
Candidate Proof Mass Actuator Control Laws

Vibration Suppression of a Frame

._S -/8
N 9 1- 2 2_3_4:0---

for,he

JeffleyW. Umlandt

Daniel J. Inmantt

Dept. of Mechanical and Aerospace Engineering
University at Buffalo
Buffalo, NY 14260

Abstract

The vibration of an experimental flexible space truss is controlled with internal control forces
produced by several proof mass actuators. Four candidate control law strategies are evaluated in
terms of performance and robustness. These control laws are experimentally implemented on a
quasi flee-free planar truss. Sensor and actuator dynamics are included in the model such that the
final closed loop system is self-equilibrated. The first two control laws considered are based on
direct output feedback and consist of tuning the actuator feedback gains to the lowest mode
intended to receive damping. The first method feeds back only the proof mass's position and
velocity relative to the structure, this results in a traditional vibration absorber. The second
method includes the same feedback paths as the first plus feedback of the local structural velocity.
The third control law is designed with robust Hoo control theory. The fourth control strategy is an
active implementation of a viscous damper, where the actuator is configured to provide a bending
moment at two points on the structure.

The vibration control system is then evaluated in terms of how it would benefit the space
structure's position control system. This assessment is necessary since the additional actuator
dynamics in the model effectively adds two state variables to the system which could lead to
instabilities in the position control system.

1 Introduction

Proof mass actuators (PMA's) have been considered for use in large space structure

vibration control systems 1. These control systems are usually configured such that the PMA's
provide a closed loop control force based on the output from a combination of both colocated and

noncolocated sensors 2,3. The colocated sensor provides measurements of the position of the
proof mass relative to the structure. A benefit of colocated control is that stable control laws can
be designed that provide vibration attenuation at the point of actuator attachment. Several
experimental implementations of colocated PMA control have resulted in control laws that are

based on the traditional vibration absorber4, 5. In an effort to gain increased vibration attenuation,
noncolocated sensors provide actual structural vibration measurements at the point where
performance is desired. The problem of designing a noncolocated control is constrained by the
requirement that the control law must provide stable vibration suppression at sensor locations on
a flexible structure that is not necessarily well modeled.

This paper addresses the issue of the effective use of the proof mass actuator's control effort
towards the robust vibration suppression of a flexible unconstrained planar flame. An
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unconstrained or free-free structure is used, rather than a constrained or cantilevered structure. It

is observed that in some cases an entire vehicle will vibrate indicating that a constrained analysis is
not appropriate7, 8. The approach taken is to compare several control law and actuator-sensor
combinations when the actuator provides a point force on the structure. As a counterpoint, the
actuator is also mounted to the structure such that the actuator's control effort provides both an
axial force and a bending moment applied at two points on the structure. A control structure
interaction approach is undertaken in the sense that the actuator, sensor, and controller dynamics
are included or accounted for in the structural control design.

The paper outline is as follows: Section 1 gives an introduction to the control structure
interaction problem undertaken here. The flexible structure control testbed is described in Section
2. The PMA control law designs to be compared are detailed in Section 3. The results of
experimental implementation of these control laws are provided in Section 4. The research is
summarized in the final section.

2 Hardware Description

The experimental flexible structure is constructed such that it exhibits the characteristics
commonly associated with large flexible space structures. The structure is light weight, with most
of its mass concentrated at the joints. There are both colocated and noncolocated sensors and
actuators. The structure displays numerous modes of vibration that have a low natural frequency,
are lightly damped, and are closely spaced relative to each other. A soft cable suspension system
is used to simulate the free boundary conditions of space, and to minimize the effects of attaching
the structure to ground.

2.1 Flexible Structure

Figure 1 illustrates the 6-bay, 3 m long plane frame. The width of the structure is 0.5 m,
and the diagonal dimension is 0.707 m. The frame is constructed from aluminum truss links and
joints manufactured by the Mero Corporation. A truss link consists of an aluminum tube, with
nominal cross section dimensions of 22 mm O. D. and 20 mm I. D., terminated in bolt assemblies
which attach to the truss nodes. The truss node is Mero's standard M12 aluminum node. The

links are attached to the nodes and tightened with a torque wrench to 25 in-lb. The total weight of
the structure is 61 N.

