229 research outputs found

    Fuzzy-Logic Based Call Admission Control in 5G Cloud Radio Access Networks with Pre-emption

    Get PDF
    YesFifth generation (5G) cellular networks will be comprised of millions of connected devices like wearable devices, Androids, iPhones, tablets and the Internet of Things (IoT) with a plethora of applications generating requests to the network. The 5G cellular networks need to cope with such sky-rocketing tra c requests from these devices to avoid network congestion. As such, cloud radio access networks (C-RAN) has been considered as a paradigm shift for 5G in which requests from mobile devices are processed in the cloud with shared baseband processing. Despite call admission control (CAC) being one of radio resource management techniques to avoid the network congestion, it has recently been overlooked by the community. The CAC technique in 5G C-RAN has a direct impact on the quality of service (QoS) for individual connections and overall system e ciency. In this paper, a novel Fuzzy-Logic based CAC scheme with pre-emption in C-RAN is proposed. In this scheme, cloud bursting technique is proposed to be used during congestion, where some delay tolerant low-priority connections are pre-empted and outsourced to a public cloud with a penalty charge. Simulation results show that the proposed scheme has low blocking probability below 5%, high throughput, low energy consumption and up to 95% of return on revenue

    A fuzzy-based CAC scheme for wireless cellular networks considering different priorities

    Get PDF
    The mobile cellular systems are expected to support multiple services with guaranteed Quality of Service(QoS). But, the ability of wireless systems to accommodate expected growth of traffic load and broadband services is limited by available radio frequency spectrum. Call Admission Control (CAC) is one of the resource management functions, which regulates network access to ensure QoS provisioning. However, the decision for CAC is very challenging issue due to user mobility, limited radio spectrum, and multimedia traffic characteristics. In our previous work, we proposed a fuzzy-based CAC system by considering the priority of the on-going connections. As priority parameter, we considered only one parameter (service request). In this work, we extend our work by adding different priorities. We call this system FACS-MP. We evaluate by simulations the performance of the proposed system. From the simulations results, we conclude that the FACS-MP can differentiate better different services compared with previous system.Peer ReviewedPostprint (published version

    Performance evaluation and comparison of fuzzy-based intelligent CAC Systems for wireless cellular networks

    Get PDF
    The mobile cellular systems are expected to support multiple services with guaranteed Quality of Service(QoS). But, the ability of wireless systems to accommodate expected growth of traffic load and broadband services is limited by available radio frequency spectrum. Call Admission Control (CAC) is one of the resource management functions, which regulates network access to ensure QoS provisioning. However, the decision for CAC is very challenging issue due to user mobility, limited radio spectrum, and multimedia traffic characteristics. To deal with these problems, we implemented a Fuzzy Admission Control System (FACS). We compared the performance of FACS with Shadow Cluster Concept (SCC). In another work, we extended FACS by considering the priority of the on-going connections. We called this system FACS-P. As priority parameter, we considered only one parameter (service request). In this work, we improve our previous system by adding different priorities. We call this system FACS-MP. We evaluate and compare the performance of implemented systems by simulations. From the simulations results, we conclude that the FACS-MP can differentiate better different services compared with previous systems.Peer ReviewedPostprint (published version

    A fuzzy based call admission control scheme for wireless cellular networks considering priority of on-going connections

    Get PDF
    The mobile cellular systems are expected to support multiple services with guaranteed Quality of Service (QoS).But, the ability of wireless systems to accommodate expected growth of traffic load and broadband services is limited by available radio frequency spectrum. Call Admission Control (CAC) is one of the resource management functions, which regulates network access to ensure QoS provisioning. However, the decision for CAC is very challenging issue due to user mobility, limited radio spectrum, and multimedia traffic characteristics. In our previous work, we proposed a fuzzy-based CAC system and compared the performance of the proposed system with Shadow Cluster Concept (SCC). In this work, we extend our work by considering the priority of the on-going connections. We evaluate by simulations the performance of the proposed system and compare its performance with our previous work. The performance evaluation shows that the proposed system has a good behavior in keeping the QoS of on-going connectionsPeer ReviewedPostprint (published version

    A distributed QoS Routing and CAC framework: performance evaluation of its SSRA and InterD Agents

    Get PDF
    In order to support multimedia communication, it is necessary to develop routing algorithms which use for routing more than one QoS parameters. This is because new services such as video on demand and remote meeting systems require better QoS. Also, for admission control of multimedia applications different QoS parameters should be considered. In our previous work, we proposed an intelligent routing and CAC strategy using cooperative agents. In this paper, we propose and evaluate the performance of SSRA algorithm and a GA-based InterD agent. Performace evaluation shows that proposed agents have a good behaviorPeer ReviewedPostprint (published version
    corecore