
Approximating Airports and Railways
Anna Adamaszek
University of Copenhagen, Copenhagen, Denmark
anad@di.ku.dk

Antonios Antoniadis
Saarland University and MPII, Saarbrücken, Germany
aantonia@mpi-inf.mpg.de

Amit Kumar
IIT Delhi, Delhi
amitk@cse.iitd.ac.in

Tobias Mömke
Saarland University, Saarbrücken, Germany and
University of Bremen, Bremen, Germany
moemke@cs.uni-saarland.de

Abstract
We consider the airport and railway problem (AR), which combines capacitated facility location
with network design, both in the general metric and the two-dimensional Euclidean space. An
instance of the airport and railway problem consists of a set of points in the corresponding metric,
together with a non-negative weight for each point, and a parameter k. The points represent
cities, the weights denote costs of opening an airport in the corresponding city, and the parameter
k is a maximum capacity of an airport. The goal is to construct a minimum cost network of
airports and railways connecting all the cities, where railways correspond to edges connecting
pairs of points, and the cost of a railway is equal to the distance between the corresponding
points. The network is partitioned into components, where each component contains an open
airport, and spans at most k cities. For the Euclidean case, any points in the plane can be used
as Steiner vertices of the network.

We obtain the first bicriteria approximation algorithm for AR for the general metric case,
which yields a 4-approximate solution with a resource augmentation of the airport capacity k by
a factor of 2. More generally, for any parameter 0 < p ≤ 1 where p · k is an integer we develop a
(4/3)(2 + 1/p)-approximation algorithm for metric AR with a resource augmentation by a factor
of 1 + p.

Furthermore, we obtain the first constant factor approximation algorithm that does not resort
to resource augmentation for AR in the Euclidean plane. Additionally, for the Euclidean setting
we provide a quasi-polynomial time approximation scheme for the same problem with a resource
augmentation by a factor of 1 + µ on the airport capacity, for any fixed µ > 0.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms,
Theory of computation → Routing and network design problems, Theory of computation →
Facility location and clustering

Keywords and phrases Approximation Algorithms, Network Design, Facility Location, Airports
and Railways

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.5

Funding Research supported in part by the Danish Council for Independent Research DFF-
MOBILEX mobility grant and by Deutsche Forschungsgemeinschaft grants AN 1262/1-1 and
MO 2889/1-1.

© Anna Adamaszek, Antonios Antoniadis, Amit Kumar, and
Tobias Mömke;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:anad@di.ku.dk
mailto:aantonia@mpi-inf.mpg.de
mailto:amitk@cse.iitd.ac.in
mailto:moemke@cs.uni-saarland.de
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Approximating Airports and Railways

1 Introduction

This paper studies the airport and railway problem, which combines facility location and
network design, and has been introduced Adamaszek et al. [1]. In the airport and railway
problem the input consists of a complete n-vertex graph G with vertex costs a : V (G)→ R≥0
and edge costs len : E(G)→ R≥0, and a parameter k. The vertices represent cities, vertex
cost represents the cost of opening an airport in the corresponding city, and edge cost
models the cost of building a railway connecting the corresponding pair of cities. Finally,
the parameter k represents a maximum capacity of an airport. The goal is to compute a
minimum cost network of airports A ⊆ V (G) and railways R ⊆ E(G) which satisfies the
following properties: (i) each v ∈ V (G) is connected with some vertex from A via a path
of edges from R (i.e., all cities are connected by the network), and (ii) each connected
component of the network contains at most k vertices (i.e., each airport serves at most k
cities). The cost of the network equals a(A) + len(R) =

∑
v∈A a(v) +

∑
e∈R len(e). As the

cost functions a and len are non-negative, an optimal solution to AR is a forest, with the
cheapest airport opened in each connected component.

We consider both the case where (V (G), len) is a general metric space, and the case where
it is the Euclidean plane, i.e., the set of vertices V (G) is represented by a set of points in the
Euclidean plane, and the edge cost len is the Euclidean distance between the corresponding
points. The goal in both cases is to find a minimum cost network spanning all vertices
V (G) and consisting of components, such that each component spans at most k vertices and
contains an open airport. Furthermore, for the Euclidean metric case, we assume that each
point in the Euclidean plane can be used as a Steiner vertex within the components. Note
that in the Euclidean plane we allow edges corresponding to different components to cross,
without a Steiner vertex at the intersection.

We also consider AR with resource augmentation, denoted by ARα for a constant α > 1,
where we are allowed to assign α · k cities to an airport of capacity k. We then compare the
cost of the obtained solution against an optimal solution without resource augmentation.

Related work. The airport and railway problem AR is the most general problem within
the framework introduced by Adamaszek et al. [1]. Several interesting novel problems can be
defined within this framework by starting with AR and imposing additional constraints to the
underlying network. It was shown in [1] that two-dimensional Euclidean AR is NP-hard, even
when all the vertex costs are uniform. This uniform-vertex-cost case admits a polynomial
time approximation scheme. Furthermore, when the airport capacity k is unbounded, AR
can be solved exactly in polynomial time, even with both arbitrary vertex costs and arbitrary
edge costs. Additionally, [1] considered the related ARP problem. In ARP , each component
of the network is required to be a path, with airports at both of its endpoints. This problem
is of particular interest because it models the Capacitated Vehicle Routing Problem (CVRP).
Two-dimensional Euclidean ARP is shown to be NP-hard even with uniform airport costs
and unbounded parameter k. For the setting where either the airport costs are uniform or
the parameter k is unbounded, a PTAS for ARP has been presented.

