20 research outputs found

    A PTAS for Bounded-Capacity Vehicle Routing in Planar Graphs

    Full text link
    The Capacitated Vehicle Routing problem is to find a minimum-cost set of tours that collectively cover clients in a graph, such that each tour starts and ends at a specified depot and is subject to a capacity bound on the number of clients it can serve. In this paper, we present a polynomial-time approximation scheme (PTAS) for instances in which the input graph is planar and the capacity is bounded. Previously, only a quasipolynomial-time approximation scheme was known for these instances. To obtain this result, we show how to embed planar graphs into bounded-treewidth graphs while preserving, in expectation, the client-to-client distances up to a small additive error proportional to client distances to the depot

    Аппроксимационная схема Хаймовича - Ринноя Кана для CVRP в метрических пространствах фиксированной размерности удвоения

    Full text link
    The Capacitated Vehicle Routing Problem (CVRP) is a classical extremal combinatorial routing problem with numerous applications in operations research. Although the CVRP is strongly NP-hard both in the general case and in the Euclidean plane, it admits quasipolynomial- and even polynomial-time approximation schemes (QPTAS and PTAS) in Euclidean spaces of fixed dimension. At the same time, the metric setting of the problem is APX-complete even for an arbitrary fixed capacity q ≥ 3. In this paper, we show that the classical Haimovich-Rinnooy Kan algorithm implements a PTAS and an Efficient Polynomial-Time Approximation Scheme (EPTAS) in an arbitrary metric space of fixed doubling dimension for q = o(log log n) and for an arbitrary constant capacity, respectively. © 2019 Krasovskii Institute of Mathematics and Mechanics. All right reserved

    A survey of approximation algorithms for capacitated vehicle routing problems

    Full text link
    Finding the shortest travelling tour of vehicles with capacity k from the depot to the customers is called the Capacity vehicle routing problem (CVRP). CVRP plays an essential position in logistics systems, and it is the most intensively studied problem in combinatorial optimization. In complexity, CVRP with k \ge 3 is an NP-hard problem, and it is APX-hard as well. We already knew that it could not be approximated in metric space. Moreover, it is the first problem resisting Arora's famous approximation framework. So, whether there is, a polynomial-time (1+ϵ\epsilon)-approximation for the Euclidean CVRP for any ϵ>0\epsilon>0 is still an open problem. This paper will summarize the research progress from history to up-to-date developments. The survey will be updated periodically.Comment: First submissio

    A Quasi-Polynomial-Time Approximation Scheme for Vehicle Routing on Planar and Bounded-Genus Graphs

    Get PDF
    The Capacitated Vehicle Routing problem is a generalization of the Traveling Salesman problem in which a set of clients must be visited by a collection of capacitated tours. Each tour can visit at most Q clients and must start and end at a specified depot. We present the first approximation scheme for Capacitated Vehicle Routing for non-Euclidean metrics. Specifically we give a quasi-polynomial-time approximation scheme for Capacitated Vehicle Routing with fixed capacities on planar graphs. We also show how this result can be extended to bounded-genus graphs and polylogarithmic capacities, as well as to variations of the problem that include multiple depots and charging penalties for unvisited clients

    Approximating Airports and Railways

    Get PDF
    In this paper we consider the airport and railway problem (AR), which combines capacitated facility location with network design, both in the general metric and the two-dimensional Euclidean space. An instance of the airport and railway problem consists of a set of points in the corresponding metric, together with a non-negative weight for each point, and a parameter k. The points represent cities, the weights denote costs of opening an airport in the corresponding city, and the parameter k is a maximum capacity of an airport. The goal is to construct a minimum cost network of airports and railways connecting all the cities, where railways correspond to edges connecting pairs of points, and the cost of a railway is equal to the distance between the corresponding points. The network is partitioned into components, where each component contains an open airport, and spans at most k cities. For the Euclidean case, any points in the plane can be used as Steiner vertices of the network. We obtain the first bicriteria approximation algorithm for AR for the general metric case, which yields a 4-approximate solution with a resource augmentation of the airport capacity k by a factor of 2. More generally, for any parameter 0 < p <= 1 where pk is an integer we develop a (4/3)(2 + 1/p)-approximation algorithm for metric AR with a resource augmentation by a factor of 1 + p. Furthermore, we obtain the first constant factor approximation algorithm that does not resort to resource augmentation for AR in the Euclidean plane. Additionally, for the Euclidean setting we provide a quasi-polynomial time approximation scheme for the same problem with a resource augmentation by a factor of 1 + mu on the airport capacity, for any fixed mu > 0

