489 research outputs found

    A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor

    Full text link
    Motivated by the problem of testing planarity and related properties, we study the problem of designing efficient {\em partition oracles}. A {\em partition oracle} is a procedure that, given access to the incidence lists representation of a bounded-degree graph G=(V,E)G= (V,E) and a parameter \eps, when queried on a vertex vVv\in V, returns the part (subset of vertices) which vv belongs to in a partition of all graph vertices. The partition should be such that all parts are small, each part is connected, and if the graph has certain properties, the total number of edges between parts is at most \eps |V|. In this work we give a partition oracle for graphs with excluded minors whose query complexity is quasi-polynomial in 1/\eps, thus improving on the result of Hassidim et al. ({\em Proceedings of FOCS 2009}) who gave a partition oracle with query complexity exponential in 1/\eps. This improvement implies corresponding improvements in the complexity of testing planarity and other properties that are characterized by excluded minors as well as sublinear-time approximation algorithms that work under the promise that the graph has an excluded minor.Comment: 13 pages, 1 figur

    A Local Algorithm for Constructing Spanners in Minor-Free Graphs

    Get PDF
    Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider this problem in the setting of local algorithms: one wants to quickly determine whether a given edge ee is in a specific spanning tree, without computing the whole spanning tree, but rather by inspecting the local neighborhood of ee. The challenge is to maintain consistency. That is, to answer queries about different edges according to the same spanning tree. Since it is known that this problem cannot be solved without essentially viewing all the graph, we consider the relaxed version of finding a spanning subgraph with (1+ϵ)n(1+\epsilon)n edges (where nn is the number of vertices and ϵ\epsilon is a given sparsity parameter). It is known that this relaxed problem requires inspecting Ω(n)\Omega(\sqrt{n}) edges in general graphs, which motivates the study of natural restricted families of graphs. One such family is the family of graphs with an excluded minor. For this family there is an algorithm that achieves constant success probability, and inspects (d/ϵ)poly(h)log(1/ϵ)(d/\epsilon)^{poly(h)\log(1/\epsilon)} edges (for each edge it is queried on), where dd is the maximum degree in the graph and hh is the size of the excluded minor. The distances between pairs of vertices in the spanning subgraph GG' are at most a factor of poly(d,1/ϵ,h)poly(d, 1/\epsilon, h) larger than in GG. In this work, we show that for an input graph that is HH-minor free for any HH of size hh, this task can be performed by inspecting only poly(d,1/ϵ,h)poly(d, 1/\epsilon, h) edges. The distances between pairs of vertices in the spanning subgraph GG' are at most a factor of O~(hlog(d)/ϵ)\tilde{O}(h\log(d)/\epsilon) larger than in GG. Furthermore, the error probability of the new algorithm is significantly improved to Θ(1/n)\Theta(1/n). This algorithm can also be easily adapted to yield an efficient algorithm for the distributed setting

    Testing bounded arboricity

    Full text link
    In this paper we consider the problem of testing whether a graph has bounded arboricity. The family of graphs with bounded arboricity includes, among others, bounded-degree graphs, all minor-closed graph classes (e.g. planar graphs, graphs with bounded treewidth) and randomly generated preferential attachment graphs. Graphs with bounded arboricity have been studied extensively in the past, in particular since for many problems they allow for much more efficient algorithms and/or better approximation ratios. We present a tolerant tester in the sparse-graphs model. The sparse-graphs model allows access to degree queries and neighbor queries, and the distance is defined with respect to the actual number of edges. More specifically, our algorithm distinguishes between graphs that are ϵ\epsilon-close to having arboricity α\alpha and graphs that cϵc \cdot \epsilon-far from having arboricity 3α3\alpha, where cc is an absolute small constant. The query complexity and running time of the algorithm are O~(nmlog(1/ϵ)ϵ+nαm(1ϵ)O(log(1/ϵ)))\tilde{O}\left(\frac{n}{\sqrt{m}}\cdot \frac{\log(1/\epsilon)}{\epsilon} + \frac{n\cdot \alpha}{m} \cdot \left(\frac{1}{\epsilon}\right)^{O(\log(1/\epsilon))}\right) where nn denotes the number of vertices and mm denotes the number of edges. In terms of the dependence on nn and mm this bound is optimal up to poly-logarithmic factors since Ω(n/m)\Omega(n/\sqrt{m}) queries are necessary (and α=O(m))\alpha = O(\sqrt{m})). We leave it as an open question whether the dependence on 1/ϵ1/\epsilon can be improved from quasi-polynomial to polynomial. Our techniques include an efficient local simulation for approximating the outcome of a global (almost) forest-decomposition algorithm as well as a tailored procedure of edge sampling

    Every property is testable on a natural class of scale-free multigraphs

    Get PDF
    In this paper, we introduce a natural class of multigraphs called hierarchical-scale-free (HSF) multigraphs, and consider constant-time testability on the class. We show that a very wide subclass, specifically, that in which the power-law exponent is greater than two, of HSF is hyperfinite. Based on this result, an algorithm for a deterministic partitioning oracle can be constructed. We conclude by showing that every property is constant-time testable on the above subclass of HSF. This algorithm utilizes findings by Newman and Sohler of STOC'11. However, their algorithm is based on the bounded-degree model, while it is known that actual scale-free networks usually include hubs, which have a very large degree. HSF is based on scale-free properties and includes such hubs. This is the first universal result of constant-time testability on the general graph model, and it has the potential to be applicable on a very wide range of scale-free networks.Comment: 13 pages, one figure. Difference from ver. 1: Definitions of HSF and SF become more general. Typos were fixe