Since AR combines the classical capacitated facility location (CFL) problem and network
design (ND), we shortly describe these problems.

Capacitated Facility Location (CFL): We are given a complete graphG with V (G) :=
{v1, . . . , vn}, edge costs d : E(G) → R≥0 and vertex costs c : V (G) → R≥0, along with
a capacity parameter k. Intuitively, d(vi, vj) denotes the distance between vertices vi
and vj , and c(vi) denotes the cost of opening a facility at vi. A feasible solution to CFL

A. Adamaszek, A. Antoniadis, A. Kumar, and T. Mömke 5:3

consists of a set of open facilities F ⊆ V (G), and an assignment of each vertex vi to some
open facility f(vi) ∈ F so that each facility has at most k vertices assigned. The cost of a
solution is given by the sum of the cost for opening the facilities and the cost of connecting
all vertices to the assigned facilities by direct links, i.e.,

∑
v∈F c(v) +

∑
v∈V (G) d(v, f(v)).

The goal is to find a minimum cost feasible solution. For CFL, the currently best results
are a 1.488-approximation algorithm [8] and an LP based constant factor algorithm [4].
Network Design (ND): In the framework of network design we are given a graph G
with weights on the edges, and in some cases also on the vertices. Furthermore, we are
given a set of constraints, e.g., connectivity constraints. The goal is to find a set of edges
of minimum cost that satisfy the constraints.

Another problem closely related to AR is the capacitated minimum spanning tree problem
(CMST). In CMST, the goal is to construct a minimum cost collection of trees covering all
the input vertices, each tree spanning at most k vertices, connected to a single pre-specified
root. Jothi and Raghavachari [7] give a 3.15-approximation algorithm for Euclidean CMST
and a 2 + γ approximation for metric CMST, where γ ≤ 2 is the ratio between the cost of a
Steiner tree and a minimum spanning tree. Both results allow demands on the vertices. We
note that the AR problem can be modelled as CMST with an arbitrary (i.e., non-metric)
cost function1. However, to the best of our knowledge, such version of CMST has not been
studied before.

Ravi and Sinha [10] consider a related capacitated-cable facility location problem (CCFL)
obtaining a constant factor approximation algorithm. The problem is based on the unca-
pacitated facility location (UFL) problem, i.e., there is a set of facilities with unbounded
capacities and non-negative opening costs. But instead of connecting clients to facilities
by direct links, they are connected by a network of capacitated cables (i.e., each edge of
the constructed network can accommodate at most u units of flow from the clients to the
facilities, where u is a parameter). When the cable capacity u is 1, the problem is equivalent
to UFL. When the cable capacity u =∞, CCFL is equivalent to AR with k =∞. In general,
the problem differs considerably from AR, as in CCFL, once a facility has been opened, it
can receive an unbounded amount of flow. CCFL resembles AR, when instead of a bound on
the airport capacity we have a bound on the railroad capacity.

Another problem related to AR and CCFL is capacitated geometric network design
(CGND), where the goal is to create a network of capacitated links which allows sending flow
from all the vertices to a single, pre-specified sink. In CGND the optimal network can be
more complicated than a tree. Adamaszek et al. [2] provide a PTAS for the two-dimensional
Euclidean CGND for link capacities k ≤ 2O(

√
logn), where the network can use Steiner

vertices anywhere in the plane.
Maßberg and Vygen [9] obtained a 4.1-approximation for another problem related to AR

with uniform airport costs, called the sink clustering problem. They construct a network
consisting of components, where instead of a capacity constraint for each component, they
have a different constraint which incorporates both the capacity and the length of the edges
of the component.

1 To model an instance (G, a, r, k) of AR as a CMST problem, we proceed as follows. We extend the
graph G to G′ by adding a new vertex v and connecting it with all other vertices of G′. We extend the
edge cost function r to a function r′ as follows. Each edge {u, v} for u ∈ V (G) has cost equal to a(u)
in G′. Then (G′, r′, v, k) is an instance of CMST, with a pre-specified root v and parameter k. The
corresponding instances of AR and CMST have corresponding solutions of the same costs, where adding
an edge {u, v} to a solution for CMST corresponding to opening an airport at u in AR.

STACS 2018

5:4 Approximating Airports and Railways

Our results. We initiate the study of AR for general metric spaces from the perspective
of bicriteria approximation, where we allow resource augmentation for the airport capacity
parameter k. We prove the following theorem, which is the first result for the airport and
railway problem on general metric spaces.
I Theorem 1. There is a 4-approximation algorithm for metric AR2. More general, for any
0 < p ≤ 1 such that p · k is integer, there is a 4

3 (2 + 1
p)-approximation algorithm for metric

AR1+p.
The algorithm starts with computing an infeasible solution to the problem, returned by

an algorithm for uncapacitated AR (i.e., assuming k =∞). Then, this infeasible solution
is transformed into a feasible one in a sequence of (technically involved) steps. First, the
connected components of the uncapacitated solution are partitioned into paths, where each
path contains k · p cities, plus one shorter path per component of the uncapacitated solution.
These shorter paths get connected to the airports open by the uncapacitated solution, and
they are the reason for the required resource augmentation. Then, the paths containing
k · p cities each are assigned to airports using min-cost max-flow computation in a specially
constructed graph, where each airport gets connected to at most 1/p paths. This requires
the solution to open additional airports, and the solution has to be modified again so that
each component contains one airport.