The frame is suspended from the ceiling by two soft bungee cables 2 m in length. It was
found necessary to double up the cables to support the total weight of the structure and actuators.
The cables are attached at nodes 2 and 6. These joints were chosen for the suspension points
since they were nearly coincident with the nodes of the first structural mode of vibration, therefore
minimizing the interaction of the smacture and its suspension. The electrical cables are suspended
from the ceiling such that they do not carry the weight of the structure, and the mass loading of the
structure by these cables is minimized.

The dynamic characteristics of this structure are evident in figure 2, which shows an
experimental transfer function of node l's linear acceleration in the x direction given an impact at
node 1 in the x direction. The modal properties of the first 8 structural modes of vibration are
given in table 1. The vibration of the frame is characterized by flexural deflection rather than axial
deflection that would occur in a true truss structure. The structure is sufficiently long such that the
low structural vibration modes are not coupled to local member bending modes.

Not all of the dynamic characteristics displayed in figure 2 can be attributed to the structure,
rather the suspension provides a significant portion of the response shown in this test. Three
pendulous modes at approximately 1/3 Hz replaced the three rigid body modes in the x-y plane. A
double pendulum mode at 1.2 Hz replaced the rigid body rotation about the y -axis. Translation in
the z direction and rotation about the x axis are replaced by two translational vibration modes at
1/2 Hz which are due to stretching of the suspension cables. The cables also have transverse
vibration modes that occur at 12 Hz, 37 Hz, and 55 Hz.



2.1.1StructuralModel

A finiteelementmodelof thestructurewasconstructedfor usein controldesign.Theframe
linksweremodeledasuniformaluminumtubeswhosedimensionsarethesameasthe
manufacturer'snominalspecifications.Theframejointsweremodeledasrigid. Thecombined
massof thejointsandthelink boltassembliesweremodeledasapointmass,withzerorotational
inertia,locatedateachfiniteelementnode.Table2givesthestructuralparametersusedin the
finiteelementanalysis.In ordertosimplifythemodel,Guyanreductionwasusedtoeliminate
translationin boththez andy directions,androtationsaboutthex axis.Onlymotionoutof they-
z planeismodeled.

Thetransversevibrationof thesuspensioncableswasalsomodeled,sincethesevibration
modesappearin thecontrolbandwidth.Modelingthesuspensiongavebetteragreementbetween
thepole-zeropairsasshownin figure2.

2.2 Proof Mass Actuators

The proof mass actuators used are illustrated in figure 3. These actuators were originally

developed at the NASA Langley Research Center 1. The intent of this design is that a magnetic
field is produced by the permanent magnets and the iron in the proof mass that is normal to the
current flowing through conductors in the coil. This electromagnetic coupling is then described
by Eq. 1.

F = nlI× B (1)

I represents the current carried in the conductor, n the number of conductors in the gap, B the
magnetic field across the gap, 1 the length of the conductor. An average conductor length is found
from the average circumference around the coil. A useful control force oriented along the axis of
the coil results from this coupling. This force is then applied to the conductors in the coil, and
subsequently the structure. The reaction of this force is applied to the proof mass and causes it to
translate upon a linear bearing. Hence, the PMA can be modeled as providing an ideal point force
at the place of attachment on the structure and a reaction force on the proof mass. This force is
taken to be proportional to the current supplied to the coil. The power amplifier for the actuator is
configured as a current amplifier, which provides a means by which the actuator can be controlled
by a voltage signal. The proof mass actuator characteristics are given in table 3.

A complete model of the PMA should also include the dead mass and rotational inertia
associated with the actuator. The motivation behind this is that for lightweight structures the
actuator's dead mass will constitute a significant percentage of the total mass of the structure. The
addition of a relatively large discrete mass to a structure has the tendency to attract the nodes of the
higher modes of vibration of the structure to the point of attachment. This effect minimizes the
ability of a point force to provide a useful control force to higher modes of vibration. The
rotational inertia of the actuator used here cannot be considered negligible compared to the
structure. The high actuator inertia is in part due to the overall length of actuator measured from
the base.

2.2.1 Actuator Nonlinearities

There are several nonlinearities associated with the actuator, several of these are better

described as saturation limits. The total stroke length of the proof mass is +_0.0127 m. The
actuator produces a useful control force only when the proof mass is free to translate. Therefore,
feedback of the proof mass position relative to the structure is used to maintain the proof mass in
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the center of its stroke. The finite stroke length is the limiting factor for low frequency, large
amplitude motions.

