out with the best F-measure of all 

the geometric measures.  From Figure 4-4 we can see that curvature performs better, 

in respect to F-measure, with higher K value in the K-nearest-neighbor query.  The 

second best window for grade 1 is perimeter and contrary to curvature it performs 

better with a lower K value of 4.  The third best window in grade 1 is aspect ratio, 

which performed similar across all K values.  The details of the three best windows in 

grade 1 can be viewed in Table 4-1. 
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Table 4-1 Best performing windows for Grade 1 

Metric Window Precision Recall F-measure 

Curvature 
Window 103 
to 207 (60%) 

8/11 8/10 0.7619 

Perimeter 
Window 17 
to 162 (60%) 

6/7 6/10 0.7059 

Aspect 
Ratio 

Window 11 
to 51 (50%) 

7/10 7/10 0.7 

 

 

Figure 4-5 Grade 1 best window 

  Upon visual inspection of the best performing window in grade 1 in Figure 4-5, it 

is visible that the window did pick up the region of best separation.  The graph shows 

the average histograms for grade 1, 2 and 3 with the noisy tail trimmed. 
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Figure 4-6 Maximum performance value of 
Grade 2 in respect to k-values. 

  The grade 2 analysis in Figure 4-6 shows area vs. perimeter to have the best 

window in respect to F-measure performance.  For grade 2, area vs. perimeter showed 

good performance with K values of both 4 and 7.  The second best measure for grade 

2 is perimeter.  Perimeter seems to peek in performance with a K value of 7.  It is 

interesting to note that area vs. perimeter came out with a better score than area or 

perimeter alone, showing that there isn’t a direct correlation between the three 

measures with regards to the final result.  The third best measure for grade 2 is 

eigenvector.  Eigenvector seems to do better with lower K values with the best 
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performance coming from K value of 4.  This almost validates our observation earlier 

stating that eigenvector seems to have a very chaotic behavior when inspected visually.  

It seems to have many localized oscillations that all tend towards a common trend, 

regardless of the histological grade.  As our full data set (Appendix B) will show, 

eigenvector has pockets of windows of good performance within the sliding window 

analysis.  The graph in Figure 4-6 verifies that it performs better with less information.  

The details of the three best windows in grade 2 can be viewed in Table 4-2. 

Table 4-2 Best performing windows for Grade 2 

Metric Window Precision Recall F-measure 

Area / 
Perimeter 

Window 43 to 
82 (60%) 

6/6 6/10 0.75 

Perimeter 
Window 31 to 
152 (50%) 

6/8 6/10 0.6667 

Eigenvector 
Window 33 to 

63 (50%) 
7/12 7/10 0.6364 

 

  A closer visual inspection of the best window in grade 2 in Figure 4-7 shows that 

it is actually debatable whether the sub-region is a region of good separation.  It shows 

the window to be a good sub-region for grade 3 but not visibly so for grade 2.  What 

we suspect the analysis to have done is that it takes the average separation of grade 2 

from grade 1 and grade 2 and determines the performance based on that.  From Table 

4-2 we can see that only six cases were accurately queried from grade 2, which is about 

half of the original ten cases that were identified as grade 2.  From speaking with our 
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pathologist, he suggests that this could also be due to the ambiguity of classifying a 

case as grade 2, even for humans. 

 

Figure 4-7 Grade 2 best window  

  The grade 3 analysis in Figure 4-8 shows inside radial contact to be the geometric 

measure with the best window for grade 3.  Inside radial contact shows that it 

performs better with higher K value.  The second best measure for grade 3 in regards 

to F-measure is curvature.  Curvature, for grade 3, performs better with lower K value, 

though it shows no overall trend for how K value affects performance.  The third best 

measure for grade 3 is aspect ratio.  Aspect ratio peeks in performance with a K value 

of 7.  The details of the three best windows in grade 3 can be viewed in Table 4-3. 