We then turn our attention to AR in the Euclidean plane, providing the first approximation
algorithm for this setting. Note that this algorithm, in contrast to the algorithm from
Theorem 1, does not use resource augmentation.
I Theorem 2. For any fixed ε > 0 there is a (2 + k

k−1 + ε)-approximation algorithm for AR
with the airport capacity k ≥ 2 in the Euclidean plane.

Note that for k = 1 the AR problem becomes trivial (as the solution requires opening
airports in all the cities). For k ≥ 2, the approximation factor of the algorithm from Theorem
2 is at most 4 + ε.

In order to obtain Theorem 2, we define a relaxed version AR′ of the AR problem, where
each component can contain multiple airports and multiple copies of the same edge, each
component allows routing flow from all its cities to the airports, each airport serves at most k
cities, and each copy of an edge can be used by at most k cities. Note that in this version of the
problem the cities belonging to different airports can share the edges of the network. Building
upon Arora’s PTAS for the Euclidean TSP [5] we develop (1 + ε)-approximation algorithm
for AR′ for any fixed ε > 0. By applying a carefully-designed sequence of transformations on
the solution returned by the algorithm for AR′, we transform it to a feasible solution for AR.
These steps resemble the steps of the algorithm from Theorem 1. However, we have to be
more careful to avoid resource augmentation.

Finally, we provide a QPTAS for AR1+µ for any fixed µ > 0, matching the corresponding
result for capacitated facility location [6].
I Theorem 3. For arbitrary ε, µ > 0 there is a (1 + ε)-approximation algorithm for two-
dimensional Euclidean AR1+µ running in quasipolynomial time.

In Section 2 we study metric AR and prove Theorem 1. In Section 3 we study AR in the
Euclidean plane. We prove Theorem 3 in Section 3.1 and Theorem 2 in Section 3.3.

2 The Metric Case

In this section we will assume that the edge cost len is metric, i.e., it satisfies the triangle
inequality (len({u, v}) + len({v, w}) ≥ len({u,w}) for each triple of vertices u, v, w ∈ V (G)).

A. Adamaszek, A. Antoniadis, A. Kumar, and T. Mömke 5:5

T ∗
1 T ∗

2
v1

v2
v3

v4

v5

v6

v7

v8

v9

Figure 1 An infeasible solution S0 for an instance I of AR for k = 2. The solution consists of the
set of trees {T ?

1 , T ?
2 }, and airports open at vertices v1 and v7. The airports are denoted by squares.

The dashed blue lines show an Eulerian tour needed in Step 1.

Fix a parameter 0 < p ≤ 1 to determine the amount of resource augmentation. We
assume that p is a multiple of 1/k, so that p · k is an integer.

Consider an instance I of AR, and let OPT be an optimal solution for I. Our algorithm
consists of several steps, which we describe below.

Step 0: Preprocessing. Infeasible solution S0. We create a new problem instance I0 by
taking I and setting the airport capacity k =∞. I0 is an instance of AR∞F , a relaxation of
AR defined in [1], where we assume that the airport capacity is unbounded. By Theorem 4
in [1], there is a polynomial time algorithm for AR∞F . The algorithm is an extension of an
algorithm finding a minimum spanning tree, and it always outputs a spanning forest.

Let S0 be an optimal solution for I0 output by the algorithm from [1]. Note that S0 may
contain components with more than k cities, and therefore it is not necessarily a feasible
solution for AR. See an example in Figure 1. In the following lemma we prove various
properties of S0.

I Lemma 4. The solution S0 has the properties that (i) it is a forest, (ii) each connected
component of S0 contains exactly one airport, and (iii) cost(S0) ≤ opt.

I Observation 1. If for some instance I, the solution S0 returned by the AR∞F algorithm
only contains components of size at most k, then by Lemma 4 S0 is already optimal for AR
on I. However, in general S0 may contain components with more than k vertices – in which
case it is not a feasible solution for AR.

Step 1: Splitting each component of S0 into paths. Infeasible solution S1. We will
split each connected component of S0 into paths. Each path, except exactly one shorter
path, will contain exactly p · k cities (vertices from V (G)). We proceed as follows.

By Lemma 4, the edges of S0 form a forest {T ?1 , . . . , T ?` } in G, where each tree T ?i of S0
contains one airport. For each tree T ?i of S0, denote by vi the vertex of T ?i with an airport, and
consider T ?i as a rooted tree with a root at vi. Observe that cost(S0) =

∑
i=1,...,` cost(T ?i),

where cost(T ?i) = a(vi) +
∑
e∈E(G)∩T?

i
len(e) denotes the total cost of the tree T ?i .

First, in the solution S1 we open the airport at vi for each tree T ?i . Recall that S0
also opens (and therefore pays for) these airports. The next step is transforming the forest
{T ?1 , . . . , T ?` } into a collection of paths.