The power amplifier used is operated as a voltage controlled current amplifier On the
amplifier there is a current limiter that provides for a saturation limit on the output. The maximum
output current of the amplifier determines the maximum force output of the actuator. An important
design tradeoff here is to determine how much control effort should be used towards the proof
mass centering force and how much should be available for a control force based on a
noncolocated sensor.

The damping in the actuator is primarily due to friction in the linear bearing and steel shaft
interface. This friction has been described by a typical Coulomb friction relation. The normal
load that generates the friction force is a combination of the weight of the proof mass and a
magnetic force between the permanent magnets and the steel shaft and ball bearings. These
frictional effects further limit the effectiveness of the actuator at low frequencies. Secondly, the
source of the damping is important in the sense that previously implemented PMA control laws
have relied upon available actuator damping to obtain closed loop stability. The problem is that a
large portion of this damping would not be available in a zero-g environment.

The electromagnetic coupling between the coil and the proof mass is described by Eq. 1 for
only a portion of the total stroke. This is illustrated in figure 4. This plot shows the static force
produced by the actuator for a constant input current. Ideally the actuator should output a constant
force for a constant input current independent of the stroke position. During bench testing of the
actuator, this led to closed loop instability.

2.2.2 Attachment to Structure

The structural equations of motion must be modified to include the actuator dynamics. The
structure is originally described by m degrees of freedom x, and if n actuators are used then n

degrees of freedom represented by the relative displacements rl are appended to the equations of
motion. Note that the coupling appears in the mass matrix rather than the stiffness matrix.

Mol _ + Kol x = B fg (2a)

x= {Xfem rlact}T (2b)

[ Kfem 0mxn
K°l= 10nxm 0nxn ] (2c)

Mol=[Mfem0mxn [Md+Jd+Mpl Mp2 ]0nxm 0nxn ] + Mp2 T mpInxn (2d)

M d = m d diag(0 ..... 0,1,0,0 ..... ,0) (2e)

Jd =Jd diag(O ..... 0,0,1,0 ...... O) (2f)

Mpl = mp diag(0 ..... 0,1,0,0 ...... 0) (2g)

Mp_=mp(O .... , 0,1,0,0 ...... o)T,j = l:n (2h)

_-r0mxn ]
l-gactlnxn-! (2i)
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2.3 Linear Variable Differential Transformer

A linear variable differential transformer (LVDT) is mounted on each PMA to provide a
measurement of the proof mass position relative to the structure. The LVDT used is a Schaevitz

Eng. No. 500. The input voltage is selected such that a displacement of -+0.375 inch produces -+5
Volts. The sensor bandwidth is 0 - 500 Hz. These sensors produce a measurement that is
colocated with the control force.

2.4 Accelerometers

The structural sensors are Kistler Piezobeam accelerometers. The calibration is 10 mv/g,
and have a frequency range of 0.5 to 5000 Hz. An approximate integrator is then used to integrate

the acceleration signal to provide a measurement of the structural velocity 2. The approximate
integrator is given by the following input/output description

°_2s (3)
(s) = s2 + t.0cS + ¢0c2

This approximate integrator is the combination of a critically damped unity gain second order low
pass filter, and a pure differentiator. The low pass filter provides the integrating action, while the
differentiator removes the DC portion of the input signal. The transfer function is strictly proper,
giving a state space realization for either analog or digital implementation. This type of integrator
is used in order to avoid the integration of any DC bias produced by the accelerometer and
associated signal conditioning.

2.5 Digital Controller

The digital controller used is a Systolic Systems Optima 3. The input and output voltage

range is -+5 Volts The input channels are anti-alias filtered and the output channels are smooth
filtered. The digital to analog converters on this system present a practical design issue, since they
do not saturate. Rather, when the control law produces an output that exceeds the output range of
the converter the conversion process wraps the desired signal value around the available output
range. In other words, if the control law produces a desired signal of 6 Volt, the D/A converters
will produce a -4 Volt signal. The solution to this problem used is to place the static controller
gain on the power amplifiers. This is fine for static compensators or direct output feedback of
sensor signals of known and bounded signal strength, such as the LVDT output. For dynamic
compensators this is not necessarily a robust solution. A second solution would be to place logic
statements in the control software that would provide saturation levels. Such logic statements
would lower the achievable sampling rate.

