
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2007

Self-Certified Public Key Cryptographic Methodologies for Self-Certified Public Key Cryptographic Methodologies for

Resource-Constrained Wireless Sensor Networks Resource-Constrained Wireless Sensor Networks

Ortal Arazi
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Arazi, Ortal, "Self-Certified Public Key Cryptographic Methodologies for Resource-Constrained Wireless
Sensor Networks. " PhD diss., University of Tennessee, 2007.
https://trace.tennessee.edu/utk_graddiss/117

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=trace.tennessee.edu%2Futk_graddiss%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Ortal Arazi entitled "Self-Certified Public Key

Cryptographic Methodologies for Resource-Constrained Wireless Sensor Networks." I have

examined the final electronic copy of this dissertation for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Computer Engineering.

Hairong Qi, Major Professor

We have read this dissertation and recommend its acceptance:

Douglas Birdwell, Donald Bouldin, Tom Dunigan

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Ortal Arazi entitled “Self-Certified
Public Key Cryptographic Methodologies for Resource-Constrained Wireless Sensor
Networks.” I have examined the final electronic copy of this dissertation for form and
content and recommend that it be accepted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy, with a major in Computer Engineering.

Hairong Qi, Major Professor

We have read this dissertation
and recommend its acceptance:

Douglas Birdwell

Donald Bouldin

Tom Dunigan

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the
Graduate School

(Original signatures are on file with official student records)

Self-Certi�ed Public Key Cryptographic Methodologies for
Resource-Constrained Wireless Sensor Networks

A Dissertation

Presented for the Doctor of Philosophy Degree

Department of Electrical Engineering and Computer Science

The University of Tennessee, Knoxville

Ortal Arazi

December 2007

Copyright c
 2007 by Ortal Arazi.

All rights reserved.

ii

Dedication

This dissertation is dedicated to my father whose help and patience made it all possible.

iii

Acknowledgments

I would like to thank my advisor, Dr. Hairong Qi, for her guidance and support both academi-

cally and personally. I would further like to thank Dr. Donald Bouldin, Dr. J. Douglas Birdwell

and Dr. Tom Dunigan, for serving on my Ph.D. committee. The time and input provided is

greatly appreciated. This work received considerable bene�t from the work of Derek Rose, who

assisted in the implementation and evaluation phases presented in this dissertation. Lastly, I

would like to thank my family for all of their support. Especially to my father whose insight-

ful remarks helped me throughout all of this process and to my husband for his tremendous

encouragement.

iv

Abstract

As sensor networks become one of the key technologies to realize ubiquitous computing,

security remains a growing concern. Although a wealth of key-generation methods have been

developed during the past few decades, they cannot be directly applied to sensor network

environments. The resource-constrained characteristics of sensor nodes, the ad-hoc nature of

their deployment, and the vulnerability of wireless media pose a need for unique solutions.

A fundamental requisite for achieving security is the ability to provide for data con�dential-

ity and node authentication. However, the scarce resources of sensor networks have rendered

the direct applicability of existing public key cryptography (PKC) methodologies impractical.

Elliptic Curve Cryptography (ECC) has emerged as a suitable public key cryptographic foun-

dation for constrained environments, providing strong security for relatively small key sizes.

This work focuses on the clear need for resilient security solutions in wireless sensor networks

(WSNs) by introducing e¢ cient PKC methodologies, explicitly designed to accommodate the

distinctive attributes of resource-constrained sensor networks. Primary contributions pertain

to the introduction of light-weight cryptographic arithmetic operations, and the revision of self-

certi�cation (consolidated authentication and key-generation). Moreover, a low-delay group key

generation methodology is devised and a denial of service mitigation scheme is introduced. The

light-weight cryptographic methods developed pertain to a system-level e¢ cient utilization of

the Montgomery procedure and e¢ cient calculations of modular multiplicative inverses. With

respect to the latter, computational complexity has been reduced from O(m) to O(logm), with

little additional memory cost.

Complementing the theoretical contributions, practical computation o¤-loading protocols

have been developed along with a group key establishment scheme. Implementation on state-of-

the-art sensor node platforms has yielded a comprehensive key establishment process obtained in

approximately 50 ns, while consuming less than 25mJ . These exciting results help demonstrate

the technology developed and ensure its impact on next-generation sensor networks.

v

Contents

1 Introduction 1

1.1 Wireless Sensor Networks (WSNs) . 1

1.2 Unique Security Considerations and Challenges in WSNs 2

1.3 Dissertation Outline . 3

2 Literature Review 5

2.1 Introduction . 5

2.2 Symmetric Cryptography . 6

2.2.1 Introduction . 6

2.2.2 The Data Encryption Standard (DES) . 6

2.3 Public Key Cryptography . 9

2.3.1 The Discrete Logarithm Problem . 10

2.3.2 The Di¢ e-Hellman Key Agreement . 10

2.3.3 The RSA Methodology . 11

2.3.4 Elliptic Curve Cryptography (ECC) . 12

2.3.5 Operations Over Elliptic Curves . 14

2.3.6 Example of an Elliptic Curve Over GF (p) 16

2.4 Key Pre-Distribution Schemes in WSNs . 17

2.5 Self-Certi�ed Key Establishment . 20

2.5.1 Key-issuing Procedures . 20

2.5.2 Self-certi�ed Fixed Key-establishment . 21

2.5.3 Self-certi�ed Ephemeral Key-establishment 21

vi

3 Self-Certi�ed Public Key Generation for Resource-Constrained Sensor Net-

works 23

3.1 Adopting a Load-balanced Key-establishment Procedure 24

3.1.1 O¤-loading of Computational E¤orts to Neighboring Nodes 24

3.1.2 Communication Framework . 25

3.2 Group-key Establishment based on Pairwise DH Key Establishment 28

3.2.1 Formation of a Group Key . 28

3.2.2 Countering Possible Attacks . 30

3.3 Cryptocomplexity Analysis and Experimental Results 31

3.3.1 Cryptocomplexity Analysis . 31

3.3.2 Energy Consumption and Pairwise Key-establishment Time 31

3.3.3 Performance Gain Toward Network Lifetime 39

3.4 Network Lifetime Simulations . 42

4 Delay-E¢ cient Group Key Generation 45

4.1 Introductory Remarks . 46

4.1.1 The Burmester and Desmedt (BD) Group-key Generation 46

4.1.2 The Menezes-Qu-Vanstone (MQV) Key Generation 48

4.1.3 Digital Signature Algorithm (DSA) . 48

4.2 The Combined BD-MQV Group Key Generation 49

4.3 Network Lifetime Simulations . 53

5 Countering Denial of Service (DoS) Attacks 56

5.1 Outline of the Proposed DoS Mitigation Procedure 57

5.1.1 The Instigator Node Proving Its Validity 58

5.1.2 The Approached Node Proving Its Validity 61

5.1.3 Mathematical Considerations . 65

5.2 Implementation Results . 68

6 Light-weight Arithmetic Algorithms 71

6.1 A System-Level E¢ cient Utilization of the Montgomery Procedure 71

vii

6.1.1 Observations on Montgomery Arithmetic Constructs 73

6.1.2 Explicit Certi�cation based on ECDSA 74

6.1.3 Implicit Certi�cation in Self-certi�ed Procedures 76

6.2 Modular Multiplicative Inverse . 79

6.2.1 Calculating the expression b�1mod (2m) 80

6.2.2 Calculating the Expression �b�1mod (2m) 91

7 Summary of Contributions 96

7.1 Self-Certi�ed Public Key Generation with O¤-loading Provisioning 96

7.2 Delay-e¢ cient Group Key Generation . 97

7.3 Resource-e¢ cient Denial-of-service Mitigation . 97

7.4 Light-weight Arithmetic Algorithms . 97

Bibliography 99

Vita 107

viii

List of Tables

3.1 Time and energy consumptions for scalar-point multiplication and radio trans-

mission on the TelosB sensor platform . 33

3.2 The time computed for establishing an online pairwise �xed and ephemeral key

on the TelosB sensor platform . 34

3.3 Time and energy consumption for scalar-point multiplication on the Intel2 sensor

platform. 36

3.4 Point by scalar timing and energy requirements. TinyECC measurements are

provided for both TelosB and Intel Mote 2 platforms. 37

4.1 Performance comparison between the pairwise key generation scheme and the

combined BD-MQV method. 53

5.1 Time (msec) and energy (mJ) consumed while performing stage A and stage B

for 1024-bit RSA and 160-bit ECC on the Intel mote 2 patform for 312 MHz core

clock . 70

5.2 Total time (msec) and energy (mJ) consumed by each of the three techniques for

ephemeral key establishment in the DoS mitigation 70

ix

List of Figures

1-1 Example of a sensor node, emphasizing its small physcial dimensions 2

2-1 The foundations for symmetric cryptography: Alice is encrypting the plain mes-

sage, and Bob is decrypting the chiphertext, while both use the same shared

secret key (redrawn from [42]) . 7

2-2 The DES algorithm �owchart (redrawn from [42]) 9

2-3 The foundations for PKC: Alice is encrypting a plain message, m, using Bob�s

public key, while Bob is decrypting the chiphertext with his private key (redrawn

from [42]) . 10

2-4 The Di¢ e-Hellman key agreement process . 15

2-5 Generating a shared secret key using the Di¢ e Helman method over an elliptic

curve . 15

2-6 Illustration of an elliptic curve over GF (p), where p = 23 and the curve is

y2 =
�
x3 + x

�
mod23 . 17

2-7 Self-certi�ed ECC-based �xed key generation process 22

3-1 Illustration of two clusters established in accordance with a moving target 25

3-2 Network protocol employed by the proposed key establishment methodology.