For each tree T ?i we construct a path P ?i starting in the vertex vi, visiting all cities of
T ?i , and such that the cost of edges of P ?i is at most twice the cost of the edges of T ?i . We

STACS 2018

5:6 Approximating Airports and Railways

T ∗
1 T ∗

2
v1

v2
v3

v4

v5

v6

v7

v8

v9

Q∗
1,1

Q∗
1,2

Q∗
1,3

Q∗
1,+

Q∗
2,1

Q∗
2,+

Figure 2 An infeasible solution S1 for the instance I of AR from Figure 1 (green) is pictured in
red (dashed). Here k = 2 and p = 1, i.e., each subpath Q?

i,j contains 2 cities, and each subpath Q?
i,+

contains either 0 or 1 cities. Q?
1,+ is empty, incident with the vertex v1, and the airport v1 does not

serve any city. Q?
2,+ consists of a city v7, and the airport v7 serves this city.

do that by doubling all edges of T ?i , constructing an Eulerian tour of T ?i (note that after
doubling the edges each vertex has even degree), shortcutting the tour so that each vertex is
visited only once, and removing from the obtained tour one edge incident with vi.

We break each of the paths P ?i into subpaths Q?i,j , each containing exactly p · k cities,
and exactly one shorter subpath Q?i,+ whose number of cities lies in the range [0, p · k − 1].
We do this so that the subpath Q?i,+ is the one closest to the root vi. In particular, if Q?i,+
contains at least one city, then it contains the city vi. If Q?i,+ is an empty path, we think of
it as a path consisting of a single vertex vi, but not containing the city at vi. We add all the
edges of all the paths Q?i,j and Q?i,+ to S1. See Figure 2 for an example of this construction.

For each airport vi, we assign the subpath Q?i,+ to vi. This means that every city in the
(possibly empty) subpath Q?i,+ is served by the airport vi. Note that this can be done, as by
the construction of S1 all vertices of Q?i,+ are in the same connected component of S1 as vi. 2

In the subsequent step, we will initially ignore the already assigned cities from the
subpaths Q?i,+, and concentrate on assigning the subpaths Q?i,j to airports. The already
assigned cities from the subpaths Q?i,+ will later be added, and they will induce a resource
augmentation of the airport capacities.

I Lemma 5. The solution S1 satisfies that (i) each airport serves at most k ·p−1 cities3, (ii)
each city from a subpath Q?i,+ is served by an airport, and (iii) cost(S1) ≤ 2·cost(S0) ≤ 2·opt.

I Observation 2. If for some instance I every component of S1 has an airport that serves
all cities of the component (including itself), then S1 is a feasible, 2-approximate solution
for I. Such a solution does not use resource augmentation, and each airport is only used
up to a capacity of pk − 1. However, in general S1 may have components of size exactly
k · p whose cities are not served by any airport, and it is therefore in general not a feasible
solution for AR.

2 Note that in case when Q?
i,+ is an empty path, the connected component of S1 containing vi consists of

some path Q?
i,j . However, we do not assign the subpath Q?

i,j to the vertex vi, i.e., for now we treat the
cities of Q?

i,j as not served by any airport. Later the solution will be modified, and the cities from Q?
i,j

will be served by some airport (possibly different from vi).
3 Recall that in the case when Q?

i,+ is empty, the airport vi does not serve any city, and the connected
component of S1 containing vi contains k · p unserved cities.

A. Adamaszek, A. Antoniadis, A. Kumar, and T. Mömke 5:7

vs q2,1

q1,3

q1,2

q1,1 l2

l3

l4

l5

l6

l7

l8

l9

l1

vt

0|1

d(q1,2, l3)|1

a(l3)|1/p

0|1/p

Figure 3 Example of an instance of the min-cost max-flow problem, corresponding to the AR
instance from Figures 1 and 2. The goal is to send flow from vs to vt. Here Q = {q1,1, q1,2, q1,3, q2,1}
and L = {l1, . . . , l9}. An label x|y denotes an edge with cost x and capacity y. The airport l7 has
already been opened in S1 (and therefore the edge {l7, vt} has cost 0), while the airport l3 has not
been opened in S1 (and the edge {l3, vt} has non-zero cost). Note that for the clarity of presentation
not all edges of EQL have been drawn. The blue dashed edges denote a potential solution, i.e., a
potential assignment of subpaths to airports.

Step 2: Assigning the subpaths Q?
i,j to airports using network flows. Infeasible solution

S2. In this step we will make sure that every connected component is assigned to a
neighboring airport, and therefore all the cities are served. For that, we will choose a set of
additional airports to be opened. We will assign (and connect by choosing the appropriate
edges of G) at most 1/p many subpaths Q?i,j to each airport, considering both the newly
opened airports and the airports opened in Step 1. Note that if 1/p subpaths get assigned
in this step to an airport that has been opened in Step 1 (and therefore might already be
serving some cities), the capacity of the airport can become violated. Therefore, the solution
S2 constructed in this step requires resource augmentation. For now, we allow assigning
subpaths Q?i,j to airports from different components. We will fix that in the subsequent step.

To decide which additional airports should be opened, and how we should assign (and
connect) the subpaths Q?i,j to the airports, we use min-cost max-flow computation. In this
computation we ignore the subpaths Q?i,+ containing less than k · p cities each, as they have
already been assigned (and connected) to the airports.