    A Sublinear Tester for Outerplanarity (and Other Forbidden Minors) With One-Sided Error

    Full text link
    We consider one-sided error property testing of F\mathcal{F}-minor freeness in bounded-degree graphs for any finite family of graphs F\mathcal{F} that contains a minor of K2,kK_{2,k}, the kk-circus graph, or the (k×2)(k\times 2)-grid for any kNk\in\mathbb{N}. This includes, for instance, testing whether a graph is outerplanar or a cactus graph. The query complexity of our algorithm in terms of the number of vertices in the graph, nn, is O~(n2/3/ϵ5)\tilde{O}(n^{2/3} / \epsilon^5). Czumaj et~al.\ showed that cycle-freeness and CkC_k-minor freeness can be tested with query complexity O~(n)\tilde{O}(\sqrt{n}) by using random walks, and that testing HH-minor freeness for any HH that contains a cycles requires Ω(n)\Omega(\sqrt{n}) queries. In contrast to these results, we analyze the structure of the graph and show that either we can find a subgraph of sublinear size that includes the forbidden minor HH, or we can find a pair of disjoint subsets of vertices whose edge-cut is large, which induces an HH-minor.Comment: extended to testing outerplanarity, full version of ICALP pape

    Local Algorithms for Sparse Spanning Graphs

    Get PDF
    We initiate the study of the problem of designing sublinear-time (local) algorithms that, given an edge (u,v) in a connected graph G=(V,E), decide whether (u,v) belongs to a sparse spanning graph G\u27 = (V,E\u27) of G. Namely, G\u27 should be connected and |E\u27| should be upper bounded by (1+epsilon)|V| for a given parameter epsilon > 0. To this end the algorithms may query the incidence relation of the graph G, and we seek algorithms whose query complexity and running time (per given edge (u,v)) is as small as possible. Such an algorithm may be randomized but (for a fixed choice of its random coins) its decision on different edges in the graph should be consistent with the same spanning graph G\u27 and independent of the order of queries. We first show that for general (bounded-degree) graphs, the query complexity of any such algorithm must be Omega(sqrt{|V|}). This lower bound holds for graphs that have high expansion. We then turn to design and analyze algorithms both for graphs with high expansion (obtaining a result that roughly matches the lower bound) and for graphs that are (strongly) non-expanding (obtaining results in which the complexity does not depend on |V|). The complexity of the problem for graphs that do not fall into these two categories is left as an open question

    A Local Algorithm for the Sparse Spanning Graph Problem

    Get PDF
    Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper, we study this problem in the Centralized Local model, where the goal is to decide whether an edge is part of the spanning subgraph by examining only a small part of the input; yet, answers must be globally consistent and independent of prior queries. Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be constructed efficiently in this model. Therefore, we settle for a spanning subgraph containing at most (1+ε)n(1+\varepsilon)n edges (where nn is the number of vertices and ε\varepsilon is a given approximation/sparsity parameter). We achieve query complexity of O~(poly(Δ/ε)n2/3)\tilde{O}(poly(\Delta/\varepsilon)n^{2/3}), (O~\tilde{O}-notation hides polylogarithmic factors in nn). where Δ\Delta is the maximum degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree graphs. Moreover, we achieve the additional property that our algorithm outputs a spanner, i.e., distances are approximately preserved. With high probability, for each deleted edge there is a path of O(poly(Δ/ε)log2n)O(poly(\Delta/\varepsilon)\log^2 n) hops in the output that connects its endpoints

    Approximating the Spectrum of a Graph

    Full text link
    The spectrum of a network or graph G=(V,E)G=(V,E) with adjacency matrix AA, consists of the eigenvalues of the normalized Laplacian L=ID1/2AD1/2L= I - D^{-1/2} A D^{-1/2}. This set of eigenvalues encapsulates many aspects of the structure of the graph, including the extent to which the graph posses community structures at multiple scales. We study the problem of approximating the spectrum λ=(λ1,,λV)\lambda = (\lambda_1,\dots,\lambda_{|V|}), 0λ1,,λV20 \le \lambda_1,\le \dots, \le \lambda_{|V|}\le 2 of GG in the regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given the ability to query a random node in the graph and select a random neighbor of a given node, computes a succinct representation of an approximation λ~=(λ~1,,λ~V)\widetilde \lambda = (\widetilde \lambda_1,\dots,\widetilde \lambda_{|V|}), 0λ~1,,λ~V20 \le \widetilde \lambda_1,\le \dots, \le \widetilde \lambda_{|V|}\le 2 such that λ~λ1ϵV\|\widetilde \lambda - \lambda\|_1 \le \epsilon |V|. Our algorithm has query complexity and running time exp(O(1/ϵ))exp(O(1/\epsilon)), independent of the size of the graph, V|V|. We demonstrate the practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications of our algorithm to property testing in the bounded degree graph model
    corecore