    Towards an efficient approximability for the Euclidean capacitated vehicle routing problem with time windows and multiple depots

    Full text link
    We consider the Euclidean Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). For the long time, approximability of this well-known problem in the class of algorithms with theoretical guarantees was poorly studied. This year, for the case of a single depot, we proposed two approximation algorithms, which are the Efficient Polynomial Time Approximation Schemes (EPTAS) for any fixed given capacity q and the number p of mutually disjunctive time windows. The former scheme extends the celebrated approach proposed by M. Haimovich and A. Rinnooy Kan and allows the evident parallelization, while the latter one has an improved time complexity bound and the enlarged domain in terms q = q(n) and p = p(n), where it retains polynomial time complexity. In this paper, we announce an extension of these results to the case of multiple depots. So, the first scheme is also EPTAS for any fixed parameters q, p, and m, where m is the number of depots, and remains PTAS for q = o(log log n) and mp = o(log log n). In other turn, the second one is a PTAS for p3q4 = O(log n) and (pq)2 log m = O(log n). © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.Russian Foundation for Basic Research, RFBR: 17-08-01385, 19-07-01243Michaeffi Khachay was supported by the Russian Foundation for Basic Research, grants no. 17-08-01385 and 19-07-01243

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Approximation Algorithms for Clustering and Facility Location Problems

    Get PDF
    Facility location problems arise in a wide range of applications such as plant or warehouse location problems, cache placement problems, and network design problems, and have been widely studied in Computer Science and Operations Research literature. These problems typically involve an underlying set F of facilities that provide service, and an underlying set D of clients that require service, which need to be assigned to facilities in a cost-effective fashion. This abstraction is quite versatile and also captures clustering problems, where one typically seeks to partition a set of data points into k clusters, for some given k, in a suitable way, which themselves find applications in data mining, machine learning, and bioinformatics. Basic variants of facility location problems are now relatively well-u nderstood, but we have much-less understanding of more-sophisticated models that better model the real-world concerns. In this thesis, we focus on three models inspired by some real-world optimization scenarios. In Chapter 2, we consider mobile facility location (MFL) problem, wherein we seek to relocate a given set of facilities to destinations closer to the clients as to minimize the sum of facility-movement and client-assignment costs. This abstracts facility-location settings where one has the flexibility of moving facilities from their current locations to other destinations so as to serve clients more efficiently by reducing their assignment costs. We give the first local-search based approximation algorithm for this problem and achieve the best-known approximation guarantee. Our main result is (3+epsilon)-approximation for this problem for any constant epsilon > 0 using local search which improves the previous best guarantee of 8-approximation algorithm due to [34] based on LP-rounding. Our results extend to the weighted generalization wherein each facility i has a non-negative weight w_i and the movement cost for i is w_i times the distance traveled by i. In Chapter 3, we consider a facility-location problem that we call the minimum-load k-facility location (MLkFL), which abstracts settings where the cost of serving the clients assigned to a facility is incurred by the facility. This problem was studied under the name of min-max star cover in [32,10], who (among other results) gave bicriteria approximation algorithms for MLkFL when F=D. MLkFL is rather poorly understood, and only an O(k)-approximation is currently known for MLkFL, even for line metrics. Our main result is the first polytime approximation scheme (PTAS) for MLkFL on line metrics (note that no non-trivial true approximation of any kind was known for this metric). Complementing this, we prove that MLkFL is strongly NP-hard on line metrics. In Chapter 4, we consider clustering problems with non-uniform lower bounds and outliers, and obtain the first approximation guarantees for these problems. We consider objective functions involving the radii of open facilities, where the radius of a facility i is the maximum distance between i and a client assigned to it. We consider two problems: minimizing the sum of the radii of the open facilities, which yields the lower-bounded min-sum-of-radii with outliers (LBkSRO) problem, and minimizing the maximum radius, which yields the lower-bounded k-supplier with outliers (LBkSupO) problem. We obtain an approximation factor of 12.365 for LBkSRO, which improves to 3.83 for the non-outlier version. These also constitute the first approximation bounds for the min-sum-of-radii objective when we consider lower bounds and outliers separately. We obtain approximation factors of 5 and 3 respectively for LBkSupO and its non-outlier version. These are the first approximation results for k-supplier with non-uniform lower bounds
    corecore