We construct a directed graph G′, with capacities and a cost function d on the edges, as
follows (see Figure 3). We introduce a vertex qi,j corresponding to each subpath Q?i,j (but
not for the subpaths Q?i,+), and we denote this set of vertices by Q. We also introduce a
vertex lv for each vertex v ∈ V (G) of the original instance, and we denote this set of vertices
by L. For each pair of vertices (qi,j , lv) ∈ Q× L we introduce an edge with capacity 1 and
cost d(qi,j , lv) := minu∈V (Q?

i,j
) len({u, v}), directed from qi,j to lv. Note that d(qi,j , lv) equals

the minimum distance between a vertex of the subpath Q?i,j represented by qi,j , and the
vertex v corresponding to lv. We denote this set of edges by EQL. Intuitively, sending flow 1
through an edge {qi,j , lv} ∈ EQL means connecting the subpath Q?i,j to an airport at the
vertex v.

We then introduce a source vertex vs and directed edges from vs to all vertices in Q, each
edge {vs, qi,j} with capacity 1 and cost d(vs, qi,j) = 0. Finally, we introduce a sink vertex
vt and directed edges from each vertex lv ∈ L to vt. We denote these sets of edges by EQ
and EL, respectively. The cost d(lv, vt) of an edge {lv, vt} is zero if an airport at v has been

STACS 2018

5:8 Approximating Airports and Railways

opened in S1 (i.e., in Step 1 of the algorithm), and a(v) otherwise. Each edge of EL has a
capacity of 1/p, which enforces that no more than 1/p subpaths (and therefore no more than
(k · p) · (1/p) = k vertices) are assigned to each airport at this step of the algorithm.

The graph G′, together with the edge capacities and edge costs, yields an instance of the
min-cost max-flow problem, where we want to send flow from the source vertex vs to the
sink vertex vt. Clearly, the instance admits a solution where the amount of flow is |Q|. We
can send one unit of flow from vs to each of the vertices qi,j , then also one unit of flow from
each qi,j ∈ Q to some vertex lv ∈ L so that v ∈ Q?i,j , and as each vertex from L gets at most
one unit of flow, it can be sent to the sink vertex vt. We note that this is the maximum
amount of flow that can be sent, since the total capacity of the outgoing edges from vs is |Q|.

It is well known that one can find an optimal, integral solution for the min-cost max-flow
problem in time polynomial in the number of vertices and edges of the input instance (cf. [3],
Chapters 9 and 10 or [11]). Let S′ be this optimal, integral min-cost max-flow problem
solution for G′. We denote the cost of S′ by cost(S′).

I Lemma 6. The following inequality holds: cost(S′) ≤ opt/p.

Proof. We will show how we can translate OPT into a solution OPT′ to the min-cost
max-flow problem, with cost of at most opt/p. By the optimality of S′, the cost of S′ is not
greater than the cost of OPT′, and therefore it is at most opt/p.

Consider an optimal solution OPT for the instance of AR. We construct a (fractional)
flow in G′ of capacity |Q| corresponding to OPT in the following way. We send a flow of 1
along each edge {vs, qi,j} leaving the source. At each vertex qi,j ∈ Q, this flow of 1 is split
into k · p equal parts, one for each vertex; recall that each Q?i,j has exactly k · p vertices. For
each vertex u ∈ Q?i,j , we send the amount of 1/(k · p) flow along the edge {qi,j , lv}, where v
is the airport serving u in the solution OPT. Finally, for every vertex lv ∈ L we forward all
the received flow (which by feasibility of OPT cannot be greater than 1

k·p · k = 1/p) along
the outgoing edge {lv, vt} to the sink vt.

The constructed flow OPT′ has capacity |Q| and is feasible, as the only edges where the
amount of flow might be greater than 1 are the edges of EL, and in the reasoning above we
have shown an upper bound of 1/p on the flow on these edges.

We will now upper bound the cost of OPT′ with respect to the cost of OPT. Let opt =
coste(OPT) + costa(OPT), where coste(OPT) is the edge cost of OPT and costa(OPT)
is the airport cost of OPT. For any v ∈ V (G), let b(v) denote the airport serving v in OPT.
As each airport serves at most k cities, we have coste(OPT) ≥ 1

k

∑
v∈V (G) len(v, b(v)).

For any lv ∈ L, OPT′ sends some flow along the edge {lv, vt} only when OPT opens an
airport at v. As the capacity of each edge of EL in G′ is 1/p, the cost of OPT′ on the edges
of EL is therefore at most costa(OPT)/p. We will now upper bound the cost of OPT′ on
the edges of EQL. By the construction of OPT′, this cost equals

∑
qi,j∈Q

∑
u∈Q?

i,j

d(qi,j , b(u))
k · p

≤
∑
qi,j∈Q

∑
u∈Q?

i,j

len(u, b(u))
k · p

≤
∑

u∈V (G)

len(u, b(u))
k · p

≤ coste(OPT)
p

.

