952 research outputs found

    A QFD-Based Mathematical Model for New Product Development Considering the Target Market Segment

    Get PDF
    Responding to customer needs is important for business success. Quality function deployment provides systematic procedures for converting customer needs into technical requirements to ensure maximum customer satisfaction. The existing literature mainly focuses on the achievement of maximum customer satisfaction under a budgetary limit via mathematical models. The market goal of the new product for the target market segment is usually ignored. In this study, the proposed approach thus considers the target customer satisfaction degree for the target market segment in the model by formulating the overall customer satisfaction as a function of the quality level. In addition, the proposed approach emphasizes the cost-effectiveness concept in the design stage via the achievement of the target customer satisfaction degree using the minimal total cost. A numerical example is used to demonstrate the applicability of the proposed approach and its characteristics are discussed

    Utilising a modern quality function deployment process in ship modularisation

    Get PDF
    Rising passenger numbers in the leisure cruise industry has resulted in cruise ships sailing in full capacity. This trend is estimated to grow further by 42% until 2027 causing the cruise companies to order around 120 new ships to be delivered by 2027. The increasing order numbers have put most of the shipyards around the world that build cruise ships to run in full capacity. However, to increase their productivity while staying competitive, the shipyards have to take a different approach to build ships. One such approach is building modularly designed ships. This thesis study forms a part of the case company’s efforts to explore the modular ship design process by utilising a tailor-made Quality Function Deployment approach. Specifically, the study looks into finding a robust approach of generating product requirements by incorporating customers’ desires and wishes with the help of the QFD process recommended by the newly standardised ISO 16355 series of standards. Study of the modular design process, the case company’s internal design process along with the QFD approach recommended by the ISO standard, the author creates a draft QFD process, which is tested out in the shipyard along with the technical experts to get insights on the draft approach. The study also analyses the suggestions to the classical QFD by the ISO documents and recommends the better alternative since not many case studies have been made using the ISO recommended QFD approach. The feedback obtained along with the observations made helped to create a robust tailored QFD approach for the case company to incorporate in their modular product development efforts. Further, the author recommends solutions to eliminate or reduce the impact of the challenges the case company might face while implementing the recommended QFD approach in the new modular design process

    MATHEMATICAL MODELING FOR PLATFORM-BASED PRODUCT CONFIGURATION CONSIDERING TOTAL LIFE-CYCLE SUSTAINABILITY

    Get PDF
    Many companies are using platform-based product designs to fulfill the requirements of customers while maintaining low cost. However, research that integrates sustainability into platform-based product design is still limited. Considering sustainability during platform-based design process is a challenge because the total life-cycle from pre-manufacturing, manufacturing and use to post-use stages as well as economic, environmental and societal performance in these stages must be considered. In this research, an approach for quantifying sustainability is introduced and a mathematical model is developed for identifying a more sustainable platform. Data from life-cycle assessment is used to quantify environmental factors; criteria from the Product Sustainability Index (ProdSI) are used to quantify societal factors. The Analytic Hierarchical Process method is used to assess relative importance of societal factors and the weighted sum method is used in the objective function for overall multi-objective optimization. A bicycle platform configuration will be used as a case study to demonstrate the application of the model. The relationship between commonality of the platform and sustainability performance is analyzed

