6,409 research outputs found

    The LBFGS Quasi-Newtonian Method for Molecular Modeling Prion AGAAAAGA Amyloid Fibrils

    Get PDF
    Experimental X-ray crystallography, NMR (Nuclear Magnetic Resonance) spectroscopy, dual polarization interferometry, etc are indeed very powerful tools to determine the 3-Dimensional structure of a protein (including the membrane protein); theoretical mathematical and physical computational approaches can also allow us to obtain a description of the protein 3D structure at a submicroscopic level for some unstable, noncrystalline and insoluble proteins. X-ray crystallography finds the X-ray final structure of a protein, which usually need refinements using theoretical protocols in order to produce a better structure. This means theoretical methods are also important in determinations of protein structures. Optimization is always needed in the computer-aided drug design, structure-based drug design, molecular dynamics, and quantum and molecular mechanics. This paper introduces some optimization algorithms used in these research fields and presents a new theoretical computational method - an improved LBFGS Quasi-Newtonian mathematical optimization method - to produce 3D structures of Prion AGAAAAGA amyloid fibrils (which are unstable, noncrystalline and insoluble), from the potential energy minimization point of view. Because the NMR or X-ray structure of the hydrophobic region AGAAAAGA of prion proteins has not yet been determined, the model constructed by this paper can be used as a reference for experimental studies on this region, and may be useful in furthering the goals of medicinal chemistry in this field

    Group Leaders Optimization Algorithm

    Full text link
    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multidimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N^2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for two qubit Grover search algorithm which is a quantum algorithm providing quadratic speed-up over the classical counterpart

    Fast B-spline Curve Fitting by L-BFGS

    Full text link
    We propose a novel method for fitting planar B-spline curves to unorganized data points. In traditional methods, optimization of control points and foot points are performed in two very time-consuming steps in each iteration: 1) control points are updated by setting up and solving a linear system of equations; and 2) foot points are computed by projecting each data point onto a B-spline curve. Our method uses the L-BFGS optimization method to optimize control points and foot points simultaneously and therefore it does not need to perform either matrix computation or foot point projection in every iteration. As a result, our method is much faster than existing methods

    Tropical geometries and dynamics of biochemical networks. Application to hybrid cell cycle models

    Full text link
    We use the Litvinov-Maslov correspondence principle to reduce and hybridize networks of biochemical reactions. We apply this method to a cell cycle oscillator model. The reduced and hybridized model can be used as a hybrid model for the cell cycle. We also propose a practical recipe for detecting quasi-equilibrium QE reactions and quasi-steady state QSS species in biochemical models with rational rate functions and use this recipe for model reduction. Interestingly, the QE/QSS invariant manifold of the smooth model and the reduced dynamics along this manifold can be put into correspondence to the tropical variety of the hybridization and to sliding modes along this variety, respectivelyComment: conference SASB 2011, to be published in Electronic Notes in Theoretical Computer Scienc

    About the Algebraic Solutions of Smallest Enclosing Cylinders Problems

    Full text link
    Given n points in Euclidean space E^d, we propose an algebraic algorithm to compute the best fitting (d-1)-cylinder. This algorithm computes the unknown direction of the axis of the cylinder. The location of the axis and the radius of the cylinder are deduced analytically from this direction. Special attention is paid to the case d=3 when n=4 and n=5. For the former, the minimal radius enclosing cylinder is computed algebrically from constrained minimization of a quartic form of the unknown direction of the axis. For the latter, an analytical condition of existence of the circumscribed cylinder is given, and the algorithm reduces to find the zeroes of an one unknown polynomial of degree at most 6. In both cases, the other parameters of the cylinder are deduced analytically. The minimal radius enclosing cylinder is computed analytically for the regular tetrahedron and for a trigonal bipyramids family with a symmetry axis of order 3.Comment: 13 pages, 0 figure; revised version submitted to publication (previous version is a copy of the original one of 2010

    Challenges of continuous global optimization in molecular structure prediction

    Full text link
    The molecular geometry, the three dimensional arrangement of atoms in space, is a major factor determining the properties and reactivity of molecules, biomolecules and macromolecules. Computation of stable molecular conformations can be done by locating minima on the potential energy surface (PES). This is a very challenging global optimization problem because of extremely large numbers of shallow local minima and complicated landscape of PES. This paper illustrates the mathematical and computational challenges on one important instance of the problem, computation of molecular geometry of oligopeptides, and proposes the use of the Extended Cutting Angle Method (ECAM) to solve this problem.ECAM is a deterministic global optimization technique, which computes tight lower bounds on the values of the objective function and fathoms those part of the domain where the global minimum cannot reside. As with any domain partitioning scheme, its challenge is an extremely large partition of the domain required for accurate lower bounds. We address this challenge by providing an efficient combinatorial algorithm for calculating the lower bounds, and by combining ECAM with a local optimization method, while preserving the deterministic character of ECAM.<br /

    Numerical Methods for Electronic Structure Calculations of Materials

    Get PDF
    This is the published version. Copyright 2010 Society for Industrial and Applied MathematicsThe goal of this article is to give an overview of numerical problems encountered when determining the electronic structure of materials and the rich variety of techniques used to solve these problems. The paper is intended for a diverse scientific computing audience. For this reason, we assume the reader does not have an extensive background in the related physics. Our overview focuses on the nature of the numerical problems to be solved, their origin, and the methods used to solve the resulting linear algebra or nonlinear optimization problems. It is common knowledge that the behavior of matter at the nanoscale is, in principle, entirely determined by the Schrödinger equation. In practice, this equation in its original form is not tractable. Successful but approximate versions of this equation, which allow one to study nontrivial systems, took about five or six decades to develop. In particular, the last two decades saw a flurry of activity in developing effective software. One of the main practical variants of the Schrödinger equation is based on what is referred to as density functional theory (DFT). The combination of DFT with pseudopotentials allows one to obtain in an efficient way the ground state configuration for many materials. This article will emphasize pseudopotential-density functional theory, but other techniques will be discussed as well
    corecore