The edges of G′ which are in EQ have cost 0, so they do not contribute towards the
cost. Therefore cost(OPT′) ≤ opt/p. As S′ is an optimal solution for the min-cost max-flow
instance, we get cost(S′) ≤ cost(OPT′) ≤ opt/p. J

From the integral min-cost max-flow solution S′ we construct S2 as follows. We start
by taking S2 = S1. Then, we open the airports u ∈ V (G) which have not been opened by
S1, and for which S′ has flow at least 1 on the corresponding edge {lu, vt}. Then, for each

A. Adamaszek, A. Antoniadis, A. Kumar, and T. Mömke 5:9

v1

v2
v3

v4

v5

v6

v7

v8

v9

Q∗
1,1

Q∗
1,2

Q∗
1,3

Q∗
1,+

Q∗
2,1

Q∗
2,+

Figure 4 An infeasible solution S2 for the instance I of AR from Figure 1 is pictured in red
(dashed) and blue (solid). The new airports (blue squares) have been opened at vertices v4 and v9.
The blue edges connect the subpaths Q?

i,j with the assigned airports (the assignment is pictured by
the dashed arrows). The solution is infeasible, as the airports serving Q?

1,2 and Q?
1,3 are in different

components than the corresponding subpaths. (In the drawing, the components corresponding to
the airports v1, v4 and v7 got connected.) Note also, that the airport v7 now serves three cities
(v2, v4 and v7), and therefore requires resource augmentation.

subpath Q?i,j we find the unique vertex u ∈ V (G), such that S′ uses the edge {qi,j , lu}. Note
that in this case S2 must have an airport at u. Let vi,j be the vertex of Q?i,j minimizing the
distance len(vi,j , u). We add to S2 the edge {vi,j , u}, and we assign Q?i,j to the airport u
(i.e., the cities from Q?i,j will be served by u). See Figure 4 for an example.

Note that in this construction each subpath Q?i,j is assigned to an airport of S2, and
therefore all cities from Q?i,j are served. As the capacity of the edges {lu, vt} is 1/p, at most
1/p subpaths get connected to one airport. We can show the following.

I Lemma 7. The solution S2 has the following properties: (i) cost(S2) ≤ (2 + 1/p)opt, and
(ii) each city is served by some airport, and each airport serves strictly less than (1 + p) · k
many cities.

I Observation 3. The solution S2 is still not feasible. For any vertex u ∈ V (G) it may
happen that the city u is served by an airport at some vertex v ∈ V (G) with v 6= u, and
at the same time the airport at u has been opened and serves some other component. In
particular, a single component might contain a large number of airports, each of them serving
a different component. (Then, when considering the edges of S2, such components create
a single connected component of S2.) This is not consistent with the definition of the AR
problem, where the airport serving a component must belong to this component.

Step 3: Making the solution feasible. Solution S3. In this final step we show how we
can transform the solution S2 to a feasible solution S3, with only a small increase in cost
and while increasing the size of each component by at most one vertex.

We consider the components of S2 one by one. For each component T`, we consider the
cities which belong to T`, as well as the airport u ∈ V (G) serving the cities from T`. If the city
u belongs to T` (i.e., it is served by the airport at u), we do not make any changes. Otherwise,
we re-assign the city u to T`. We do that by removing u from its current component, and by
adding it to T`. We denote the resulting solution by S3.

I Lemma 8. The re-assignment can be performed so that the solution S3 has the following
properties. (i) Each airport in S3 serves at most (1 + p) ·k cities, (ii) cost(S3) ≤ 4

3 cost(S2),
and (iii) S3 is a feasible solution for AR1+p.

Theorem 1 follows from Lemmas 7 and 8.

STACS 2018

5:10 Approximating Airports and Railways

3 The Euclidean Case

In this section we focus on AR in the two-dimensional Euclidean space. We first show in
Section 3.1 that if we allow a small resource augmentation of the airport capacities, we
are able to obtain a quasi-polynomial-time approximation scheme (QPTAS). We then, in
Section 3.2, present a polynomial time (1 + ε)-approximation algorithm for a relaxed version
of the problem that allows components to have size larger than k, but where each component
must have enough airports in order to serve all clients. This approximation algorithm is
then used in Section 3.3 in order to give a constant factor approximation algorithm for the
general AR in two-dimensional Euclidean space, which is our main result for the section.

3.1 A QPTAS with a Small Resource Augmentation

In this section we give a sketch of the proof of Theorem 3, i.e., a QPTAS for two-dimensional
Euclidean AR(1+µ) for any fixed µ > 0. Our algorithm is based on Arora’s scheme [5].

First, using standard techniques, we partition the problem instance into independent
subinstances and perform perturbation. This step reduces the original problem instance into
a collection of independent subinstances, where each instance has all input points at points
with integer coordinates, allows Steiner vertices only at points with integer coordinates, and
is bounded by a polynomially sized bounding box. That increases the cost of the obtained
solution only by a negligible factor.

Next, as in Arora’s scheme [5], we introduce a shifted quadtree, which recursively
decomposes the input box into smaller and smaller subsquares (called dissection squares),
ending with leaf squares which contain only one point with integer coordinates each. Then,
at the boundary of each dissection square we introduce a logarithmic number of equidistant
portals. We then show that, by increasing the cost of the obtained solution only by a negligible
factor, we can consider solutions where edges cross the boundary of the dissection squares
only at the portals. By losing another negligible factor, we further restrict the solutions so
that every component is O(1)-light, i.e., it crosses the boundary of each dissection square at
at most O(1) portals.