Nodes A and B, who aspire to establish a joint key, are assisted in calculations

by neighboring nodes C and D . 27

3-3 Crossbow/UC-Berkeley�s TelosB sensor platform 32

3-4 Self-certi�ed key generation timing requirements for the TelosB mote 35

3-5 The Intel Mote 2 sensor platform . 37

x

3-6 Energy consumption for self-certi�ed key generations on TelosB and Intel Mote

2 platforms . 38

3-7 A simpli�ed network model demonstrating the e¢ ciency of the o­ oading ap-

proach which a¤ects the network lifetime . 39

3-8 Node life time as a function of ephemeral key-generation frequency, assuming

160-bit keys . 42

3-9 Network lifetime as a function of the node density 43

3-10 Network lifetime as a function of the transmission radius 44

4-1 An illustration of a 1000 ft � 1000 ft area with 300 randomly deployed nodes

(circles) and linear trajectories of events (�x�symbols). 54

4-2 An illustration of a 1000 ft � 1000 ft area with 300 randomly deployed nodes

(circles) and random events (�x�symbols) . 55

4-3 Network lifetime for the BD-MQVmethod as a function of the sensing range. The

security portion of the code is assumed to be 10% of the overall computational

load. 55

5-1 The proposed procedure for Denial of Service (DoS) prevention and ephemeral

key-generation. 57

5-2 DoS mitigation based on the Key Transport procedure. 60

5-3 Ephemeral key generation and denial of service mitigation using a self-certi�ed

DH �xed key-generation. 63

5-4 Depicting a scenario where the original message is 512 bits. 63

5-5 Ephemeral key generation and denial of service prevention using key transport. . 65

5-6 Ephemeral key generation and denial of service prevention using ECDSA. 66

6-1 The chain of importance in the PKC key establishment process, illustrating the

essential role of the Montgomery procedure . 72

6-2 The chain of importance in the PKC key establishment process, illustrating the

important role of the modular multiplication procedure 79

6-3 Illustration of the identity expression r � b = x � 2m + 1 82

xi

6-4 Shifting and adding the binary representation of 3 until the least signi�cant part

of the additions includes four bits in the format "0001" 82

6-5 The format of (pH � qL + pL � qH) � 2m + pL � qL 86

6-6 Finding the multiplicative inverse of the number represented by "abcdefgh". . . . 87

6-7 The format of the expression r0 � b = x � 2m � 1 92

6-8 Shifting and adding the binary representation of the number 13 until the least

signi�cant part of the additions includes four 1�s 93

xii

Chapter 1

Introduction

1.1 Wireless Sensor Networks (WSNs)

Recent advances in wireless network technologies and hardware have yielded multifunctional

miniature sensor nodes which are low-cost as well as low-powered. Sensor networks have be-

come one of the key technologies to realize ubiquitous computing, promising to revolutionize

our ability to sense and control the physical environment while posing numerous unique chal-

lenges to researchers. The vision is to have a sensor network composed of thousands of small

wireless nodes e¢ ciently operating autonomously. WSN technology supports a wide range of

application domains, including industrial control, home automation and environmental, med-

ical and military monitoring systems. According to a recent National Research Council report

[30], WSN technology �could well dwarf previous milestones in information technology�.

As a result of cost constraints and the need for ubiquitous, invisible and fast deployments,

sensor nodes are physically very small (see �gure 1-1 for an illustration), as well as highly

resource-constrained [11]. Among the limited resources are energy (units are typically powered

by a small battery), processing capabilities, communication range and bandwidth and memory

capacity, all of which render the development of wireless nodes a very challenging task.

The three primary functions performed by typical sensor nodes are: (1) to reliably sense and

monitor a variety of physical phenomena, (2) to collaborate with other nodes so as to establish

an ad-hoc network, and (3) to process, analyze and disseminate the data acquired. Since sensor

nodes have limited sensing and computing capabilities, localized collaboration among the nodes

1

Figure 1-1: Example of a sensor node, emphasizing its small physcial dimensions

is crucial in order to compensate for each other�s limitations. Moreover, data correlation is

inherently the strongest among nodes that are geographically close to each other. In order to

facilitate e¤ective collaboration, the use of a clustering infrastructure is necessary [57]. Such

clustering infrastructure should be able to adapt to the dynamically changing environment in

which sensor networks operate.

1.2 Unique Security Considerations and Challenges in WSNs

The sensor network, as a network of embedded sensing systems, has been studied extensively

since the late 90s. Considerable e¤orts have been directed towards making them trustworthy

[59, 56, 66, 19]. This is particularly true in health and military applications where critical

information is frequently exchanged among sensor nodes through insecure wireless media. Tra-

ditionally, security is often viewed as a stand-alone component of a system�s architecture, for

which a dedicated layer is employed. This separation is a �awed approach to network security,

particularly in resource-constrained, application-oriented sensor networks. In any application,

the security of the system, both in terms of safeguarding against malicious attacks and resilience

under malfunction, is a vital component.

Although the area of network security has been studied for decades, the many unique char-

acteristics of sensor networks have traditionally rendered direct application of existing solutions

impractical. In particular, the following security considerations and requirements need to be

taken into account in the context of sensor networks. First, the ad-hoc nature and extreme dy-

namic environments, in which sensor networks operate, suggest that a prerequisite for achieving

security is the ability to encrypt and decrypt con�dential data among an arbitrary set of sensor

2

nodes. For the same reason, the keys used for encryption and decryption should be established

at the nodes instead of using keys generated o¤-line, prior to deployment. This is important

in order to accommodate for the dynamics of the network, as well as the environment. If

a communications channel is unavailable during a particular time frame, the protocol should

adapt accordingly. The reliability of the links, which is closely related to the issue of channel

dynamics, must be re�ected by any sensor network protocol such that erroneous links do not

jeopardize the integrity of the key generation process.

Second, due to high node density, scalability is a primary concern. Ad-hoc formation of

node clusters [33, 9, 58, 57], hosting collaborative processing, has been a solution in achieving

both fault tolerance and scalability. In the cluster formation domain, although the issues of

reactivity, energy e¢ ciency, and reliability or fault tolerance have been studied extensively, the

security issue has been left unanswered. This has largely hindered the practical deployment

of collaborative processing algorithms in many sensor network applications. Consequently, an

ad-hoc cluster of nodes is required to establish a joint secret key, and any solid key generation

scheme must scale with respect to the number of nodes in a cluster.

The third aspect pertains to the scarce energy resources, along with low computation ca-

pability, which are always important considerations in security solutions for sensor networks;

there is a clear need for conserving energy on each node when adopting a security protocol. In

addition to the e¢ cient utilization of energy, its balanced consumption across the entire network

should be viewed as a primary goal in an aim to prolong the network lifetime.

1.3 Dissertation Outline

This dissertation aims to address the fundamental need for a resilient, scalable, resource-e¢ cient

security infrastructure for next-generation sensor networks. In particular, the work focuses

on developing, analyzing and implementing public key cryptographic methodologies uniquely

designed for WSNs environments. The e¤ort spans contributions on resource-e¢ cient arithmetic

derivations of fundamental cryptographic operations. To that end, the di¤erent components of

this work all contribute to the overall theme of applied cryptography for resource-constrained

environments.

3

Chapter 2 provides a literature review with focus on general cryptographic foundations,

covering both symmetric as well as public key cryptographic fundamentals. In addition, meth-

ods proposed in the context of WSNs in recent years are described. Chapter 3 introduces the

self-certi�ed public key generation framework that was developed and implemented. A delay-

e¢ cient, self-certi�ed group key generation methodology is presented and analyzed in Chapter

4, while Chapter 5 focuses on the need for denial of service mitigation in resource-constrained

sensor networks. In Chapter 6, various light-weight arithmetic algorithms are described and

analyzed, constituting a novel framework for performing complex cryptographic functions on

low-resource platforms. Finally, in Chapter 7, a summary and concluding remarks are provided.

4

Chapter 2

Literature Review

2.1 Introduction

Security challenges can be coarsely divided into four closely intertwined categories [62]: secrecy,

authentication, nonrepudiation and integrity control. Secrecy, also called con�dentiality, means

that the information cannot be understood by anyone for whom it was unintended, i.e., keeping

information out of the hands of unauthorized users. Authentication deals with determining

whom you are talking to prior to revealing sensitive information, i.e., the sender and receiver

can con�rm each other�s identity. Nonrepudiation means that the creator/sender of the infor-

mation cannot deny at a later stage his or her intentions in the creation or transmission of

the information. Integrity makes certain that the information cannot be altered in storage or

transit between sender and intended receiver without the alteration being detected.

Modern cryptography generally includes two classes of algorithms: those based on symmetric-

keys and those based on public-keys. The former uses the same (secret) key for both encryption

and decryption; while the latter requires each user to have two (di¤erent) keys: a public key,

used by the entire world for encrypting message to be sent to that user, and a private key,

which the user needs for decrypting messages. The private key can also be used by its owner

for signing messages, where the signature can be veri�ed by any party that has the non-secret

public key. Public-key cryptographic algorithms are orders of magnitude more complex to im-

plement than symmetric key algorithms. Therefore, in practice all data tra¢ c is encrypted

using symmetric-key cryptography (typically, Advanced Encryption Standard or triple Data

5

Encryption Standard), where public key cryptographic techniques are used just for generating

and authenticating the symmetric key used in the symmetric-key encryption/decryption. Un-

fortunately, due to the extremely scarce resources in sensor networks, public key methods are

commonly perceived to be infeasible for sensor nodes.

In the context of wireless sensor networks, much of the work appearing in the literature has

focused on symmetric cryptography techniques, as will be later described in more detail. In

particular, the notion of key-predistribution plays a key role in existing security solutions for

WSNs. To understand these techniques, we next provide an overview of applied cryptographic

methodologies.

2.2 Symmetric Cryptography

2.2.1 Introduction

In symmetric cryptography, the same key is used by all parties in both encryption and decryp-

tion of the data exchanged (see �gure 2-1 for visual illustration). This key is a secret shared

only by a designated group of users. The primary advantage of symmetric key cryptography

algorithms, such as DES [51] and AES [54], lies in that they are very fast, and hence are used

for processing large amounts of data. However, a major disadvantage of these schemes per-

tains to the fact that the secret key must be agreed upon prior to the exchange of information

and respective encryption and decryption processes. There are no known ways to generate and

agree upon a shared secret key over insecure media in the realm of symmetric key cryptography,

hence it is usually combined with Public Key Cryptography (PKC) which provides a solution

to this very issue, as will be described in more detail in section 2.3.