3 Control Design

The application of a proof mass actuator to the control of a simple flexible structure is
considered in this section. The structure consists of one rigid body mode, and one flexible mode
of vibration. This problem is illustrated in figure 5. This problem has been proposed as a

benchmark robust control problem TM. The difference here is that the control force is produced by
an actuator whose dynamics cannot be ignored. The open loop equations for this system are
given by



Ms 00 Ms+mp+md
0 mp

mp + -Ks Ks = gac fg(t)+ d(t)
mp 0 0

(4)

The measurement equations are for the relative position, rl,

Yp = KLVDTq = [0 0 KLVDT] x (5)

The following values are used for all calculations in this section.

Ms= 1
0.5 < K s < 2, nominally K s = 1

mp --g.2rnd=
gact = 1
KLVDT = 1

In the following subsections several vibration control strategies are considered. The
effectiveness of each system is then evaluated by giving the system an impact disturbance across
masses 1 and 2, and the response of x2 is measured. This type of disturbance does not excite the
system's rigid body mode.

3.1 Controllability

The controllability of this system is then computed with standard techniques 9

rank[B AB A2B...A5B]=4¢6 (6)

Indicating that the system is not completely controllable. The control force produced by the
actuator should be considered as a force internal to the system, and as such cannot change the
location and motion of the system's center of mass. The lack of complete controllability is
because the actuator cannot control the rigid body mode of the system. A further explanation of
this is the actuator configured as a point force cannot produce a force at zero frequency.
Therefore, a statement of the obvious is that the actuator should be only used for vibration control.
In other words the actuator should be used to give the structure damping. It is also evident that a
rigid body control system must be designed for this system. A design goal for the vibration
control system is that it should enhance the rigid body controller.

3.20bservability

The observability of the system is computed from

rank [C CA CA 2 ... CA5] T=4.6 (7)

Indicating that the system is also not completely observable. Similar to the previous section the
rigid body modes of the system are not observable.



3.3 Vibration Absorber

The first control law considered is direct feedback of the relative proof mass position, rl, and

velocity, ¢1. This is considered a colocated design, since the resulting closed loop stiffness and

damping matrices are symmetric. Although the LVDT measures the position q only, it is assumed

that _ is available from a lead network or digital derivative. This type of feedback compensation

is a proportional plus derivative control. Equivalently, this type of control may also be thought of
as designing an actuator spring stiffness, ka, and viscous damper, Ca. One criterion for the choice

of the feedback gains, ka and Ca, is that used to design a passive vibration absorberl0,11,4. The
actuator spring stiffness is found from

nap (1 +ga)2
(8)

c2 : mpl'ta¢02(1 +lga) 3
(9)

P-a= mp(t_ij)2
ka = gactKposKLVDT
Ca = gactKvelKLVDT

¢-0i- frequency of interest, ith mode

@ij- jth degree of freedom, eigenvector of the ith mode, normalized with respect to the mass
matrix

The resulting closed loop equations of motion are then

o I f_1t0 Ms+mp+rnd mp + 0 0 0 +-Ks Ks = d(t) (10)

0 mp mp 0 0 Ca 0 0 ka

Alternatively, the feedback gains can be calculated from the following quadratic cost function 11

E[iq2 dt] E[JTQ dt]J= ei = z z (11)

This system is stable provided that the feedback gains, ka and Ca, are positive. The constant
gain feedback of sensor signals that are colocated with an actuator does not destabilize the system.
The colocation of sensors and actuators is evidenced by the symmetric closed loop stiffness and
damping matrices.

The spring stiffness and damping coefficient for this example are calculated to be

ka = 0.331
Ca = 0.173



Theresponseof x2for thegivendisturbanceis shownin figure7. Theresponsesshownare
calculated for the minimum, maximum and nominal value for the structural spring stiffness, Ks.
The vibration control system's performance when Ks is increased to its maximum value is
comparable to its performance for the nominal value of Ks. On the other hand, when Ks is
allowed to decrease to its minimum the performance of the system is diminished.

