1,161 research outputs found

    Packet Scheduling Algorithms in LTE/LTE-A cellular Networks: Multi-agent Q-learning Approach

    Get PDF
    Spectrum utilization is vital for mobile operators. It ensures an efficient use of spectrum bands, especially when obtaining their license is highly expensive. Long Term Evolution (LTE), and LTE-Advanced (LTE-A) spectrum bands license were auctioned by the Federal Communication Commission (FCC) to mobile operators with hundreds of millions of dollars. In the first part of this dissertation, we study, analyze, and compare the QoS performance of QoS-aware/Channel-aware packet scheduling algorithms while using CA over LTE, and LTE-A heterogeneous cellular networks. This included a detailed study of the LTE/LTE-A cellular network and its features, and the modification of an open source LTE simulator in order to perform these QoS performance tests. In the second part of this dissertation, we aim to solve spectrum underutilization by proposing, implementing, and testing two novel multi-agent Q-learning-based packet scheduling algorithms for LTE cellular network. The Collaborative Competitive scheduling algorithm, and the Competitive Competitive scheduling algorithm. These algorithms schedule licensed users over the available radio resources and un-licensed users over spectrum holes. In conclusion, our results show that the spectrum band could be utilized by deploying efficient packet scheduling algorithms for licensed users, and can be further utilized by allowing unlicensed users to be scheduled on spectrum holes whenever they occur

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    A Survey of Scheduling in 5G URLLC and Outlook for Emerging 6G Systems

    Get PDF
    Future wireless communication is expected to be a paradigm shift from three basic service requirements of 5th Generation (5G) including enhanced Mobile Broadband (eMBB), Ultra Reliable and Low Latency communication (URLLC) and the massive Machine Type Communication (mMTC). Integration of the three heterogeneous services into a single system is a challenging task. The integration includes several design issues including scheduling network resources with various services. Specially, scheduling the URLLC packets with eMBB and mMTC packets need more attention as it is a promising service of 5G and beyond systems. It needs to meet stringent Quality of Service (QoS) requirements and is used in time-critical applications. Thus through understanding of packet scheduling issues in existing system and potential future challenges is necessary. This paper surveys the potential works that addresses the packet scheduling algorithms for 5G and beyond systems in recent years. It provides state of the art review covering three main perspectives such as decentralised, centralised and joint scheduling techniques. The conventional decentralised algorithms are discussed first followed by the centralised algorithms with specific focus on single and multi-connected network perspective. Joint scheduling algorithms are also discussed in details. In order to provide an in-depth understanding of the key scheduling approaches, the performances of some prominent scheduling algorithms are evaluated and analysed. This paper also provides an insight into the potential challenges and future research directions from the scheduling perspective

    Enhanced exponential rule scheduling algorithm for real-time traffic in LTE network

    Get PDF
    Nowadays, mobile communication is growing rapidly and become an everyday commodity. The vast deployment of real-time services in Long Term Evolution (LTE) network demands for the scheduling techniques that support the Quality of Service (QoS) requirements. LTE is designed and implemented to fulfill the users’ QoS. However, 3GPP does not define the specific scheduling technique for resource distribution which leads to vast research and development of the scheduling techniques. In this context, a review of the recent scheduling algorithm is reported in the literature. These schedulers in the literature cause high Packet Loss Rate (PLR), low fairness, and high delay. To cope with these disadvantages, we propose an enhanced EXPRULE (eEXPRULE) scheduler to improve the radio resource utilization in the LTE network. Extensive simulation works are carried out and the proposed scheduler provides a significant performance improvement for video application without sacrificing the VoIP performance. The eEXPRULE scheduler increases video throughput, spectrum efficiency, and fairness by 50%, 13%, and 11%, respectively, and reduces the video PLR by 11%

    Random neural network based cognitive-eNodeB deployment in LTE uplink

    Get PDF

    A Study on Cross-Carrier Scheduler for Carrier Aggregation in Beyond 5G Networks

    Get PDF
    Carrier Aggregation (CA) allows the network and User Equipment (UE) to aggregate carrier frequencies in licensed, unlicensed, or Shared Access (SA) bands of the same or different spectrum bands to boost the achieved data rates. This work aims to provide a detailed study on CA techniques for 5G New Radio (5G NR) networks while elaborating on CA deployment scenarios, CA-enabled 5G networks, and radio resource management and scheduling techniques. We analyze cross-carrier scheduling schemes in CA-enabled 5G networks for Downlink (DL) resource allocation. The requirements, challenges, and opportunities in allocating Resource Blocks (RBs) and Component Carriers (CCs) are addressed. The study and analysis of various multi-band scheduling techniques are made while maintaining that high throughput and reduced power usage must be achieved at the UE. Finally, we present CA as the critical enabler to advanced systems while discussing how it meets the demands and holds the potential to support beyond 5G networks, followed by discussing open issues in resource allocation and scheduling techniques.This work was supported by FCT/MCTES through national funds and, when applicable, cofounded EU funds under the project UIDB/50008/2020, ORCIP (22141-01/SAICT/2016), COST CA 20120 INTERACT, SNF Scientific Exchange - AISpectrum (project 205842) and TeamUp5G. TeamUp5G has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391.info:eu-repo/semantics/publishedVersio
    • …
    corecore