    Some further studies on improving QFD methodology and analysis

    Get PDF
    Quality Function Deployment (QFD) starts and ends with the customer. In other words, how it ends may depend largely on how it starts. Any QFD practitioners will start with collecting the voice of the customer that reflects customer’s needs as to make sure that the products will eventually sell or the service may satisfy the customer. On the basis of those needs, a product or service creation process is initiated. It always takes a certain period of time for the product or service to be ready for the customer. The question here is whether those customer-needs may remain exactly the same during the product or service creation process. The answer would be very likely to be a ‘no’, especially in today’s rapidly changing environment due to increased competition and globalization. The focus of this thesis is placed on dealing with the change of relative importance of the customer’s needs during product or service creation process. In other words, the assumption is that there is no new need discovered along the time or an old one becomes outdated; only the relative importance change of the existing needs is dealt with. Considering the latest development of QFD research, especially the increasingly extensive use of Analytic Hierarchy Process (AHP) in QFD, this thesis aims to enhance the current QFD methodology and analysis, with respect to the change during product or service creation process, as to continually meet or exceed the needs of the customer. The entire research works are divided into three main parts, namely, the further use of AHP in QFD, the incorporation of AHP-based priorities’ dynamics in QFD, and decision making analysis with respect to the dynamics. The first part focuses on the question "In what ways does AHP, considering its strength and weakness, contribute to an improved QFD analysis?" The usefulness of AHP in QFD is demonstrated through a case study in improving higher education quality of an education institution. Furthermore, a generalized model of using AHP in QFD is also proposed. The generalized model not only provides an alternative way to construct the house of quality (HoQ), but also creates the possibility to include other relevant factors into QFD analysis, such as new product development risks. The second part addresses the question "How to use the AHP in QFD in dealing with the dynamics of priorities?" A novel quantitative method to model the dynamics of AHP-based priorities in the HoQ is proposed. The method is simple and time-efficient. It is especially useful when the historical data is limited, which is the case in a highly dynamic environment. As to further improve QFD analysis, the modeling method is applied into two areas. The first area is to enhance the use of Kano’s model in QFD by considering its dynamics. It not only extends the use of Kano’s model in QFD, but also advances the academic literature on modeling the life cycle of quality attributes quantitatively. The second area is to enhance the benchmarking part of QFD by including the dynamics of competitors’ performance in addition to the dynamics of customer’s needs. The third part deals with the question "How to make decision in a QFD analysis with respect to the dynamics in the house of quality?" Two decision making approaches are proposed to prioritize and/or optimize the technical attributes with respect to the modeling results. Considering the fact that almost all QFD translation process employs the relationship matrix, a guideline for QFD practitioners to decide whether the relationship matrix should be normalized is developed. Furthermore, a practical implication of the research work towards the possible use of QFD in helping a company develop more innovative products is also discussed. In brief, the main contribution of this thesis is in providing some novel methods and/or approaches to enhance the QFD’s use with respect to the change during product or service creation process. For scientific community, this means that the existing QFD research has been considerably improved, especially with the use of AHP in QFD. For engineering practice, a better way of doing QFD analysis, as a customer-driven engineering design tool, has been proposed. It is hoped that the research work may provide a first step into a better customer-driven product or service design process, and eventually increase the possibility to create more innovative and competitive products or services over time

    Development of the Integrated Model of the Automotive Product Quality Assessment

    Get PDF
    Issues on building an integrated model of the automotive product quality assessment are studied herein basing on widely applicable methods and models of the quality assessment. A conceptual model of the automotive product quality system meeting customer requirements has been developed. Typical characteristics of modern industrial production are an increase in the production dynamism that determines the product properties; a continuous increase in the volume of information required for decision-making, an increased role of knowledge and high technologies implementing absolutely new scientific and technical ideas. To solve the problem of increasing the automotive product quality, a conceptual structural and hierarchical model is offered to ensure its quality as a closed system with feedback between the regulatory, manufacturing, and information modules, responsible for formation of the product quality at all stages of its life cycle. The three module model of the system of the industrial product quality assurance is considered to be universal and to give the opportunity to explore processes of any complexity while solving theoretical and practical problems of the quality assessment and prediction for products for various purposes, including automotive

    An intelligent information framework relating customer requirements and product characteristics

    Get PDF
    Market driven strategies encourage enterprises to produce products that customers want to buy, and therefore can improve an enterprise's market position. Few organisations make effective use of market, competitor and customer information. Information modelling and intelligent support tools help define product specifications focused on fulfilling customer requirements and facilitating information sharing between members of extended design teams. Design effort can be targeted at particular product features, which yield maximum benefits for customer satisfaction. The Market Driven Design System provides comprehensive, intelligent support, meeting the challenges of effectively modelling, using and sharing valuable, yet imprecise, non-technical market information during product design

    The voice of the customer

    Get PDF
    "October 1991."Includes bibliographical references (p. 34-38).Abbie Griffin, John R. Hauser

    Sustainable supply chain network design integrating logistics outsourcing decisions in the context of uncertainties