2.2.2 The Data Encryption Standard (DES)

Adopted in 1976 by the National Institute of Standards and Technology (NIST) and made

publicly available in 1977, the Data Encryption Standard [51] (previously known as the Lucifer

algorithm) became a very widely employed technique in a short period of time. As quoted by

NIST in 1999 [52], The goal (of DES) is to completely scramble the data and key so that every

bit of the ciphertext depends on every bit of the data and every bit of the key .. (such that)

6

plaintext plaintextciphertext

K

encryption
algorithm

decryption
algorithm

encryption
key

decryption
key

K

plaintext plaintextciphertext

KK

encryption
algorithm

decryption
algorithm

encryption
key

decryption
key

KK

Figure 2-1: The foundations for symmetric cryptography: Alice is encrypting the plain message,
and Bob is decrypting the chiphertext, while both use the same shared secret key (redrawn from
[42])

there should be no correlation between the ciphertext and either the original data or key.

DES is a symmetric key cryptography method which encrypts and decrypts a 64-bit plaintext

with a 64-bit key, although the e¤ective key strength is only 56 bits. The 16 steps (as the number

of steps is increased, security of the algorithm increases exponentially) of the DES protocol start

with 64 bits of plaintext and ends with 64 bits of ciphertext. As indicated above, the size of the

key is 64 bits, but only 56 of them are e¤ective in the encryption process; the least signi�cant

bit of each byte is a parity bit and is to be ignored. This bit is set such that all bytes have an

odd number of 1�s. Next, we brie�y review the steps comprising the DES algorithm (see [51]

for more details).

Steps for transforming the 64-bit key

The �rst two phases of the protocol deal with permuting the 64-bit key:

1. The 64 bits are transformed into 56 bits using a permutation called the Permuted Choice

1 (PC � 1).

2. The new set of 56 bits is transformed into sixteen 48-bit sub-keys called K1 � K16. A

subsequent permutation is generated using the Permuted Choice 2 (PC�2) scheme. These

16 sub-key are used in the 16 rounds of the DES encryption and decryption process.

7

Steps for encryption and decrypting data

The following are the steps required to encrypt (and as will be described below, to decrypt) a

64-bit plaintext (see �gure 2-2 for details):

1. The plaintext is passed through a permutation phase called the Initial Permutation (IP).

2. Following the Initial Permutation, the 64 bits are substituted (or shu­ ed) such that the

right-most 32 bits are exchanged with the left 32 bits. The right-most 32 bits are identi�ed

as R1 and the left 32 bits are identi�ed as L1:

3. The permuted and initially substituted text is passed though 16 identical rounds. Each

round, i; takes the output of the previous round as its input, and performs the following

(i = 2~17):

a. Ri and Li, along with Ki are inputs to a function f:

b. Li+1 = Ri

c. Ri+1 = f(Li; Ri;Ki)

4. The �nal substitution consists of exchanging the right-most 32 bits (identi�ed as R17)

with the left-most 32 bits (identi�ed as L17)

5. The �nal step is to apply Inverse Initial Permutation (IP�1) to the pre-output. The

result is a completely encrypted ciphertext.

In order to decrypt the �nal ciphertext, the exact same procedure should be applied. The

only di¤erence lies in the order of the 48-bit of keys (K1 � K16) that are used. When the

identical 16 rounds are applied, the order of the keys is reversed, i.e., instead of using the keys

in the order K1 to K16; they are used in the order of K16 to K1:

Unfortunately, brute force methods have made it possible to signi�cantly reduce the amount

of time needed to uncover a DES key. Despite the fact that a 56-bit key is simply not large

enough for high security applications, DES is still widely used by many applications. As a

consequence of its vulnerabilities, stronger symmetric encryption schemes that rely on similar

rationale as DES have been standardized, including the Advanced Encryption Standard (AES)

[54] and Triple DES (3DES) [53].

8

64 bit input

L1 R1

L2 R2

L3 R3

L17 R17

64 bit output

f(L1, R1, K1)

f(L2, R2, K2)

f(L16, R16 K16)

56 bit key

K1 (48 bit)

K2 (48 bit)

K16 (48 bit)

Figure 2-2: The DES algorithm �owchart (redrawn from [42])

2.3 Public Key Cryptography

Public key cryptographic methods were introduced in the late 70�s as a novel manner by which

data security can be achieved. They inherently rely on asymmetric operations, which comple-

ment each other in a mathematically elegant manner. Coarsely speaking, PKC methods are

employed by three primary applications:

1. Encryption that is based on a public key (k+) and decryption based on a private key (k�)

(see �gure 2-3 for visual illustration),

2. Signature generation based on a private key, and signature veri�cation based on a public

key, and

3. Generation of a symmetric secret key over an insecure channel.

These applications are customarily based on one of two possible intractable mathematical

problems: factorizing a large (e.g., 1024-bit) composite integer, or performing a discrete log

9

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

K (m)
B
+

KB
+

Bob’s private
key

K
B
­

m = K (K (m))B
+

B
­

plaintext
message, m

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
messageK (m)

B
+

KB
+

Bob’s private
key

K
B
­

m = K (K (m))B
+

B
­

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

K (m)
B
+K (m)
B
+

KB
+

Bob’s private
key

K
B
­

m = K (K (m))B
+

B
­m = K (K (m))B

+
B
­

plaintext
message, m

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
messageK (m)

B
+K (m)
B
+

KB
+

Bob’s private
key

K
B
­

m = K (K (m))B
+

B
­m = K (K (m))B

+
B
­

Figure 2-3: The foundations for PKC: Alice is encrypting a plain message, m, using Bob�s
public key, while Bob is decrypting the chiphertext with his private key (redrawn from [42])

operation. A representative security framework that is based on the factorization complexity is

RSA [60]. Applications that are based on the discrete log problem include Elliptic Curve Cryp-

tography (ECC) [41] PKC is approximately three orders of magnitude slower than symmetric

cryptography methods for comparable security strength. However, their capacity to operate

over insecure media with no prior exchange of information is unmatched, rendering them highly

pertinent for a broad range of applications. The subsequent sections provide a brief overview

of PKC fundamental building blocks.

2.3.1 The Discrete Logarithm Problem

Let x and n denote two positive real numbers, where N is a �nite group and n 2 N: Let p be

a very large prime number. The Discrete Logarithm Problem (DLP) can be stated as follows:

Given n; p and nxmod p; one is required to compute x: Computing x is extremely di¢ cult

(especially for a large enough p); and there are no known e¢ cient algorithms to do so.

2.3.2 The Di¢ e-Hellman Key Agreement

Di¢ e-Hellman (DH) key agreement [22] developed in 1976 was a revolutionary protocol which

instigated the �eld of public key cryptography, hence paving the way for New Directions in

Cryptography (which was, in fact, the title of the original journal publication). Using the DH

key exchange method, two users are able to establish a shared secret key while communicating

over an insecured channel. The pairwise secret key, as its name suggests, will be known only

10

to the two parties involved in the key generation process, while preventing any unwanted third

party individuals from exposing the key.

Let us assume that the two users, whose purpose is to agree on a shared secret key, are

Alice and Bob. Each of the latter holds a di¤erent private integer value, x and y, respectively.

These private values are considered to be a secret key to each party and can be generated

randomly. Both parties must agree on two public parameters: p and a. p is a large prime

number and a is an integer smaller than p: Alice takes her secret key, the scalar x; computes

the modular exponentiation expression axmod p and transmits it to Bob (over the unsecured

channel). Then, Bob takes his secret key, the scalar y; computes the modular exponentiation

expression aymod p, and sends it to Alice. Since the Discrete Log Problem (DLP) applies,

none of the users can compute the other party�s secret key. The shared key is calculated by

each user as the exponentiation axymod p (Alice calculates the modular exponentiation between

the message received from Bob and her private key, i.e., (ax)ymod p and Bob calculates the

exponentiation between the message received from Alice and his private key, i.e., (ay)xmod p:)

Due to the commutative attribute of exponentiation, both users end up with the same shared

key, axymod p: Here the discrete log problem applies again, i.e., none of the users (Alice or

Bob) can compute each others secret key nor can any outside eavesdropper compute the value

of the shared secret key axymod p by knowing the two values aymod p and axmod p. Figure

2-4 depicts the DH process.

2.3.3 The RSA Methodology

The RSA methodology, which was �rst published in 1978 by R. L. Rivest, A. Shamir and L.

Adleman, is an algorithm for public-key encryption [60]. This algorithm was one of the �rst

used in the world of Public Key Cryptography and is e¢ cient for both encryption and signature

applications. The approach of RSA is based on Fermat�s Little Theorem [40], and its security

is derived from the di¢ culty of factoring large integers. The keys traditionally used are 1024

bits in size, which o¤er comparable cryptocomplexity strength to that of an 80-bit symmetric

key [5]. Next, we brie�y review the RSA algorithm.

11

The RSA Algorithm

Choosing the Keys

1. Choose two large prime numbers p; q. (e.g., 1024 bits each)

2. Compute n = p � q, z = (p� 1)(q � 1)

3. Choose e (such that e < n) that has no common factors with z. (i.e., e and z are �relatively

prime�).

4. Choose d such that e � d� 1 is exactly divisible by z. (i.e., e � dmod z = 1).

The public key (k+) is the pair (n; e), while the private key (k�) is the pair (n; d).

Encryption and Decryption Given the public key (n; e) and the private key (n; d) as

computed above:

� To encrypt a bit pattern, m (such that m < n), compute c = memodn (i.e., c is the

remainder when me is divided by n).

� To decrypt a received bit pattern c, compute m = cdmodn (i.e., m is the remainder when

cd is divided by n).