65 

Max value of Grade 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Are
a

Are
a/P

er
im

et
er

Per
im

et
er

Curva
tu

re

In
sid

e R
ad

ial

Lin
e S

weep

Asp
ect 

Rat
io

Eige
nv

ec
tor

K=4

K=7

K=10

 

Figure 4-8 Maximum performance value of 
Grade 3 in respect to k-values. 

Table 4-3 Best performing windows for Grade 3 

Metric Window Precision Recall F-measure 

Inside Radial 
Contact 

Window 8 to 
20 (60%) 

8/12 8/11 0.6957 

Curvature 
Window 48 
to 152 (60%) 

9/15 9/11 0.6923 

Aspect Ratio 
Window 33 
to 78 (70%) 

8/16 8/11 0.5926 
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Figure 4-9 Grade 3 best window 

  From visually inspecting the best performing window in grade 3 in Figure 4-9 we 

can see that it is obvious that the window picked out the sub-region of best separation.  

It clearly distinguishes the grade 3 average histogram from the other two grades within 

the region.  Though it is not as clear at the tail of the histogram, it is the best sub-

region of separation between bucket locations of 8 and 13. 
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C h a p t e r  5   

CONCLUSION 

5.1 Conclusion 

  This thesis has investigated the use of shape distributions in the analysis of 

segmentations of histological images.  From our studies we have discovered a way to 

analyze the performance of shape distributions based on their ability to estimate 

histological grade.  We explored the feasibility and performance of the Earth Mover’s 

Distance as an edit distance in our analysis.  While our results are suggestive of 

predictions using visual and quantitative methods, they are not predictive at this point.  

What we have shown is a quantitative technique for determining best windows of 

predictive results for each metric and K-value when using the K-nearest-neighbor 

method, regardless of the techniques and edit distances used.   

  Besides the analysis of shape distributions for histological segmentations we were 

also able to explore the extension of using a line as a shape function.  Using the line 

sweep shape function we were able to emulate the profile shape function [47] and take 

it further by collecting all possible profiles of the image. 
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5.2 Future work 

  Though this approach offers good start, there is more that can be done to 

improve it.  One of the major improvements that could be implemented is the 

incorporation of multi-level magnification.  We propose to apply a Gaussian pyramid 

approach to help add the ability to zoom out of the image.  It would also be useful to 

have images of very high magnification to start with when working with such scheme.  

Many of the metrics would benefit greatly from added details in the image, as well as a 

more zoomed out view. 

  This work can be improved if other classification techniques and edit distances 

are explored.  This can lead to measuring and comparing the relative quality of each 

technique and edit distance in relationship to the data given.  We would also like to 

determine if shape distributions may be improved with other techniques and edit 

distances.   

  Our study would have benefited from more histological segmentations for 

analysis.  This would provide more statistical information.  More data would allow us 

to move closer to a predictive capability.  With enough evidence we could possibly 

calculate a statistical likelihood of a certain case being a certain grade. 
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   With enough data and evidence we would eventually want this work to be 

validated for image archiving and cataloging purposes.  This work can easily be ported 

over for image archiving and cataloging and we wish fully explore this at a later time. 
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 A p p e n d i x  A  

BEST PERFORMANCE 

  This appendix lays out all the best windows, in respect to F-measure, of each 

geometric measure.  For more information on each measurement please consult 

chapter 4.3. 