    Get PDF
    Les fournisseurs de services logistiques (3PLs) possèdent des potentialités pour activer les pratiques de développement durables entre les différents partenaires d’une chaîne logistique (Supply Chain SC). Il existe un niveau optimal d'intégration des 3PLs en tant que fournisseurs, pour s’attendre à des performances opérationnelles élevées au sein de toute la SC. Ce niveau se traduit par la distinction des activités logistiques à externaliser de celles à effectuer en interne. Une fois que les activités logistiques externalisés sont stratégiquement identifiées, et tactiquement dimensionnées, elles doivent être effectuées par des 3PLs appropriés afin d’endurer les performances économiques ; sociales ; et environnementales de la SC. La présente thèse développe une approche holistique pour concevoir une SC durable intégrant les 3PLs, dans un contexte incertain d’affaires et politique de carbone. Premièrement, une approche de modélisation stochastique en deux étapes est suggérée pour optimiser à la fois le niveau d'intégration des 3PLs, et le niveau d'investissement en technologies sobres au carbone, et ce dans le contexte d’une SC résiliente aux changements climatiques. Notre SC est structurée de façon à capturer trois principales préoccupations du Supply Chain Management d’une entreprise focale FC (e. g. le fabricant) : Sécurité d’approvisionnement, Segmentation de distribution, et Responsabilité élargie des producteurs. La première étape de l'approche de modélisation suggère un plan stochastique basé sur des scenarios plus probables, afin de capturer les incertitudes inhérentes à tout environnement d’affaires (e. g. la fluctuation de la demande des différents produits ; la qualité et la quantité de retour des produits déjà utilisés ; et l’évolution des différents coûts logistiques en fonction du temps). Puis, elle propose un modèle de programmation stochastique bi-objectif, multi-période, et multi-produit. Le modèle de programmation quadratique, et non linéaire consiste à minimiser simultanément le coût logistique total espéré, et les émissions de Gaz à effet de Serre de la SC fermée. L'exécution du modèle au moyen d'un algorithme basé sur la méthode Epsilon-contraint conduit à un ensemble de configurations Pareto optimales d’une SC dé- carbonisée, avant tout investissement en technologie sobre au carbone. Chacune de ces configurations sépare les activités logistiques à externaliser de celles à effectuer en interne. La deuxième étape de l'approche de modélisation permet aux décideurs de choisir la meilleure configuration de la SC parmi les configurations Pareto optimales identifiées. Le concept de Prix du Carbone Interne est utilisé pour établir un plan stochastique du prix de carbone, dans le cadre d'un régime de déclaration volontaire du carbone. Nous proposons un ensemble des technologies sobres au carbone, dans le domaine de transport des marchandises, disposées à concourir pour contrer les politiques incertaines de carbone. Un modèle stochastique combinatoire, et linéaire est développé pour minimiser le coût total espéré, sous contraintes de l’abattement du carbone; limitation du budget, et la priorité attribuée pour chaque Technologie Réductrice de carbone (Low Carbone Reduction LCR). L'injection de chaque solution Pareto dans le modèle, et la résolution du modèle conduisent à sélectionner la configuration de la SC, la plus résiliente aux changements climatiques. Cette configuration définit non seulement le plan d'investissement optimal en LCR, mais aussi le niveau optimal d’externalisation de la logistique dans la SC. Deuxièmement, une fois que les activités logistiques à externaliser sont stratégiquement définies et tactiquement dimensionnées, elles ont besoin d’être effectuées par des 3PL appropriées, afin de soutenir la FC à construire une SC durable et résiliente. Nous suggérons DEA-QFD / Fuzzy AHP- Conception robuste de Taguchi : Une approche intégrée & robuste, pour sélectionner les 3PL candidats les plus efficients. Les critères durables et les risques liés à l’environnement d’affaires, sont identifiés, classés et ordonnés. Le Déploiement de la Fonction Qualité (QFD) est renforcé par le Processus Hiérarchique Analytique (AHP), et par la logique floue pour déterminer avec consistance l'importance relative de chaque facteur de décision, et ce, conformément aux besoins logistiques réels, et stratégies d'affaires de la FC. L’Analyse d’Enveloppement des Données (DEA) Data Envelopment Analysis conduit à limiter la liste des candidats, uniquement à ceux d’efficiences comparables, et donc excluant tout candidat moins efficient. La technique de conception robuste Taguchi permet de réaliser un plan d'expérience qui détermine un candidat idéal nommé 'optimum de Taguchi' ; un Benchmark pour comparer les 3PLs