As can be seen in this case, the claim is that m = cdmodn) m = (memodn)dmodn. To

understand why such an assertion holds, we need to refer to Fermat�s Little Theorem [40]: If

p; q are prime and n = p � q, then: xymodn = xymod(p�1)(q�1)modn:

Applying the above to our RSA case, we have (memodn)dmodn = medmodn: Using

Fermat�s Little Theorem we arrive at the deduction that medmodn = medmod(p�1)(q�1)modn:

Since ed is chosen to be divisible by (p�1)(q�1) with remainder 1, we know thatmedmod(p�1)(q�1)

modn = m1modn: However, given that the message m is chosen such that m < n; we conclude

that m1modn = m; hence cdmodn = (memodn)dmodn = m:

2.3.4 Elliptic Curve Cryptography (ECC)

In 1985, elliptic curve systems were introduced in cryptography by Neal Koblitz from the

University of Washington [40]. Elliptic Curve Cryptography (ECC) is a public key cryptography

12

framework used for encrypting and decrypting information. Many elliptic curves have been

proposed, each with its own cryptocomplexity attributes [17]. Points on an elliptic curve are

used in order to create a public key, whereby the number of bits in a key can vary, typically

ranging from 79 to 359. ECC is considered to provide the highest security per bit [1]; a 163-bit

ECC application provides the same security as a 1024-bit application over a composite integer.

This attractive feature of ECC makes it most suitable for sensor network as well as other

resource-limited platforms.

An elliptic curve is a �nite collection of points in a two-dimensional plane, over GF (p) or

over GF (2n). When operating over GF (2n) the elements in the �eld are primitive polynomials.

When operating over GF (p); the relation between the (x; y) coordinates of the curve points is

speci�ed by the equation y2 =
�
x3 + ax+ b

�
mod p, where p is the order of the generating point,

i.e., the �nite number of points on the curve. Since ECC deals with public key cryptography,

there is a need to de�ne the public and private keys. The private key is a scalar and the public

key is a point on the curve which is created by multiplying a chosen generating point. As

the name suggests, a generating point is a point on the curve that can generate all the other

possible points - which constitute a �nite group. This point-by-scalar multiplication is the

core mathematical foundation behind ECC. As in the case with RSA, the discrete log problem

applies here as well, i.e., by knowing the public key (which is a product of the generating point

and the private key) and the generating point, it is computationally infeasible to obtain the

private key. This property is often referred to as the elliptic curve discrete log problem or

ECDLP.

Di¢ e Helman over an Elliptic Curve

In order to encrypt and decrypt information, the DH method can be employed in order to

exchange keys and create a secret key shared by two users. Both parties, Alice and Bob, need

to agree on a speci�c curve and on a point on the curve, Q. Alice holds her secret key, the

scalar x; computes the product Q�x and sends it to Bob. Bob holds his secret key, the scalar y;

computes the product Q�y and sends it to Alice. The shared key is calculated by each user as

the product x � y�Q. Alice calculates the product between the message received from Bob and

her private key, i.e., (Q�y) � x. Bob calculates the product between the message received from

13

Alice and his private key, i.e., (Q�x) � y: Due to the commutative attribute of multiplications

over elliptic curves, both users will carry the same shared key, x � y�Q: Since the discrete log

problem applies, none of the users (Alice or Bob) can compute each others secret key nor can

any outside eavesdropper compute the value of the shared secret key x � y�Q by knowing the

two values Q�y and Q�x. See �gure 2-5 for an illustration of the procedure.

2.3.5 Operations Over Elliptic Curves

A point on the elliptic curve will from here on be denoted by a bold capital letter, e.g. A,

whereby the point�s coordinates are labeled (xA; yA): The following are the basic operations

de�ned over elliptic curves, applicable to the entire �eld of GF (p):

De�nition of a negative point

If the coordinates of A are (xA; yA), then the coordinates of �A are (xA;�yA): The point at

in�nity is denoted by O. This point plays the role of 0 in the sense that A + (�A) = O, and

A+O = A (where + denotes a point addition, under the procedures treated next).

Point addition

Let T and U be two points on an elliptic curve. The coordinates (xR; yR) of R = T+U (for

xT 6= xU) are calculated as follows:

b = (yT � yU) � (xT � xU)�1mod p

xR =
�
b2 � xT � xU

�
mod p

yR = [(xU � xR) � b� yU]mod p

Point doubling

Let S and U be two points on an elliptic curve. The coordinates (xS; yS) of S = 2 �U are

calculated as follows:

c = (3 � (xU)2 + a):(2 � yU)�1mod p; (a is the scalar de�ned on the curve)

xS = c
�1mod p

yS = [(xU � xS) � c� yU]mod p

14

x­ a private key
A B

a­ an integer smaller than p
p­ a large prime number

y­ a private key

The generated shared key:
axy mod p

(ay)x mod p = axy mod p = (ax)y mod p

ay mod p ax mod p

Figure 2-4: The Di¢ e-Hellman key agreement process

x­ a private key
(scalar)

A B
Q­ an known point on the elliptic curve

y­ a private key
(scalar)

x Q

The generated shared key:
x y Q

y Q

(y Q) x = x y Q = (x Q) y

Figure 2-5: Generating a shared secret key using the Di¢ e Helman method over an elliptic
curve

15

Multiplying a curve point by a scalar

As indicated previously, a multiplication between a point on a curve and a scalar is the funda-

mental calculation in the world of ECC, hence the importance of understanding it. Let k be

an n-bit scalar. ki denote the i-th bit in the binary representation of k starting with the least

signi�cant bit, where i = 0; 1; : : : ; n � 1: Multiplying a point on a curve by a scalar yields a

new point on the curve. Assuming that L is a point on a curve, the curve point C = kL can

be calculated by the following double-and-add algorithm. It should be noted that doubling a

point and point addition are executed as described above.

C = 0

for i = 0 to n� 1

L = 2L

if ki = 1 then

C = C+ L

end

end

This process is a basic shift-and-add procedure, where shifted (doubled) values of the curve

point L are generated and added to an accumulator based on the binary representation of the

multiplier k. An alternative version of a double-and-add process is to scan the bits of k starting

with the most signi�cant bit. In this case, the dynamic value of C is doubled, rather than the

�xed point L:

2.3.6 Example of an Elliptic Curve Over GF (p)

We conclude this section by providing an illustration of an elliptic curve. As indicated above,

the general structure of an elliptic curve over GF (p) is: y2 =
�
x3 + ax+ b

�
mod p: Let us

consider an example in which a = 1, b = 0 and p = 23; i.e., we are referring to the curve:

y2 =
�
x3 + x

�
mod23: There are 23 points satisfying this equation: (0; 0), (1; 5), (1; 18), (9; 5),

(9; 18), (11; 10), (11; 13), (13; 5), (13; 18), (15; 3), (15; 20), (16; 8), (16; 15), (17; 10), (17; 13),

(18; 10), (18; 13), (19; 1), (19; 22), (20; 4), (20; 19), (21; 6) and (21; 17). Figure 2-6 depicts the

actual curve derived.

16

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

16

18

20

22

Figure 2-6: Illustration of an elliptic curve over GF (p), where p = 23 and the curve is y2 =�
x3 + x

�
mod23

2.4 Key Pre-Distribution Schemes in WSNs

Numerous schemes have been proposed in the literature for pairwise and group key agreement.

However, as shown by Carman et al. [20], most are not suitable for sensor network environments

due to lack of information regarding the network topology prior to deployment and the resource

limitations of the sensor nodes. Therefore, a mainstream thrust for secret sharing among n sen-

sor nodes has been key pre-distribution schemes. Many symmetric key pre-distribution methods

have been studied in recent years, with emphasis on multicast and broadcast communication

[15], [31], [16]. It is noted that traditional key pre-distribution schemes, such as sharing a sin-

gle key for the entire network or assigning a unique key to each pair of nodes, are not viable

solutions in sensor networks. The single key approach would result in compromising all com-

munication links in the network if a single node is captured by the adversary. The pairwise

key sharing for every two nodes has the advantage that capturing any node by the adversary

does not directly a¤ect the security of any link between two non-compromised nodes. However,

the pairwise key approach requires the storage of n � 1 keys in each node (which is unduly

large given the memory limitation of sensors). Moreover, it would be hard to scale the network

(revocation or appending of sensor nodes) [20].

To address these drawback, Eschenauer and Gligor [28] proposed a random key pre-distribution

17

scheme: before deployment each node is loaded with a subset of a large key pool. A shared-key

discovery phase takes place during the initialization in the operation environment where every

node discovers its neighbors within the wireless communication range with which it shares a

key. This can be simply achieved by storing the identi�ers of keys in each sensor node (prior

to deployment) and broadcasting these identi�ers to the adjacent nodes during the shared-key

discovery phase. A link exists between two nodes only if they share a key (from their stored

key ring) and all communication on that link is secured by link encryption. Trade-o¤s can be

made between sensor-memory, cost and connectivity, and design parameters can be adapted

to �t the operational requirements of a particular environment. It has been shown that this

scheme is superior to traditional key pre-distribution schemes. Based on the basic scheme in

[28], Chan et al. [19] proposed a q-composite random key pre-distribution scheme, which in-

creases the security of key setup such that an attacker must compromise many more nodes to

achieve a high probability of compromising communication links. The di¤erence between the

q-composite scheme and the scheme in [28] is that at least q common keys (q � 0) are needed

to establish secure communications between a pair of nodes. It is shown that by increasing the

value of q, network resilience against sensor-node capture is improved. However, as the number

of compromised nodes increases, the fraction of a¤ected pairwise keys increases rapidly. As a

result, a small number of compromised nodes may a¤ect a large fraction of the communica-

tion links. Du et al. [23] combined the random key pre-distribution method with the classical

method of Blom�s key pre-distribution. The goal of their scheme is to increase network�s re-

silience against node capture without using more memory. The drawback of this scheme is the

computation overhead that occurs at each node and the oversimpli�ed random graph model.