Area 
K=4 

Grade Window Precision Recall F-measure 

Grade 1 
Window 2 to 
98 (70%) 

4/5 4/10 0.533 

Grade 2 
Window 0 to 
69 (50%) 

3/7 3/10 0.353 

Grade 3 
Window 5 to 
101 (70%) 

4/7 4/11 0.444 

K=7 
Grade Window Precision Recall F-measure 

Grade 1 
Window 46 to 
128 (60%) 

4/4 4/10 0.571 

Grade 2 
Window 11 to 

80 (50%) 
5/9 5/10 0.526 

Grade 3 
Window 5 to 
101 (50%) 

5/13 5/11 0.417 

K=10 
Grade Window Precision Recall F-measure 

Grade 1 
Window 9 to 
105 (70%) 

4/5 4/10 0.533 

Grade 2 
Window 64 to 
133 (50%) 

7/13 7/10 0.609 

Grade 3 
Window 18 to 

87 (50%) 
4/9 4/11 0.4 
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Area vs. Perimeter 
K=4 

Grade Window Precision Recall F-measure 

Grade 1 
Window 5 to 
68 (80%) 

4/8 4/10 0.444 

Grade 2 
Window 44 to 

83 (50%) 
6/6 6/10 0.75 

Grade 3 
Window 22 to 

69 (60%) 
4/5 4/11 0.5 

K=7  
Grade Window Precision Recall F-measure 

Grade 1 
Window 7 to 
78 (90%) 

2/5 2/10 0.267 

Grade 2 
Window 43 to 

82 (50%) 
6/6 6/10 0.75 

Grade 3 
Window 7 to 
46 (50%) 

6/13 6/11 0.5 

K=10 
Grade Window Precision Recall F-measure 

Grade 1 
Window 5 to 
44 (50%) 

2/8 2/10 0.222 

Grade 2 
Window 15 to 

62 (60%) 
6/7 6/10 0.706 

Grade 3 
Window 7 to 
70 (80%) 

4/8 4/11 0.421 

 

Curvature  
K=4 

Grade Window Precision Recall F-measure 

Grade 1 
Window 76 to 
201 (60%) 

6/9 6/10 0.632 

Grade 2 
Window 89 to 
193 (50%) 

5/6 5/10 0.625 

Grade 3 
Window 48 to 
152 (50%) 

9/15 9/11 0.692 

K=7 
Grade Window Precision Recall F-measure 

Grade 1 
Window 82 to 
207 (60%) 

8/12 8/10 0.727 

Grade 2 
Window 52 to 
156 (50%) 

5/6 5/10 0.625 

Grade 3 
Window 23 to 
127 (50%) 

6/13 6/11 0.5 
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K=10 
Grade Window Precision Recall F-measure 

Grade 1 
Window 103 
to 207 (50%) 

8/11 8/10 0.762 

Grade 2 
Window 86 to 
190 (50%) 

4/6 4/10 0.5 

Grade 3 
Window 25 to 
129 (50%) 

6/12 6/11 0.522 

 

Eigenvector 
K=4 

Grade Window Precision Recall F-measure 

Grade 1 
Window 52 to 

77 (50%) 
3/7 3/10 0.353 

Grade 2 
Window 33 to 

63 (60%) 
7/12 7/10 0.636 

Grade 3 
Window 49 to 

74 (50%) 
7/14 7/11 0.56 

K=7 
Grade Window Precision Recall F-measure 

Grade 1 
Window 33 to 

63 (60%) 
3/5 3/10 0.4 

Grade 2 
Window 44 to 

79 (70%) 
5/8 5/10 0.556 

Grade 3 
Window 38 to 

78 (80%) 
6/10 6/11 0.571 

K=10 
Grade Window Precision Recall F-measure 

Grade 1 
Window 33 to 

63 (60%) 
3/5 3/10 0.4 

Grade 2 
Window 37 to 

67 (60%) 
6/13 6/10 0.522 

Grade 3 
Window 48 to 

78 (60%) 
5/7 5/11 0.556 
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Inside Radial 
K=4 

Grade Window Precision Recall F-measure 

Grade 1 
Window 8 to 
20 (60%) 

4/6 4/10 0.5 

Grade 2 
Window 4 to 
14 (50%) 

5/12 5/10 0.455 

Grade 3 
Window 6 to 
18 (60%) 