For each dissection square C, with each component T of the solution, we associate the
type of T , which specifies the O(1) portals used by T , a partition of these portals into sets
such that each set corresponds to a connected component of T ∩C, information whether there
is an open airport in T within C, and the number of points from V (G) in T ∩ C rounded
down to the nearest threshold, where the number of thresholds is polylogarithmic. That gives
a polylogarithmic number of types of components.

This allows us to use a dynamic program that finds a near-optimal solution for AR(1+µ)
for any constant µ > 0. In the dynamic program, we have a set of possible configurations
for each dissection cell C, where each configuration specifies the number of components of
each of the polylogarithmic number of types. Therefore, the number of configurations is
quasi-polynomial. For leaf dissection squares, we can find an optimal solution satisfying
each configuration. Then, the DP proceeds bottom-up, computing solutions for all the
configurations for larger dissection squares, based on the solutions for the subsquares. We can
show that, by choosing the number of thresholds appropriately, the resource augmentation
required for the DP solution can be upper-bounded by 1 + µ.

A. Adamaszek, A. Antoniadis, A. Kumar, and T. Mömke 5:11

3.2 Relaxed AR: Allowing components with multiple airports
In this section we define a relaxed version of AR, which we denote by AR′. The difference
between AR and AR′ is that each component of AR′ can contain multiple airports and
multiple copies of the same edges. Moreover, each component allows routing all customers to
the airports, where each airport serves at most k customers, and each copy of an edge can
be used by at most k customers. As in the case for AR, AR′ can also use Steiner vertices.

Intuitively, AR′ is a relaxation of AR where cities assigned to different airports can share
the same edges. We now define the problem formally.

I Definition 9. In the problem AR′ we are given a set of points V (G) on the Euclidean
plane, together with a cost a(v) for each point v ∈ V (G), and an integral capacity parameter
k. A feasible solution is a subset of vertices A ⊆ V (G) and a network consisting of edges
E(G) that allows routing the flow of one unit from each point in V (G) to the points in A,
such that (i) each edge in the network has capacity k, and (ii) each point from A can receive
at most k units of flow. The network can use each point on the Euclidean plane as Steiner
vertices, and parallel edges are allowed.

The goal is to find a feasible solution minimizing the total cost of the network, i.e., the
value of

∑
v∈A a(v) +

∑
e∈E(G) len(E(G)).

We obtain a polynomial time algorithm that for every input instance I of AR finds a
solution to instance I of AR′ with cost of at most (1 + ε)optAR, where optAR is the cost
of an optimal solution to I for AR. The algorithm is based on a dynamic programming
formulation, and builds on Arora’s PTAS for the Euclidean TSP [5].

With each solution for an instance I of AR′ we can associate a network flow f that defines
an assignment of cities to the airports within each component of the solution. Such flow can
be computed efficiently.

3.3 A Constant-Factor Approximation Algorithm
In this section we use the algorithm from Section 3.2 as a building-block of a constant-factor
approximation algorithm for the original AR problem in the two-dimensional Euclidean
space. Note that this algorithm does not require resource augmentation.

We proceed similarly as in Steps 1 and 2 from Section 2, cutting the initial solution into
pieces, and matching the pieces to the airports.

Step 0: Obtaining solution S0. Given an instance I of AR, we run the algorithm from
Section 3.2 on I, obtaining a solution S0. Although S0 is not feasible in general, as it may
contain components with more than k cities and more than one airport, it is a good starting
point, as we can upper bound its cost by opt.

I Lemma 10. Consider the solution S0 for an instance I of two-dimensional Euclidean
AR. Let {C1, C2, . . . Cz} be the set of connected components of S0, where each component
Ci contains hi airports. The following holds: (i) cost(S0) ≤ (1 + ε)opt, and (ii) for each
component Ci, the number of points of Ci which are in V (G) satisfies: |Ci| ≤ k · hi.

We now show how to transform S0 into a feasible solution for AR. For each connected
component Ci of S0 with hi > 1, we proceed in two further steps that slightly resemble steps
from Section 2. However, we have to be more careful in order to avoid resource augmentation.
In the first step we will “cut” each such component Ci into singleton components containing
the airports of S0, and paths containing at most k − 1 cities (with no airports) each. In the

STACS 2018

5:12 Approximating Airports and Railways

second step, then we will develop an algorithm that matches these paths to airports without
increasing the cost by more than a constant factor.

Before we start, we perform the following operations. First, we compute a flow f in S0,
and we modify f into a flow f ′, so that each airport vi serves the city at vi. We will modify
the instance I0 into an instance I ′0, and the solution S0 into S′0, so that each airport serves
exactly k cities. We do that by introducing for each airport vi additional cities, coincident
with the airport vi and being served by vi, so that vi serves exactly k cities. The cost of
S′0 is then the same as the cost of S0 (as the additional cities are served for free). We will
transform S′0 into a feasible solution for the instance I ′ of AR, while increasing its cost only
by a constant factor, and then by dropping the additional cities we will obtain a solution for
the instance I.