Similarly, Liu and Ning [21] developed a pairwise key establishment using the polynomial-based

key pre-distribution protocol and probabilistic key distribution. It has been indicated that the

scheme has several advantages. In particular, unless the number of compromised sensors that

share a common polynomial exceeds a threshold, the sensor-node capture does not lead to the

compromise of the links established by non-compromised nodes. Peer intermediaries for key

establishment (PIKE) have been proposed in [18] similar to the 2D grid-based scheme in [21].

However, the main disadvantage of this method is the size of the key ring stored in the memory

of each sensor. Every sensor has to store 2(m � 1) = O(
p
n) keys while in [21], the memory

18

requirement is O(t) where t, the degree of the polynomials, is independent of the network size.

Moreover, we need to assume that none of the involving nodes are compromised during the

key-path discovery.

Key pre-distribution means the following: each sensor node before deployment is pre-

con�gured with a subset of keys (called a key ring) along with their associated identi�ers.

After the (random) deployment of sensor nodes, a shared-key discovery phase takes place by

which two nodes within the communication range of each other �nd out whether they share

at least one common key [28]. Then, each node uses their shared key (we refer as �direct link

key�) to establish a secure communication link. We assume that the sensor nodes are not mo-

bile and they have similar computation and communication capabilities. The nodes are also

limited in memory and power. We call a network �connected�if there exists a communication

path consisting of hops between every two nodes. The robustness of sensor networks is linked

to their connectivity. Without such connectivity, the network loses proper functionality. The

communication range of the sensors can be varied in order to achieve connectivity. However,

the communication range should also be kept minimal because of very limited power supply.

In the attack model, we assume that if a node is compromised, all the information (including

the stored keys in the key ring of the node) within the node will also be compromised.

Despite their popularity, key pre-distribution schemes o¤er partial solution with respect to

scalability, cryptographic robustness and the ability to append and revoke security attributes.

For example, scalability is limited, since the probability of two or more nodes sharing a pre-

distributed key decreases rapidly as the number of nodes increases. This results in a need for

a key discovery process, in which nodes communicate with other nodes in order to identify a

joint secret key �a process that necessitates additional resources.

The cryptographic robustness is also lacking in pre-distribution schemes, as re�ected by

two aspects: �rst, the use of static key rings which are assigned to the nodes do not facilitate

dynamic key generation, i.e. the generation of a new secret key per session, thereby reducing

the cryptographic strength o¤ered; second, by capturing a node an adversary party may be able

to decrypt data exchanges between other nodes in the network (given that the nodes utilize

keys that are present in the captured node).

19

2.5 Self-Certi�ed Key Establishment

A self-certi�ed key establishment is a key distribution technique in which the authentication

process is embedded inside the key generation process. Since there is no need for an authenti-

cation process preceding the key generation process (as is usually the case), this procedure is

very e¢ cient, and hence can be practical for WSN applications.

The basic techniques introduced in this section are derived from the work in [7]. The

mathematical foundations rely on ECC cryptographic techniques pertaining to operations over

a �nite group of points in which the discrete log problem applies. Di¢ e-Hellman (DH) key

exchange is a cryptographic protocol, which allows two parties that have no prior knowledge

of each other to jointly establish a shared secret key over an insecure communications channel.

This key can then be used to encrypt subsequent communications using a symmetric key cipher.

Denote a �point�on an elliptic curve by a capital letter in bold font (e.g., P). Multiplication

of a point by a scalar (e.g., s�P) is commonly referred to as an exponentiation, in which s is

called the exponent.

ECC operations are based on the existence of a generating point G, with an order ordG,

which is known to all parties. The private and public keys are issued by the CA to all users in

the network. The CA holds a pair of keys, a private key which is a scalar denoted by d, and a

public key, which is a point denoted byR, whereR = d�G. Let IDi denote the ID or any other

relevant attributes of a user Ni. The notation H(s;P) refers to a scalar obtained by hashing

a scalar s and a point P. In general, the following framework applies to all key generation

methodologies presented here. First, key-issuing takes place, whereby a user acquires o¤-line

a set of public and private keys. Next, a joint key is established online via self-certi�ed DH,

followed by key con�rmation.

2.5.1 Key-issuing Procedures

The CA issues to user Ni a private key (xi), and the public key (Ui). The key-issuing procedure

is thus performed as follows:

1. The CA generates a random scalar hi

20

2. The CA then generates user Ni�s public and private keys as follows:

Ui = hi �G; xi = [H(IDi;Ui)� hi + d] mod ordG (2.1)

3. The CA issues the values xi and Ui to Ni;

4. Ni can establish the validity of the values issued to it by checking whether

xi �G = H(IDi;Ui)�Ui +R

2.5.2 Self-certi�ed Fixed Key-establishment

A self-certi�ed DH �xed-key-establishment is achieved by the following two steps: (1) Ni and

Nj exchange the pairs (IDi;Ui) and (IDj ;Uj), respectively, and (2) Ni and Nj generate the

session-key,

Kij (generated by Ni) = xi � [H(IDj ;Uj)�Uj +R]

Kji (generated by Nj) = xj � [H(IDi;Ui)�Ui +R]: (2.2)

See �gure 2-7 for details

Key con�rmation should now follow, where Ni and Nj should encrypt and decrypt a test

message, using their keys Kij and Kji , and verify that they actually share the same key.

The two keys are expected to be identical, having the value xi � xj � G. Verifying, by an

independent key-con�rmation procedure, that the keys generated by the two users are indeed

equal establishes their correct identities. This closes the trust loop controlled by the CA. Key

con�rmation can be executed by using, for example, DES.

2.5.3 Self-certi�ed Ephemeral Key-establishment

A self-certi�ed DH ephemeral key-establishment is achieved by the following steps: (1) Ni and

Nj generate uniform i.i.d. random pvi and pvj , respectively, (2) Ni calculates the ephemeral

value EVi = pvi �G, while Nj calculates the ephemeral value EVj = pvj �G, (3) Ni and

Nj exchange the values (IDi;Ui;EVi) and (IDj ;Uj ;EVj), respectively, and (4) Ni and Nj

21

Certification Authority (CA)

U­ The public key
x­ The private key
R­ The CA’s public key
K­ The joint session key

Node i

Ui, xi, R Uj, xj, R

Node i

Node i Node i

Ui, IDi,

Uj, IDj,

Kij=xi
x[H(IDj, Uj)xUj+R] Kji=xj

x[H(IDi, Ui)xUi+R]

Joint fixed key:

Figure 2-7: Self-certi�ed ECC-based �xed key generation process

generate the ephemeral session key,

Kij (generated by Ni) = pvi � [H(IDj ;Uj)]�Uj +R] + (xi + pvi)�EVj

Kji (generated by Nj) = pvj � [H(IDi;Ui)]�Ui +R] + (xj + pvj)�EVi (2.3)

As speci�ed for the �xed-key case, key con�rmation (which can be executed by using DES for

example) should now follow. That is, Ni and Nj should encrypt and decrypt a test message,

using their keys Kij and Kji, and verify that they actually share the same key. The two keys

are expected to be identical, having the value pvi � xj �G + xi � pvj �G + pvi � pvj �G.

Verifying that the keys generated by the two users are indeed equal, establishes their correct

identities.

It is very important to emphasize that in both the ephemeral and �xed-key generation

procedures, the authentication process is indeed imbedded in the key generation process. This

realization pertains to the fact that Kij and Kji will indeed be identical only if the proper

private keys, xi and xj ; are used respectively. If users Ni and Nj hold the correct secret key

(issued only to them by the CA) the key con�rmation process will indeed con�rm the proper

identi�cation as well as the fact that their keys are indeed identical.

22

Chapter 3

Self-Certi�ed Public Key Generation

for Resource-Constrained Sensor

Networks

In this chapter we describe a comprehensive ECC-based self-certi�ed key establishment method-

ology, suitable for WSN environments. Furthermore, a method for generating a joint secret key

between an ad-hoc cluster of nodes is introduced. Although group key establishment based on

public key cryptography has been considered in the literature [39], there is little to no treatment

of the issue of authentication. In fact, a common assumption made by these schemes is that

an authentication mechanism is already available, while the proposed method also concerns the

e¢ cient integration of self-certi�ed authentications.

In an e¤ort to e¤ectively distribute the computational load between the nodes, we propose to

partition the self-certi�ed key-establishment process into secure and non-secure operations. This

enables o¤-loading the non-secure operations from a node participating in the key-establishment

process to available neighboring nodes which do not. Such distribution of the computational

e¤ort yields improved load-balancing, shorter execution times and more homogeneous power

consumption across the network.

23

3.1 Adopting a Load-balanced Key-establishment Procedure

The self-certi�ed �xed and ephemeral key establishments described in sections 2.5.2 and 2.5.3,

respectively, can be used as basis for key generations in WSNs. As shown in section 2.5.2,

a primary attribute o¤ered by the method of self-certi�ed �xed-key establishment lies in the

number of exponentiations required to calculate the value xi � xj �G. As indicated, node Ni
calculates Kij = xi � [H(IDj ;Uj) �Uj +R] = [xi �H(IDj ;Uj) mod ordG] �Uj + xi �R.

The value xi �R, which utilizes �xed values (where xi denotes node�s Ni private key and R

denotes the CA�s public key), can be pre-calculated and stored by Ni. Therefore Ni is able to

calculate its session-key by the single online exponentiation [xi�H(IDj ;Uj) mod ordG]�Uj ,

generating a certi�ed key using only one exponentiation. In comparison, a standard �xed-key

establishment requires three online ECC exponentiations (two for validating a certi�cate and

one for the key generation). Similar rationale follows for the case of ephemeral key generation,

as described in 2.5.3, Note that the calculations performed by Ni and Nj are

Kij = [pvi �H(IDj ;Uj) mod ordG]�Uj + (xi + pvi)� (EVj +R)� xi �R

Kji = [pvj �H(IDi;Ui) mod ordG]�Ui + (xj + pvj)� (EVi +R)� xj �R (3.1)

The pre-calculation and storage of xi�R (which is �xed for all key-establishment procedures

in which Ni participates) would enable Ni to calculate its session-key by performing only two

online exponentiations [pvi�H(IDj ;Uj) mod ordG]�Uj and (xi+ pvi)� (EVj +R). This is

preceded by the o¤-line calculation of EVi = pvi�G, executed at each session using a di¤erent

pvi. The latter can be carried out at any stage prior to establishing a communication session

with Nj .