4/6 4/11 0.471 

K=7 
Grade Window Precision Recall F-measure 

Grade 1 
Window 10 to 

20 (50%) 
5/8 5/10 0.556 

Grade 2 
Window 43 to 

82 (60%) 
5/12 5/10 0.455 

Grade 3 
Window 1 to 
13 (50%) 

7/10 7/11 0.667 

K=10 
Grade Window Precision Recall F-measure 

Grade 1 
Window 10 to 

20 (50%) 
4/13 4/10 0.348 

Grade 2 
Window 0 to 
12 (60%) 

6/16 6/10 0.462 

Grade 3 
Window 8 to 
20 (60%) 

8/12 8/11 0.696 

 

Line Sweep 
K=4 

Grade Window Precision Recall F-measure 

Grade 1 
Window 10 to 
103 (70%) 

4/10 4/10 0.4 

Grade 2 
Window 22 to 

88 (50%) 
4/10 4/10 0.4 

Grade 3 
Window 13 to 
119 (80%) 

5/11 5/11 0.455 

K=7 
Grade Window Precision Recall F-measure 

Grade 1 
Window 6 to 
85 (60%) 

3/4 3/10 0.429 

Grade 2 
Window 14 to 

80 (50%) 
4/5 4/10 0.533 

Grade 3 
Window 8 to 
101 (70%) 

6/11 6/11 0.546 
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K=10 
Grade Window Precision Recall F-measure 

Grade 1 
Window 21 to 

87 (50%) 
3/4 3/10 0.429 

Grade 2 
Window 19 to 

85 (50%) 
6/9 6/10 0.632 

Grade 3 
Window 26 to 
119 (70%) 

6/12 6/11 0.522 

 
Major/Minor Axis 
K=4 

Grade Window Precision Recall F-measure 

Grade 1 
Window 10 to 

47 (50%) 
6/8 6/10 0.667 

Grade 2 
Window 21 to 

58 (50%) 
4/6 4/10 0.5 

Grade 3 
Window 10 to 

77 (90%) 
6/11 6/11 0.546 

K=7 
Grade Window Precision Recall F-measure 

Grade 1 
Window 12 to 

57 (60%) 
6/8 6/10 0.667 

Grade 2 
Window 19 to 

85 (80%) 
6/9 6/10 0.632 

Grade 3 
Window 33 to 

78 (60%) 
8/16 8/11 0.593 

K=10 
Grade Window Precision Recall F-measure 

Grade 1 
Window 14 to 

51 (50%) 
7/10 3/10 0.7 

Grade 2 
Window 27 to 

64 (50%) 
5/9 5/10 0.526 

Grade 3 
Window 19 to 

79 (80%) 
7/17 7/11 0.5 
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Perimeter 
K=4 

Grade Window Precision Recall F-measure 

Grade 1 
Window 17 to 
162 (60%) 

6/7 6/10 0.706 

Grade 2 
Window 96 to 
241 (60%) 

7/14 7/10 0.583 

Grade 3 
Window 73 to 
218 (60%) 

5/13 5/11 0.417 

K=7 
Grade Window Precision Recall F-measure 

Grade 1 
Window 55 to 
224 (70%) 

7/12 7/10 0.636 

Grade 2 
Window 84 to 
205 (50%) 

7/11 7/10 0.667 

Grade 3 
Window 36 to 
205 (70%) 

5/13 5/11 0.417 

K=10 

Grade Window Precision Recall F-measure 

Grade 1 
Window 53 to 
222 (70%) 

7/13 7/10 0.636 

Grade 2 
Window 34 to 
203 (70%) 

5/6 5/10 0.625 

Grade 3 
Window 12 to 
157 (60%) 

7/12 7/11 0.609 
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A p p e n d i x  B  

ONLINE RESOURCES 

  For all data pertaining to all experiments please visit: 

http://www.cs.drexel.edu/~jzz22/thesis .  If any concerns regarding this thesis may 

arise, please contact me at jzz22@drexel.edu.  
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