10,152 research outputs found

    Seasonally Frozen Soil Effects on the Seismic Performance of Highway Bridges

    Get PDF
    INE/AUTC 12.0

    Preliminary design of a test rig for combining passive nonlinear isolation with active control

    No full text
    Resilient elements are typically used to isolate delicate equipment from a vibrating host structure. Conventionally, these isolators are designed to operate in their linear region, but more recently nonlinear isolators have been employed to increase the frequency over which vibration isolation can be achieved. Another way of improving the performance of an isolator has been to use active control in conjunction with a passive linear system. The work presented in this paper concerns the development of an experimental rig for vibration isolation and is motivated by the intention to combine the advantages of passive nonlinear isolation with active control.The structure consists of a mass suspended on four tensioned wires to form a single-degree-of-freedom system. The nonlinear stiffness of the wires is such that the system behaves like a hardening Duffing oscillator. Firstly, a static analysis is carried out, both analytically and experimentally, where the nonlinearity of the system is determined by the tension, length, cross-sectional area and Young’s modulus of the wires. For the dynamic analysis, harmonic base excitation is considered. The magnitude of the base displacement is fixed for all excitation frequencies and the level of nonlinearity is adjusted by varying the tension in the wires, a higher tension leading to a milder system nonlinearity. Finally, the motion transmissibility of the system is measured and appears to agree with the theoretical result. The rig forms a suitable platform for subsequent incorporation of an active control system for combining the benefits of passive nonlinear isolation with, for example, skyhook damping

    Candidate proof mass actuator control laws for the vibration suppression of a frame

    Get PDF
    The vibration of an experimental flexible space truss is controlled with internal control forces produced by several proof mass actuators. Four candidate control law strategies are evaluated in terms of performance and robustness. These control laws are experimentally implemented on a quasi free-free planar truss. Sensor and actuator dynamics are included in the model such that the final closed loop is self-equilibrated. The first two control laws considered are based on direct output feedback and consist of tuning the actuator feedback gains to the lowest mode intended to receive damping. The first method feeds back only the position and velocity of the proof mass relative to the structure; this results in a traditional vibration absorber. The second method includes the same feedback paths as the first plus feedback of the local structural velocity. The third law is designed with robust H infinity control theory. The fourth strategy is an active implementation of a viscous damper, where the actuator is configured to provide a bending moment at two points on the structure. The vibration control system is then evaluated in terms of how it would benefit the space structure's position control system

    Structural control by the use of piezoelectric active members

    Get PDF
    Large Space Structures (LSS) exhibit characteristics which make the LSS control problem different form other control problems. LSS will most likely exhibit low frequency, densely spaced and lightly damped modes. In theory, the number of these modes is infinite. Because these structures are flexible, Vibration Suppression (VS) is an important aspect of LSS operation. In terms of VS, the control actuators should be as low mass as possible, have infinite bandwidth, and be electrically powered. It is proposed that actuators be built into the structure as dual purpose structural elements. A piezoelectric active member is proposed for the control of LSS. Such a device would consist of a piezoelectric actuator and sensor for measuring strain, and screwjack actuator in series for use in quasi-static shape control. An experiment simulates an active member using piezoelectric ceramic thin sheet material on a thin, uniform cantilever beam. The feasibility of using the piezoelectric materials for VS on LSS was demonstrated. Positive positive feedback as a VS control strategy was implemented. Multi-mode VS was achieved with dramatic reduction in dynamic response

    Study of a Flexible UAV Proprotor

    Get PDF
    This paper is concerned with the evaluation of design techniques, both for the propulsive performance and for the structural behavior of a composite flexible proprotor. A numerical model was developed using a combination of aerodynamic model based on Blade Element Momentum Theory (BEMT), and structural model based on anisotropic beam finite element, in order to evaluate the coupled structural and the aerodynamic characteristics of the deformable proprotor blade. The numerical model was then validated by means of static performance measurements and shape reconstruction from Laser Distance Sensor (LDS) outputs. From the validation results of both aerodynamic and structural model, it can be concluded that the numerical approach developed by the authors is valid as a reliable tool for designing and analyzing the UAV-sized proprotor made of composite material. The proposed experiment technique is also capable of providing a predictive and reliable data in blade geometry and performance for rotor modes

    Experimental evaluation of active-member control of precision structures

    Get PDF
    The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required

    Development and approach to low-frequency microgravity isolation systems

    Get PDF
    The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described

    Model correlation and damage location for large space truss structures: Secant method development and evaluation

    Get PDF
    On-orbit testing of a large space structure will be required to complete the certification of any mathematical model for the structure dynamic response. The process of establishing a mathematical model that matches measured structure response is referred to as model correlation. Most model correlation approaches have an identification technique to determine structural characteristics from the measurements of the structure response. This problem is approached with one particular class of identification techniques - matrix adjustment methods - which use measured data to produce an optimal update of the structure property matrix, often the stiffness matrix. New methods were developed for identification to handle problems of the size and complexity expected for large space structures. Further development and refinement of these secant-method identification algorithms were undertaken. Also, evaluation of these techniques is an approach for model correlation and damage location was initiated

    Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Get PDF
    INE/AUTC 12.0

    A new test methodology based on structural resonance for mode I fatigue delamination growth in an unidirectional composite

    Get PDF
    A specific device has been set up to test by vibration resonance the mode I fatigue delamination growth onset of composite laminates. This test system, based on the DCB test specimen, is a mass-spring-specimen dynamic system designed to resonate. The defined operating conditions allow performing delamination propagation tests under imposed load and stopping the test under reproducible conditions, identical to the ones recommended in the ASTM-D6115 standard. This system allows fatigue tests to be driven up to 100Hz, reducing the time taken by a factor of ten without detrimental heat being generated in the material. The effect of frequency on the fatigue delamination growth on mode I has been investigated through a comparison with standard tests performed at 10Hz. A decrease in resistance to the propagation of delamination is observed with the increase in frequency for the composite studied. This frequency effect seems to be a strain rate effect and was taken in consideration by using dynamical critical energy restitution rate for the G-N curve plotting
    corecore