The performance of this type of control is explained in a control system sense as a pole-zero
cancellation. The second order dynamics of the PMA add a pole and a zero to the system, which
will be less that the structure's pole and zero. The zero associated with the structure will appear in
between the actuator pole and the structural pole. These poles are closely spaced, since the mass

ratio, I_a, is usually small. Hence, the structural zero will tend to cancel either the actuator or the
structural pole, depending on sensor and actuator placement. Because this type of control relies
upon pole zero cancellation its effectiveness for more than one mode of vibration is limited.

3.4 Direct Velocity Feedback

The second control strategy considered consists of direct structural velocity feedback 13. The
idea being that the actuator will provide a force at a given point on the structure that is directly
proportional and opposite in direction to the structure's velocity at that point. It is pointed that the
control force is determined on the basis of both a colocated and a noncolocated sensor. Therefore,
the stability of the closed loop system must be considered. The difficulty here is the design of the
feedback compensator to provide the proof mass centering force. The control force is given as

fg(t)= c x2- f(q) (12)

where f(rl) represents the output of the feedback compensator.
In the following subsections the velocity feedback gain, c, is held constant and two feedback

compensators for 11are designed. The value used for the feedback gain c is

c = 0.5

3.4.1 Direct Output Feedback

In this section a proportional plus derivative compensator is designed for the feedback of the

proof mass relative position, rl. Again, this type of control may be thought of as determining an

equivalent actuator spring stiffness, ka, and viscous damper, Ca. The control force is

fg(t)= c x2- kaTI - Caq (13)

The closed loop equations of motion for this system are then

0 }[000]f  t fit0 Ms+mp mp + + -Ks Ks 0 = d(t) (14)
0 mp mp 0 -c Ca 0 0 ka

This is a noncolocated control system, and as such its stability is in question. The characteristic
equation for this system is evaluated to be



Ca k_zmR[s4+ rap)s'+ + S 2

_, Ms mpj

t((Ca+C)Ks 2c__c_c_c_c_c_c_c_c_q_Ks-_(Ks___ (2Ms + mp))l = 0+ [ M 2 + MsmpjS + _,M_mo
(15)

Applying the Routh-Hurwitz test to portion of the characteristic equation inside the brackets the
following stability relation is obtained, assuming that each individual parameter is positive

(c 2 + 2CaC + c 2) Ksmp22+[2@2+CaC)K 2 + (-CaC-C 2) Kska]Msmp

- cacKskaM 2 > 0 (16)

When the actuator damping is held at zero, i. e. Ca = 0, Eq.13 reduces to

Ks> ka (17)
Ms mp

In other words, the actuator natural frequency should be less than the structure's natural frequency
of vibration. Also, note that the velocity feedback gain, c, is not present in Eq. 14. Figure 6
illustrates the stability boundary of ka for a range of both Ca and c, for the nominal spring stiffness
Ks. Actuator spring stiffnesses below this boundary result in a stable system. The smallest stable
ka in figure 6 occurs for ca = 0, independent of c. Also, the surface is relatively flat over most of
the range of Ca and c, indicating that in this case stability is insensitive to actuator damping. In
order to ensure stability robustness against the permissible variations in the structural spring
stiffness, Ks, the minimum permitted value should be used as the nominal of design value.

The feedback gains, ka and Ca, are determined by following the same optimization strategy

that was outlined in the previous section 12. For this example ka and Ca are found to be

ka = 0.105
Ca = -0.0027

The performance of this system is illustrated in figure 8. The system's settling time for both the
nominal and maximum spring stiffnesses is less than that of the vibration absorber design.
Although it is not apparent in this figure, when Ks is varied to its minimum value the system
becomes unstable.

Following this strategy the actuator spring stiffness is found to be less than the vibration
absorber spring stiffness. Performance is improved with an increased feedback gain c. In
comparison to the vibration absorber system the proof mass here exhibits more relative motion
and does more work on the structure.

3.4.2 Robust Control Design

An attempt to design a compensator for the feedback of the relative position, rl, using an H,,o

robust control design technique was unsuccessful. The system rigid body modes were first
removed from the state space equations of motion by model reduction. The rigid body mode
associated with the proof mass was retained in the system equations, since it is this output that the
compensator is being designed to control. The H_,, design procedure failed because there was a

plant pole on the jm-axis which then produces a closed loop pole also on the jm-axis.