Step 1: Cutting each component Ci. Solution S1. Consider a connected component Ci
of S′0 (and therefore also of S0), which contains |Ci| cities. We first transform Ci into a path
Pi that visits all vertices of Ci that do not contain an open airport. We do this by first
doubling all edges of Ci, obtaining an Eulerian tour on it, shortcutting the resulting tour so
that it only visits cities that do not have an airport4, and then removing a single edge from
the tour. We have

z∑
i=1

cost(Pi) ≤ 2 · coste(S0), (1)

where coste(S0) refers to the edge cost of the solution S0.
We now break each path Pi into a collection of hi subpaths {Qi,1, Qi,2, . . . Qi,hi

}, such
that each subpath Qi,j contains exactly k − 1 cities of I ′. Note that we can do this, as in S′0
the component Ci contains exactly k · hi cities (including the additional cities), and after
removing the airports the path Pi contains (k − 1) · hi cities.

Let S1 be a solution consisting of the airports open by S0 (and therefore also by S′0) that
form a singleton components {vi} and serve the cities at vi, and of the paths Qi,j that do
not contain open airports and contain exactly k − 1 cities of I ′ each.5 We now upper bound
the cost of S1.

I Lemma 11. cost(S1) ≤ 2 · cost(S0).

Step 2: Matching the subpaths Qi,j to the airports within each component Ci. Solution
S2. In order to assign the subpaths Qi,j to the airports of component Ci, we develop an
instance of of minimum cost perfect matching in a bipartite graph. This can be seen as
a simplified version of our network flow construction in Section 2. We do this for each
component Ci separately.

Consider a component Ci of S′0 (and therefore also of S0). We construct a bipartite graph
G′i as follows. For each subpath Qi,j we introduce a vertex qj , and denote the set of such
vertices by Q. For each vertex u ∈ Ci with an airport in S0, introduce a vertex lu and denote
this set of such vertices by L. Now we form a complete bipartite graph G′i, where the vertices
of Q are at one side of the bipartition, and the vertices of L are at the other side. An edge
{qj , lu} has cost equal to the minimum distance between the subpath qi,j and the vertex u.
More formally, the cost of the edge {qj , lu} equals minv∈Qi,j len({v, u}).

4 Note that if there are additional cities coincident with a city vi with an airport, the path should not
visit the city vi, but it should still visit the coincident additional cities.

5 Note that the paths Qi,j can have coincident endpoints, if they visit the coincident additional cities.

A. Adamaszek, A. Antoniadis, A. Kumar, and T. Mömke 5:13

We construct the solution S2 as follows. We start by setting S2 = S1. For each component
Ci of S0 we compute (in polynomial time) a min-cost perfect matching for the graph G′i
described above. Such a matching exists, as Ci has hi airports and hi subpaths, therefore
both parts of the bipartition have equal size. For each matching edge {qj , lu} ∈ Q× L we
add to the solution S2 an edge {v, u}, where v ∈ Qi,j has minimum distance to u out of all
vertices of Qi,j . We then remove the additional cities from each component of S2.

I Lemma 12. Solution S2 has the following properties: (i) it is a feasible solution for the
AR instance (without resource augmentation), and (ii) cost(S2) ≤

(
2 + k

k−1
)
(1 + ε)opt.

The proof of Theorem 2 now directly follows from Lemma 12 and by substituting ε with
ε/4.

References
1 Anna Adamaszek, Antonios Antoniadis, and Tobias Mömke. Airports and railways: Facility

location meets network design. In STACS, volume 47 of LIPIcs, pages 6:1–6:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

2 Anna Adamaszek, Artur Czumaj, Andrzej Lingas, and Jakub Onufry Wojtaszczyk. Ap-
proximation schemes for capacitated geometric network design. In Luca Aceto, Monika
Henzinger, and Jirí Sgall, editors, Automata, Languages and Programming - 38th In-
ternational Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part I, volume 6755 of Lecture Notes in Computer Science, pages 25–36. Springer, 2011.
doi:10.1007/978-3-642-22006-7_3.

3 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

4 Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-based algorithms for capacitated
facility location. In FOCS, pages 256–265. IEEE Computer Society, 2014.

5 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems. Journal of the ACM, 45(5):753–782, 1998.

6 Babak Behsaz, Mohammad R. Salavatipour, and Zoya Svitkina. New approximation algo-
rithms for the unsplittable capacitated facility location problem. Algorithmica, 75(1):53–83,
2016.

7 Raja Jothi and Balaji Raghavachari. Approximation algorithms for the capacitated min-
imum spanning tree problem and its variants in network design. ACM Transactions on
Algorithms (TALG), 1(2):265–282, 2005.

8 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Inf. Comput., 222:45–58, 2013.

9 Jens Maßberg and Jens Vygen. Approximation algorithms for a facility location problem
with service capacities. ACM Trans. Algorithms, 4(4):50:1–50:15, 2008.

10 R. Ravi and Amitabh Sinha. Approximation algorithms for problems combining facility
location and network design. Operations Research, 54(1):73–81, 2006. doi:10.1287/opre.
1050.0228.

11 Alexander Schrijver. Combinatorial Optimization. Springer, 2003.

STACS 2018

http://dx.doi.org/10.1007/978-3-642-22006-7_3
http://dx.doi.org/10.1287/opre.1050.0228
http://dx.doi.org/10.1287/opre.1050.0228

	Introduction
	The Metric Case
	The Euclidean Case
	A QPTAS with a Small Resource Augmentation
	Relaxed AR: Allowing components with multiple airports
	A Constant-Factor Approximation Algorithm

