1,721 research outputs found

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Self-Certified Public Key Cryptographic Methodologies for Resource-Constrained Wireless Sensor Networks

    Get PDF
    As sensor networks become one of the key technologies to realize ubiquitous computing, security remains a growing concern. Although a wealth of key-generation methods have been developed during the past few decades, they cannot be directly applied to sensor network environments. The resource-constrained characteristics of sensor nodes, the ad-hoc nature of their deployment, and the vulnerability of wireless media pose a need for unique solutions. A fundamental requisite for achieving security is the ability to provide for data con…dential- ity and node authentication. However, the scarce resources of sensor networks have rendered the direct applicability of existing public key cryptography (PKC) methodologies impractical. Elliptic Curve Cryptography (ECC) has emerged as a suitable public key cryptographic foun- dation for constrained environments, providing strong security for relatively small key sizes. This work focuses on the clear need for resilient security solutions in wireless sensor networks (WSNs) by introducing e¢ cient PKC methodologies, explicitly designed to accommodate the distinctive attributes of resource-constrained sensor networks. Primary contributions pertain to the introduction of light-weight cryptographic arithmetic operations, and the revision of self- certi…cation (consolidated authentication and key-generation). Moreover, a low-delay group key generation methodology is devised and a denial of service mitigation scheme is introduced. The light-weight cryptographic methods developed pertain to a system-level e¢ cient utilization of the Montgomery procedure and e¢ cient calculations of modular multiplicative inverses. With respect to the latter, computational complexity has been reduced from O(m) to O(logm), with little additional memory cost. Complementing the theoretical contributions, practical computation o¤-loading protocols have been developed along with a group key establishment scheme. Implementation on state-of- the-art sensor node platforms has yielded a comprehensive key establishment process obtained in approximately 50 ns, while consuming less than 25 mJ. These exciting results help demonstrate the technology developed and ensure its impact on next-generation sensor networks

    Security wireless sensor networks: prospects, challenges, and future

    Get PDF
    With the advancements of networking technologies and miniaturization of electronic devices, wireless sensor network (WSN) has become an emerging area of research in academic, industrial, and defense sectors. Different types of sensing technologies combined with processing power and wireless communication capability make sensor networks very lucrative for their abundant use in near future. However, many issues are yet to be solved before their full-scale practical implementations. Among all the research issues in WSN, security is one of the most challenging topics to deal with. The major hurdle of securing a WSN is imposed by the limited resources of the sensors participating in the network. Again, the reliance on wireless communication technology opens the door for various types of security threats and attacks. Considering the special features of this type of network, in this chapter we address the critical security issues in wireless sensor networks. We talk about cryptography, steganography, and other basics of network security and their applicability in WSN. We explore various types of threats and attacks against wireless sensor networks, possible countermeasures, mentionable works done so far, other research issues, etc. We also introduce the view of holistic security and future trends towards research in wireless sensor network security

    Security attacks and challenges in wireless sensor networks

    Get PDF

    A Hybrid Secure Scheme for Wireless Sensor Networks against Timing Attacks Using Continuous-Time Markov Chain and Queueing Model

    Get PDF
    Wireless sensor networks (WSNs) have recently gained popularity for a wide spectrum of applications. Monitoring tasks can be performed in various environments. This may be beneficial in many scenarios, but it certainly exhibits new challenges in terms of security due to increased data transmission over the wireless channel with potentially unknown threats. Among possible security issues are timing attacks, which are not prevented by traditional cryptographic security. Moreover, the limited energy and memory resources prohibit the use of complex security mechanisms in such systems. Therefore, balancing between security and the associated energy consumption becomes a crucial challenge. This paper proposes a secure scheme for WSNs while maintaining the requirement of the security-performance tradeoff. In order to proceed to a quantitative treatment of this problem, a hybrid continuous-time Markov chain (CTMC) and queueing model are put forward, and the tradeoff analysis of the security and performance attributes is carried out. By extending and transforming this model, the mean time to security attributes failure is evaluated. Through tradeoff analysis, we show that our scheme can enhance the security of WSNs, and the optimal rekeying rate of the performance and security tradeoff can be obtained. View Full-Tex
    corecore