3.5 Passive Damper

As a counterpoint to the above control designs the actuator is also configured to act as a
passive linear damper which applies a bending moment at two locations on the structure, as

shown in figure 10. Only feedback of the proof mass relative velocity, "qis used here. In other
words this is direct velocity feedback. A proof mass centering force is not required since this is
provided for by the structure and fixturing. The actuator can be attached at nonadjacent joint
locations to better distribute the control effort to low frequency modes.

4 Experimental Implementation

The experimental implementation of the control laws considered above is addressed in this
section. An impact is given to the structure at node 1 in the x direction and the structure's
acceleration is measured at node 4 also in the x direction. Each response is filtered with a 25 Hz
low pass filter to give a cleaner picture of the actuator's effect. The resulting settling time for each
test is used as a measure of control law performance. The actuator location is chosen in order to
provide the greatest effect on the In'st vibration mode. The control laws are implemented digitally,
with the sampling rate for each set at 4000Hz. As a basis for comparison the response of the
uncontrolled structure is shown in figure 10. The settling time for this test is greater than 3.5
seconds. It is also evident that the structure must be considered more complicated than a single
degree of freedom.

The vibration absorber was designed to provide damping to the first mode whose frequency
is shifted to 5.8 Hz when the actuator dead mass and inertia are added. The actuator is placed at
node 4. The result of this implementation is illustrated in figure 11. It is seen here that the settling
time is reduced in comparison to the uncontrolled structure, but is greater than 2.5 seconds.
When the actuator was tuned to the second mode at approximately 12 Hz the actuator was made
unstable. This is a result of the nonlinear electromagnetic coupling of the coil and permanent
magnets.

The effect of adding structural velocity feedback is shown in figure 12. The acceleration of
node 4 is integrated by the approximate integrator given in Eq. 3. The cutoff frequency for the
integrator is 1 Hz. Following the stability guideline for this case the actuator spring stiffness is
kept low such that the actuator frequency is below that of the first mode of vibration. The settling
time for this case is an improvement from the vibration absorber. Figure 12 displays a signal of
approximately 1 Hz, which is the double pendulum mode of the structure suspension system.
Closed loop instability for this set of feedback paths resulted when the magnitude of the
disturbance impact caused the proof mass to hit the end of its stroke. These resulting impacts
caused the accelerometer to overload which subsequently made the control computer overflow
which induced the more proof mass impacts.

Figure 13 illustrates that the viscous damper implementation has an effect comparable to that
of using structural velocity feedback. Although, there is more second mode behavior for this
case. The actuator was attached at nodes 3 and 5. In comparison to the point force application of
the actuator where the proof mass uses the entire stroke length, the travel of the proof mass here is
at most 0.25 in.

5 Conclusions

Several structural vibration control laws have been considered analytically and implemented
experimentally. Two of these control strategies are essentially active implementations of passive
control concepts, namely the viscous damper and the vibration absorber. The feedback of the
local structural velocity is an active control idea. A control structure interaction approach was
taken in the sense that the actuator dynamics were included in the control design, and that there are
several nonlinearities in the closed loop system that can lead to instability.
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Mode #

1
2
3
4
5
6
7
8

Experimental
Natural

Frequency (Hz)
6.4
15.1
17.7
29.6
35.4
45.6
58.0
63.3

Damping
Ratio (%) ,

0.021
0.026
0.010
0.018
0.025
0.014
0.026
0.022

MSC/PAL
Natural

Frequency (Hz)
6.5
15.6
17.7
29.9
35.2
45.2
55.6
60.8

Mode

Type

1st bending
1st torsional

2nd bending
2nd torsional

3rd bending
3rd torsional

4th bending
4th torsional

Table 1: Modal Properties of Flexible Structure



Link O.D. do
Link I.D. di
Density p
Elasticmodulus E
Shearmodulus G
Jointmass mj
Boltmass mb

22mm
20mm
2.45x103kg/m3
70GPa
26GPa
0.0759kg
0.0578k_

Table2:Structurelink andjointcharacteristics

Proofmass mp
Deadmass md
Deadinertia jd
Forceconstant gact
Frictioncoefficient I.t

0.225kg
0.730kg
0.008kg-m2
2.75N/A
0.01

Table3:LinearProofMassActuatorProperties
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design.
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Figure 9: Viscous damper configuration.
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