3.1.1 O¤-loading of Computational E¤orts to Neighboring Nodes

O¤-loading non-secure tasks from a component having limited resources to an assisting node

is not new. This approach is used for example in RSA key generation [7] and in broadcast

encryption [10]. In this work, the new approach to load-balancing among WSNs motes is based

on manipulations with Di¢ e-Hellman key-establishment mathematics.

Both �xed-key and ephemeral-key establishments are treated here. Their suggested employ-

24

Cluster A Cluster B

Figure 3-1: Illustration of two clusters established in accordance with a moving target

ment in WSNs is illustrated in �gure 3-1.

In the interest of distributing the power consumption across the sensor network, we employ

an o¤-loading technique in which nodes assist other nodes by performing part of the required

calculations. In the context of security operations, we must prove that calculations that are

o¤-loaded, and are subsequently transmitted over potentially eavesdrop-prone channels, do not

jeopardize the trustworthiness of the process.

As shown in section 2.5.3, the ad-hoc operations executed during the ephemeral key-

establishment are [pvi�H(IDj ;Uj)mod ordG] and (xi+ pvi)� (EVj +R): The �rst must be

executed at the node Ni as it contains the private ephemeral value pvi. Assisting neighboring

nodes (not included in the ad hoc cluster, but with proximity to it) will calculate the value

(xi+ pvi)� (EVj +R): It should be noted that all nodes are assumed to have knowledge of R.

While xi and pvi are secret, their sum does not disclose their values. Moreover, even though xi

is �xed, pvi never repeats itself. In other words, the secret key xi is masked with the random

noise pvi. It is further noted that the neighboring assisting node is not necessarily trusted in

delivering a correct answer. The assisting node merely performs mathematical processing and

does not issue any decisions. An attempt to send a misleading result by an assisting node will

be detected during the key con�rmation step.

3.1.2 Communication Framework

The approach taken in this section is that of exploiting spatial o¤-loading of calculation tasks

needed to establish a joint key between two nodes. Available nodes, not included in the current

25

cluster, assist other nodes by concurrently performing portions of the necessary computations.

Figure 3-2 illustrates a basic network topology in which nodes A and B wish to establish a

joint ephemeral key, with the assistance of nodes C and D. The following protocol outlines the

process by which a joint key is established between the two nodes:

1. A broadcasts a message to B, which includes a unique ID number, IDA, requesting to

establish a joint key.

2. B replies with a con�rmation broadcast message containing IDB.

3. A and B exchange (IDA;UA;EVA) and (IDB;UB;EVB), respectively.

4. Nodes A and B look for assistance from other neighboring nodes not included in their

cluster. In this case, they will seek assistance from nodes C and D, by sending them,

respectively, assist request (AST_REQ) messages containing IDC and IDD. Neighboring

nodes C and D, receive the assist request messages from nodes A and B, respectively, and

reply, if possible, by sending assist acknowledgement (AST_ACK) messages indicating

their availability to take part in the calculation process. As part of the AST_ACK

message, both C and D include unique ID numbers, IDC and IDD.

5. Upon receiving AST_ACKmessages from C and D, A and B respond by sending data that

includes IDCA; (xA+ pvA),.(EVA+R) and IDDB; (xB + pvB), (EVB +R) respectively.

6. C and D send the result of their computation processes, i.e.,(xi + pvi)� (EVj +R) and

(xj + pvj)� (EVi +R) respectively, to A and B, respectively.

7. The joint key is established, followed by key con�rmation.

The described o¤-loading concept suggests that assisting nodes are self organized in the

sense that there is no centralized entity pairing nodes. Therefore, a key question is how are

assisting nodes identi�ed. The proposed method relies on the use of a single weight value, wi,

calculated at each node i, re�ecting on its availability to assist. For example, the weight can be

proportional to the remaining energy of the node. The larger the weight the higher the node�s

availability to assist.

26

A B(1), (3)

(2), (3)

A B

(4)
C D

(4)

A B

(5)
C D

(5)

A B

(6) D(6)

A B
(7)

C

Figure 3-2: Network protocol employed by the proposed key establishment methodology. Nodes
A and B, who aspire to establish a joint key, are assisted in calculations by neighboring nodes
C and D

Let us assume node Ni receives a request for assistance message, AST_REQ, from a neigh-

boring node, and its current weight is wi. Node Ni then waits for exp(� w2i
2�2
) amount of time

to respond with an acknowledgement message, AST_ACK. The parameter (�) controls how

fast the Gaussian function decreases with respect to the weight (wi). If, during the waiting

period, a di¤erent neighboring node, say Nj , broadcasts an AST_ACK message, Ni will dis-

card the AST_REQ and Nj is assumed to serve as the assisting node. However, if Ni does not

receive any AST_ACK indicating assistance before the waiting time expires, Ni will become

the assisting node.

If the node that requests assistance does not receive any AST_ACK within a certain amount

of time, twait, then this node will perform all calculations. Such scenario might occur when all

neighboring nodes are at a low-energy level or the communication link has errors.

27

3.2 Group-key Establishment based on Pairwise DH Key Es-

tablishment

3.2.1 Formation of a Group Key

It is next shown how a group of m nodes generates a secret session key Ks joint to all nodes

in the group and not attainable to any party outside the group. In this respect it is noted

that the self authentication of the DH keys is based on the identity, IDs, of the participants.

These identity values can also be associated with attributes of nodes, rather than their explicit

identities. For example, they can be associated with parameters that specify the meaning of the

group. That is, nodes that do not posses appropriate parameters allowing them to participate

in the group cannot force themselves into the group.

Let the nodes in the group be indexed in a chain, where node Ni generates two DH keys,

one jointly generated with node Ni�1 and one with Ni+1; i = 0; 1; : : : ;m� 1. Although this is

not a necessity, the indexing is cyclic. That is, Nm�1 and N0 also generate a joint key. For

simplicity, let us further assume that m is even. These 2m DH keys can all be generated within

two time slots. Let Ki+ denote the DH key joint to nodes Ni and Ni+1, generated during the

�rst time slot for even i�s, and Ki� denote the DH keys generated during the second time slot

for odd i�s. This way, during each slot, every node is busy generating a joint DH key with

exactly one other node.

Based on the fact that each node possesses two DH keys, one joint to the preceding node

in the chain and one joint to the subsequent node (where Nm�1 and N0 are considered to be

consecutive), the secret session key Ks, joint to all members in the group, is then generated

as follows. A certain node Nj in the group (Nj can be an arbitrary node, or a node with

some distinct preferences such as the cluster head or group leader) generates a random Ks. It

encrypts Ks with Kj+ and sends the ciphertext to Nj+1. Node Nj+1 decrypts the ciphertext,

as it also has Kj+, thereby recovering Ks. It then encrypts Ks with the DH key joint to Nj+1

and Nj+2, etc. This way, Ks securely propagates in the chain, by decryption and encryption

operations taking place at each node. Ks �nally gets back to the originator Nj , who veri�es

that the received Ks is identical to the original.

Although calculations are carried out concurrently by the odd and even nodes, we must

28

consider the fact that transmission of information may be done sequentially, since the same

wireless channel is shared by all nodes. Letting taccess and tx denote the expected channel

access time and transmission/reception times, respectively, the aggregate time consumed by

the group key establishment process, Tgk, can be expressed as

Tgk = 2m(taccess + tx) + tDH ; (3.2)

where tDH is the overall time required to perform the actual DH calculations. One should note

that the access and transmission times are expected to be in the order of milliseconds, while

the DH related computations are in the order of seconds (shown for MICA2 sensor platforms

[45] and Intel 2 sensor platforms [6]). To that end, the fact that communications are done

sequentially has little impact on the overall delay of the group key establishment process.

It should be noted that the encryption/decryption functions performed at each node (when

protecting the joint key Ks) consist of symmetric operations which can be based on standard

procedures like DES or AES. However, let us also consider the case where this operation is a

simple exclusive-OR (XOR) operation between Ks and Kj+. That is,

cj = Ks XOR Kj+; (3.3)

where cj is the ciphertext sent from Nj to Nj+1. Node Nj+1 then performs the following to

propagate Ks to Nj+2 (note that Nj and Nj+1 share the same key Kj+, and Nj+1 and Nj+2

share Kj+1�),

Ks = cj XOR Kj+ XOR Kj+1�: (3.4)

As the nodes �nally obtain Ks, it is noted that all pairwise DH keys can also be known to the

nodes in the group by simply applying XOR to Ks and all ciphertexts. A related question,

which raises a strategic consideration, is what kind of a threat can be posed by this procedure.

After all, if the members of the group �nally know the joint secret key, Ks, they might as well

know the individual DH keys. This surely holds if the DH keys expire at the end of the session

that utilizes the key Ks.

A very important observation concerns the issue of propagating the group key via XOR

29

operations, as mentioned above. It is imperative that key con�rmation (as shown in section

2.5.2 and 2.5.3) will precede the actual propagation of the key. In other words, Nj will propagate

Ks by sending Ks XOR Ki+ only if the key con�rmation between Nj and Nj+1 was successful.

If not, Nj must overcome the obstacle and create an immediate joint key with Nj+2, thereby

enabling the continuation of the chain (here we assume that N1; the �rst node generating Ks,

is the cluster head and is not malicious). In these cases, whereby key con�rmation is not

successful, (suggesting that Nj+1 might be malicious), the group key (Ks) will be propagated

along with the ID of the potentially malicious node. By the end of the distribution process,

the IDs of all potentially malicious nodes in the cluster will be known to the legitimate nodes

(holding the desired group key).