candidats. Par suite, le 3PL le plus efficient est celui le plus proche de cet optimum. Nous conduisons actuellement une étude de cas d’une entreprise qui fabrique et commercialise les fours à micro-ondes pour valider la modélisation stochastique en deux étapes. Certains aspects concernant l’application de l’approche sont reportés. Enfin, un exemple de sélection d’un 3PL durable pour s’occuper de la logistique inverse est fourni, pour démontrer l'applicabilité de l'approche intégrée & robuste, et montrer sa puissance par rapport aux approches populaires de sélection.The Third-Party Logistics service providers (3PLs) have the potentialities to activate sustainable practices between different partners of a Supply Chain (SC). There exists an optimal level of integrating 3PLs as suppliers of a Focal Company within the SC, to expect for high operational performances. This level leads to distinguish all the logistics activities to outsource from those to perform in-house. Once the outsourced logistics activities are strategically identified, and tactically dimensioned, they need to be performed by appropriate 3PLs to sustain economic, social and environmental performances of the SC. The present thesis develops a holistic approach to design a sustainable supply chain integrating 3PLs, in the context of business and carbon policy uncertainties. First, a two-stage stochastic modelling approach is suggested to optimize both the level of 3PL integration, and of Low Carbon Reduction LCR investment within a climate change resilient SC. Our SC is structured to capture three main SC management issues of the Focal Company FC (e.g. The manufacturer) : Security of Supplies; Distribution Segmentation; and Extended Producer Responsibility. The first-stage of the modelling approach suggests a stochastic plan based scenarios capturing business uncertainties, and proposes a two-objective, multi-period, and multi-product programming model, for minimizing simultaneously, the expected logistics total cost, and the Green House Gas GHG emissions of the whole SC. The run of the model by means of a suggested Epsilon-constraint algorithm leads to a set of Pareto optimal decarbonized SC configurations, before any LCR investment. Each one of these configurations distinguishes the logistics activities to be outsourced, from those to be performed in-house. The second-stage of the modelling approach helps the decision makers to select the best Pareto optimal SC configuration. The concept of internal carbon price is used to establish a stochastic plan of carbon price in the context of a voluntary carbon disclosure regime, and we propose a set of LCR technologies in the freight transportation domain ready to compete for counteracting the uncertain carbon policies. A combinatory model is developed to minimize the total expected cost, under the constraints of; carbon abatement, budget limitation, and LCR investment priorities. The injection of each Pareto optimal solution in the model, and the resolution lead to select the most efficient climate resilient SC configuration, which defines not only the optimal plan of LCR investment, but the optimal level of logistics outsourcing within the SC as well. Secondly, once the outsourced logistics are strategically defined they need to be performed by appropriate 3PLs for supporting the FC to build a Sustainable SC. We suggest the DEA-QFD/Fuzzy AHP-Taguchi Robust Design: a robust integrated selection approach to select the most efficient 3PL candidates. Sustainable criteria, and risks related to business environment are identified, categorized, and ordered. Quality Function Deployment (QFD) is reinforced by Analytic Hierarchic Process (AHP), and Fuzzy logic, to consistently determine the relative importance of each decision factor according to the real logistics needs, and business strategies of the FC. Data Envelopment Analysis leads to shorten the list of candidates to only those of comparative efficiencies. The Taguchi Robust Design technique allows to perform a plan of experiment, for determining an ideal candidate named ‘optimum of Taguchi’. This benchmark is used to compare the remainder 3Pls candidates, and the most efficient 3PL is the closest one to this optimum.We are currently conducting a case study of a company that manufactures and markets microwave ovens for validating the two-stage stochastic approach, and certain aspects of its implementation are provided. Finally, an example of selecting a sustainable 3PL, to handle reverse logistics is given for demonstrating the applicability of the integrated & robust approach, and showing its power compared to popular selection approaches. Keywords:Third Party Logistics; Green Supply Chain design; Stochastic Multi-Objective Optimization; Carbon Pricing; Taguchi Robust Design