This ring-based topology group key establishment (presented in this section) can be signi�-

cantly improved, ensuring higher fault tolerance. Various methods using other topologies, such

as a tree topology, have been published, [25], [38]. Chapter 4 in this dissertation describes an

improvement of this group key generation in terms of delay time, independent of the pairwise

key establishment described in section 3.1 and without the need of a speci�c topology.

3.2.2 Countering Possible Attacks

Several possible attacks, including Denial of Service (DoS) should be addressed. Two forms

of DoS attacks can occur impacting the e¤ectiveness of the o¤-loading framework. In the �rst

type of DoS attacks, one or more malicious nodes, pretending to be nodes seeking assistance,

can continuously send requests to neighbors thereby draining their energy. In these cases, the

weight value generated at each node when receiving the request message can alleviate the DoS

attack, as the more o¤-load calculation requests a node receives, the more energy it will waste,

and consequently, the longer the waiting time will be. This results in lower possibility of being

served as the assistant node. A possible problem lays in the option that a malicious node can

alway try to o¤er help �rst, and then will not. In this case the node will have to do all of the

calculations by himself.

The other type of DoS attacks can happen when the malicious nodes pretend to be the

assisting nodes by always generating the highest weight value and thus always responding the

quickest to request messages, and then returning incorrect calculation results. In these cases,

30

however, the key con�rmation process is inherently able to counter it. It is noted that following

the establishment of a shared key, key con�rmation follows. That is, nodes Ni and Nj encrypt

and decrypt a test message to verify that they have the same key. If indeed the keys are

identical, both nodes can be trusted (i.e. each node can trust its counterpart). If Kij 6= Kji

then it is clear that either one (or both) of the assisting nodes was malicious, or that there was

an innocent error (for example due to link error). In both cases, if the key is not con�rmed,

then the joint key needs to be re-established. Under the scenario where a group key needs to

be created, the two nodes that did not generate a joint key will be eliminated from the group.

3.3 Cryptocomplexity Analysis and Experimental Results

3.3.1 Cryptocomplexity Analysis

The unique nature of WSNs merits a brief discussion on cryptocomplexity. Let the term MIPS

denote million of instructions per second. We rely on the fact that one MIPS computer performs

about 240 elliptic curve additions per year, which translates to approximately 80 iterations per

second [41]. For a key of n bits, a rough estimation of the number of additions needed for

solving an elliptic curve discrete logarithm problem (ECDLP), is 2n=2. Relying on the latter,

we present a cryptocomplexity summary of the key sizes discussed. Here we use 160-bit keys

(over a �eld size of 163 bits).

Recent challenges for solving the ECDLP over a �eld size of 109 have been issued [1]. In April

2004, the challenge was met and the ECDLP key was solved. The e¤ort involved four months

and 9,500 CPUs. In light of the fact that the time frame for the validity and con�dentiality of

WSNs data is typically in the order of at most days, ECC-based key generation o¤ers a high

level of security.

3.3.2 Energy Consumption and Pairwise Key-establishment Time

Implementations of the Key-establishment and measurements of energy consumption and time

have been measured on two di¤erent platforms, the TelosB [3] and the Intel Mote 2 [6], both

described below.

31

Figure 3-3: Crossbow/UC-Berkeley�s TelosB sensor platform

Implementations on the Crossbow, Inc. TelosB Platform

We have implemented the presented key establishment procedures on a TPR 2400CA TelosB

network sensor module [3], developed by the University of California, Berkeley, and manufac-

tured by Crossbow, Inc. The TelosB platform�s microcontroller unit is a 16-bit MSP430, an

ultra low power controller manufactured by Texas Instruments, running at 4MHz and consum-

ing 1.8mA. The transmission rate is 250 kbps, consuming 19.5mA when the radio is active.

The unit draws a voltage of 3V. Two such motes were used in the experimental setup. One

originated the request for key exchange, transmitting the necessary information to the other,

while the other responded with the required calculations and transmitted back the data. The

same transmissions and calculations were symmetric with the second node as an initiator. For

the purpose of calculating the energy consumptions, all metrics were measured both for trans-

mitting and receiving data as well as for the computational component.

Given the variance that exists with regards to the communication needs associated with

each scheme, a brief discussion on the implications of the communication load is in order. From

a protocol stack perspective, the security layer can be viewed as part of the application layer.

The topic of media access control (MAC) protocol in WSNs has received much attention in

recent years, primarily due to its unique characteristics. When comparing results to other

schemes, this work views the issue of e¢ ciently accessing the media (i.e. balancing sleep and

active transmission/reception periods) as the responsibility of the MAC layer. For that reason,

32

Table 3.1: Time and energy consumptions for scalar-point multiplication and radio transmission
on the TelosB sensor platform

Scalar Point Multiplication
EccM

Time (seconds) Voltage (v) Current (mA) Energy (mJ)
32.5 3 1.8 184

TinyEcc
Time (seconds) Voltage (v) Current (mA) Energy (mJ)

16 3 1.8 76
Radio Transmission (including a 7 byte header)

Time (msec) Energy (mJ)
~15 0.038

the analysis is driven by measurements re�ecting the consumption of the security layer and do

not consider ine¢ ciencies (i.e. periods of unnecessary "active" periods) introduced by the MAC

layer. This is a valid perspective given that all security protocols rely on e¢ cient MAC layer

functionality.

The ECC key sizes used in our measurements is 160 bits. Its cryptographic complexity is,

equivalent to that of 1024-bit RSA. As discussed previously, both these values are speci�ed

by the National Institute of Standards and Technology (NIST) Computer Security Resource

Center [26]. EccM, the original code provided by Malan et al. [45] , which was designed for

the 8-bit MICA2 mote [2], was revised and optimized for TelosB implementation (see �gure

3-3). Modi�cations to the code were carried out in order to exploit the 16-bit based opera-

tions supported by the MSP430. The revised code yielded execution of an ECC scalar-point

multiplication in 32.5 seconds for 160-bit keys. Memory needs were about 20Kbytes of ROM

and 1500 bytes of RAM. These self-certi�ed algorithms (both �xed and ephemeral) were also

implemented using functions taken from the TinyECC package [49]. In this case the results

were even more encouraging. The code yielded execution of an ECC scalar-point multiplication

in only 14 seconds for 160-bit keys.

Table 3.2 describes the time and energy consumption for scalar-point multiplication and

radio transmission on the Crossbow/UC-Berkeley�s TelosB sensor platform (using a �eld size of

163 bits). Note that the actual time the radio is in use is greater than 15 msec (since it takes

time to also power up and power down). Calculations have been done using both the EccM

code and the TinyEcc code.

33

Table 3.2: The time computed for establishing an online pairwise �xed and ephemeral key on
the TelosB sensor platform

Key type Number of online exponentiations Calculation time (seconds)
Fixed key- EccM 1-calculated by a node in the cluster 34

0-o­ oaded 0
Fixed key- TinyEcc 1-calculated by a node in the cluster 18

0-o­ oaded 0
Ephemeral key- EccM 1-calculated by a node in the cluster 34

1-o­ oaded 34
Ephemeral key- TinyEcc 1-calculated by a node in the cluster 18

1-o­ oaded 18

Clearly, for the same key size, the energy consumed by radio transmission is three orders

of magnitude lower than the energy consumed by calculating a scalar-point multiplication.

That is, the transmission overhead is negligible compared to the computational e¤orts, strongly

advocating the o¤-loading approach pursued in this section.

As indicated above, a node in a cluster needs to execute one exponentiation in order to

perform both online �xed and ephemeral key-establishments (whereby in the latter, a second

online calculation is o¤-loaded to a neighboring node).

In the model considered, a node is either part of the cluster or an assisting node. Hence,

assisting nodes do not take part in active information gathering and collaborative data process-

ing. Moreover, a node will only assist a single other node at any given time. To that end, the

overall gain achieved in the cluster by performing o¤-loading for a single pair of nodes is linear

with respect to the number of key pairs established.

Table 3.2 describes the time for establishing an online pairwise �xed and ephemeral key on

the Crossbow/UC-Berkeley�s TelosB sensor platform (using a �eld size of 163 bits). See �gure

3-4 for self-certi�ed time requirements for TelosB using the TinyEcc code.

Since using a smaller �eld size is certainly germane to WSN applications, the time consumed

for these calculations can be further decreased.

Implementation on the Intel Mote 2 Platform

The methodologies for self-certi�ed key generations developed here were also implemented on

the Intel Mote 2 [6] platform (see �gure 3-5). This recently o¤ered high-end, low power module

34

0 10 20 30 40

Time (sec)

Base Point­by­
Scalar

Ephemeral
Session Key

Fixed Secret
Key

Figure 3-4: Self-certi�ed key generation timing requirements for the TelosB mote

employs the Intel PXA271 XScale Processor running at a clock frequency ranging from 13

MHz to 416 MHz (in contrast to the telosB motes where the only frequency is 4 MHz) The

core frequency can be dynamically set in software, allowing the designer to carefully adjust

the timing/power trade-o¤ so as to optimize performance of a particular application. The

self-certi�ed algorithms (both �xed and ephemeral) were again implemented using functions

taken from the TinyECC package [49]. The original code provided by Malan et al. [45], which

was designed for the 8-bit MICA2 mote [2], was revised and optimized for the Intel Mote

2 implementation. This package provided a basic library of ECC-based functions, including

scalar multiplication and exponentiation operations. Customizations for the XScale processor,

including 32-bit operation optimizations were carried out. In addition, supplementary functions,

such as e¢ cient Montgomery arithmetic were added. Nodes exchanged messages using a 2.4

GHz, IEEE 802.15.4 compliant, low-power radio transceiver.

The ECC key size used in the measurements was 160 bits, the cryptographic complexity

of which is equivalent to that of 1024-bit RSA (as indicated above). The results were very

encouraging: at a frequency of 312 MHz, the process of scalar-point multiplication required

only 45 msec, while consuming only 24 mJ. It is observed that while the time it takes to

perform the entire key generation process scales linearly with regard to the clock frequency,

the energy does not. A strong advantage was observed for operating at higher frequencies. At

35

Table 3.3: Time and energy consumption for scalar-point multiplication on the Intel2 sensor
platform.