    Comparative analysis of new configurations of aircraft aimed at competitiveness, environmental compatibility and safety

    Get PDF
    This Ph.D. Thesis aims at suggesting a proper integrated and multidisciplinary design methodology to improve the current conceptual and preliminary design phases of breakthrough innovative aerospace products. The methodology, based on a Systems Engineering approach, is presented together with an envisaged toolchain, consisting of both commercial and ad-hoc developed software, integrated in a Model-Based Systems Engineering perspective. In addition, for the sake of clarity and for validation purposes, a specific case study has been selected and developed all along the document. The reference case-study is inspired to a real pre-feasibility study in which the research group of Politecnico di Torino, which the author of this Thesis belongs to, has been involved. The project aims at developing a suborbital vehicle able to perform parabolic flights for both scientific and touristic purposes. This kind of initiatives paves the way for the future hypersonic vehicles, because it allows to crucial enabling technologies to be tested and validated in relevant environment but with lower performances’ requirements. The Thesis is articulated in seven Chapters with an introduction and conclusion sections and in each Chapter a balanced mix between theoretical investigation, mathematical model development, tool selection or development and application to the selected case study is guaranteed. This document starts reporting the major reasons why an innovative design methodology should be envisaged to deal with the increasing level of complexity in the aerospace domain. In particular, in the first Chapter, a brief overview of existing or underdevelopment initiatives related to hypersonic is reported, together with the description of the different types of mission in which the new hypersonic vehicles will be exploited. Moreover, the major issues related to the infrastructures required to operate these transportation systems are summarized. As far as operations are concerned, a short section makes the readers aware of the current under-development regulatory framework. Then, the integrated multidisciplinary design methodology is presented starting from the very high level analyses up to the sizing of the different components of the transportation system. All along the document, crucial role is played by requirements, whose management can allow a complete traceability of the different design characteristics during the overall product life-cycle. Furthermore, proper algorithms allowing to move from purely qualitative to quantitative trade-offs, are presented, with a noticeable advantage in terms of traceability and reproducibility. Eventually, further improvements of both the tool-chain and the reference case studies are envisaged for future developments

    A New Car Concept Developed with Stylistic Design Engineering (SDE)

    Get PDF
    In this work, a structured design method, the Stylistic Design Engineering (SDE), is applied for the construction of a new minivan car, in particular a new city car, which we will call FIAT 600 Omega. The SDE, or Stylistic Design Engineering, is a structured engineering method for carrying out automotive design projects. The SDE method consists of six different phases: (1) Analysis of stylistic trends; (2) Sketches; (3) 2D Computer Aided Design (CAD) drawings; (4) 3D CAD models; (5) Rendering; (6) Solid stylistic model (also called style maquette). This project deals with the external redesign of the Fiat 600 multiple, a small minivan which was very successful in the 1950s and 1960s. SDE is a methodology consisting of various technologies and design methodologies that will be further explained in detail, such as the Pininfarina method, the Quality Function Deployment (QFD) method, Benchmarking (BM), and Top Flop Analysis (TPA). The work was organized according to the different phases. Initially, the Fiat style was studied, in particular the style of the FIAT 600 MULTI PURPOUSE VEHICLE (MPV). This step is essential to better understand the characteristics of the brand and also the main characteristics carried out over the decades. Then we moved on to the freehand sketching phase, based on what we learned in the previous phase of the study. When a satisfactory shape was found for the new car, by analyzing and discarding the different proposals of the various types of style, we proceeded to the evaluation of the proportions and dimensions through two-dimensional drawings and finally we obtained the three-dimensional shape of the new car thanks to 3D CAD software and rendering software. Many advantages in the industrial world SDE takes together with its development. In fact, until the early 2000s, car design and styling was considered quite a craft activity, not a technical or scientific one, mostly based on the great capability of famous car designers and masters, just like Giugiaro, Zagato, Bertone, Pininfarina, Stephenson, Bangle, etc. Then, thanks to the industrial activity of Eng. Lorenzo Ramacciotti, former CEO of Pininfarina Spa and Mechanical Engineer, and also thanks to the academic studies developed at ALMA MATER STUDIORUM University of Bologna, SDE became the object of attention, because it is able to systematize the car design process and reduce costs. With SDE, a good design research or an industrial product development team can complete a car design project, also without the presence of a mentor. Car Design Process finally becomes with SDE a scientific method; Car Design becomes with SDE an industrial method. Industrial needs are nice products made in a short time; SDE is structured to attend these issues. Industrial challenges follow innovation, in shape and functionality; SDE is able to recognize innovation. Industrial benefits can be reached with SDE, ensuring beautiful aesthetic projects are realized systematically and with low costs
    • …
    corecore