Scalar Point Multiplication
EccM

Time (msec) Voltage (v) Current (mA) Energy (mJ)
190 3.8 137 99

TinyEcc
Time (msec) Voltage (v) Current (mA) Energy (mJ)

42 3.8 137 22
Radio Transmission (including a 7 byte header)

Time (msec) Energy (mJ)
~15 0.127

a frequency of 312 MHz, for example, �xed-key generation can thus be achieved in less than

50 msec, consuming approximately 25 mJ (including all communication overheads). These

surprising results clearly pave the way for broader development of resource-e¢ cient security

mechanisms for wireless sensor networks. Moreover, it should be noted that since using a

smaller �eld size is certainly germane to sensor network applications, the time consumed for

these calculations can be further reduced.

Table 3.3 describes the time and energy consumption for scalar-point multiplication on the

Intel2 sensor platform (using a �eld size of 163 bits) on a 312 MHz clock. Both implementations

on the EccM and TinyEcc are indicated.

Comparison between the two platforms As can be observed form the previous two sec-

tions, the performance achieved for point-by-scalar multiplication using the Intel Mote 2 is

signi�cantly higher than that of the TelosB motes, in terms of both time and energy consump-

tion. While Malan�s code [45] demonstrated very interesting results, a more e¢ cient code was

that of the TinyECC package [49]. Table 3.4 summarizes the primary measurements obtained.

To provide a reference point for the computational e¤ort in performing point-by-scalar

multiplication on the Intel Mote 2 node, listening over the radio for one second requires ap-

proximately 57 mJ. One of the very powerful attributes of the Intel mote 2 relates to the fact

its Intel PXA271 XScale processor can operate at a clock frequency ranging from 13 MHz to

416 MHz. The clock frequency can be determined dynamically (i.e. in run-time) in software.

This o¤ers great �exibility to the designer in terms of controlling the power consumption at

36

Figure 3-5: The Intel Mote 2 sensor platform

Table 3.4: Point by scalar timing and energy requirements. TinyECC measurements are pro-
vided for both TelosB and Intel Mote 2 platforms.

TinyECC [49]
Point-by-scalar multiplication
TelosB iMote 2

Computation time 16 s 42 ms
Estimated energy 76 mJ 22 mJ

Radio transmission
Computation time ~15 msec ~15 msec
Estimated energy 0.038 mJ 0.127 mJ

37

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350

Core Clock (MHz)

To
ta

l E
ne

rg
y

(m
J)

iMote2 ­ Fixed

iMote2 ­ Ephemeral

TelosB ­ Fixed

TelosB ­ Ephemeral

Figure 3-6: Energy consumption for self-certi�ed key generations on TelosB and Intel Mote 2
platforms

any given time. The TelosB, on the other hand, only runs at a frequency of 4 MHz. We can

see that the time it takes to calculate a point-by-scalar multiplication using the Intel mote

2 is three orders of a magnitude shorter than the time it takes to calculate a point-by-scalar

multiplication using the TelosB (when using the same TinyEcc package). These results are very

encouraging and justify the claim that ECC can be implemented on WSNs. Figure 3-6 depicts

the total energy consumed while establishing a 160-bit key for both platforms.

The reason for the reduced power consumption with the increase in clock frequency on

the Intel mote 2 can be explained as follows. The XScale processor, as any other processor,

has �xed peripheral modules that consume constant power. These include timers, interrupt

controller, bus arbitration unit, etc. The interrupt controller, for example, continues to operate

at a frequency of approximately 4 MHz, regardless of the base CPU frequency selected. To

that end, let PCPU denote the �xed power (i.e. frequency independent) consumed by these

peripheral processor units. We then let Pb represent the power consumed by the processing of

the PKC related functions. If we de�ne tPKC = �
f as the time consumed by the PKC process,

where � is a constant and f denotes the clock frequency, then the total energy consumed is

38

Node BNode A

Nodes establishing keys
Assisting nodes

Figure 3-7: A simpli�ed network model demonstrating the e¢ ciency of the o­ oading approach
which a¤ects the network lifetime

given by

ETOTAL = ECPU + EPKC(f) =
�

f
PCPU + Pb; (3.5)

which explains the convex curves observed in �gure 3-6

3.3.3 Performance Gain Toward Network Lifetime

Next, we consider the implications of the o¤-loading approach to the overall network lifetime.

The latter is measured from the instant the network becomes active until the �rst node runs out

of power. Although the o¤-loading approach has proven to save computation time and energy

consumption for a pair of nodes establishing the shared key, during the o¤-loading process,

extra communication energy is also consumed. Therefore, analyzing the o¤-loading approach

to the overall network performance and network lifetime is an appropriate performance metric.

We shall refer to a simpli�ed network model (�gure 3-7) to demonstrate the e¢ ciency of the

o¤-loading approach a¤ecting network lifetime.

The model consists of two non-overlapping clusters of nodes, each of which have a cluster

head. Let us assume that the two cluster heads exchange keys regularly as means of establishing

secure links facilitating the exchange of con�dential information. Let us further assume that

each of the cluster heads is aided by a (possibly di¤erent) node, who is a member of the

respective cluster. Since all nodes compute at least as much as the cluster heads, it is apparent

that the network lifetime is determined by the lifetime of the head nodes

In order to understand the performance gain on each of the sensor node platforms used,

39

there is a need to de�ne a few basic parameters:

tcomp - the time it takes to perform the calculation of a point-by-scalar multiplication

tcomm - the time it takes to transfer or receive the keys

N1 - the number of keys that can be generated by a single node without o¤-loading

N2 - denotes the number of keys that can be generated by a single node with o¤-loading

Ecomm - the energy consumed when communicating (i.e. exchanging a packet)

Ecomp - the energy consumed in computing a point-by-scalar multiplication

EB - the initial battery energy of each node

In the �rst case, whereby no o¤-loading is assumed, we have

N1 =
EB

2Ecomp
; (3.6)

since each node performs two exponentiations. For the second case, when o¤-loading is em-

ployed, the number of keys that can be generated is given by

N2 =
EB

2Ecomm + Ecomp
; (3.7)

since each node performs only one exponentiation, but is required to transmit and receive a

packet, identical in length to the length of a key.

In order to derive a metric for the network lifetime, we shall assume that on average the

application requires that � keys be generated each hour. A reasonable value for � can be, for

example, twelve which represents the scenario that on average every �ve minutes a new key is

required. Consequently, the network lifetime for the case of no o¤-loading is N1=� while for the

case that o¤-loading is utilized it is N2=�.

Technical speci�cations of the TelosB and Intel mote 2 platforms

The TelosB platform is powered by two AA batteries in series operating nominally at 3V,

o¤ering approximately EB = 9; 500 J [27]. Based on the timing and current measurements

summarized in table 3.1, for the TelosB platform, the energy consumed in calculating a single

40

exponentiation and transmitting a key is, respectively,

Ecomm = 19:5 mAh� 3V � tcomm (3.8)

Ecomp = 1:8 mAh� 3V � tcomp

On the Intel mote 2 platform the same considerations apply, whereby performance gain

depends on the processor clock frequency (ranging from 13 MHz to 416 MHz). Here, we

have chosen to concentrate on the 312 MHz option, since it yields the lowest total energy

consumption. Three AAA batteries were assumed (o¤ering approximately 4000 J) and a voltage

of 4.4V is drawn.

Network Lifetime

Figure 3-8 illustrates the expected node lifetime for both TelosB and Intel 2 motes. The

assumption is that the cryptographic process consumes 20% of the computational e¤ort involved

when an event occurs. As can be seen, as the average interval separating two consecutive key

generations grow, the node�s lifetime increases as well. Since the network lifetime is de�ned as

the time it takes for the �rst node to run out of battery, then these �gures reveal the network�s

lifetime as well. Since the energy consumed while calculating a point-by-scalar multiplication is

signi�cantly lower in the Intel mote 2 than the energy consumed while calculating a point-by-

scalar multiplication on the TelosB motes, the network�s life time when using the Intel motes

2 is signi�cantly higher. All calculations here have been done according to the protocol of

establishing a self-certi�ed ephemeral key without o¤-loading (i.e. each node calculates two

scalar by point multiplications). While o¤-loading signi�cantly decreases the time it takes for

a node to calculate an ephemeral key, using the o¤-loading procedure does not improve the

network�s lifetime since, on average, all nodes would have done the core one multiplication for

themselves and assisted with the o¤-loading for another node in need (increasing the number

of multiplications calculated to two). Although the total energy consumed by the o¤-loading

technique is a bit higher due to the communication overhead, such energy consumption is

distributed across multiple nodes. This results in a longer network lifetime, since it takes

longer, on average, for the �rst node to run out of energy.

41

Figure 3-8: Node life time as a function of ephemeral key-generation frequency, assuming 160-bit
keys

3.4 Network Lifetime Simulations

In order to obtain a coarse assessment of the impact of o¤-loading computations on the network

lifetime, a Matlab simulation platform was employed. The simulated environment consisted of a

N�N grid in whichM nodes were uniformly deployed. Each node has a transmission radius, rt,

and a sensitivity (to event being monitored) radius, rs. All nodes are assumed to have a battery

source with capacity Ebat (J). Based on the energy consumption �gures described in previous

sections, each transmission, reception and computation event reduced the battery energy by

their respective amounts. Events occur randomly across the grid, whereby each is assumed to

be static for a period of time su¢ cient for a cluster of nodes to sense it and act accordingly.

Each node, upon sensing the event, attempts to establish a key with two other nodes in the

cluster, as part of the group key establishment process. Should an assisting node be available

(i.e. a node that is not part of the sensing cluster but is close enough to the node requesting

assistance), it shares the computational load. It is further assumed that the collaborative signal

and information processing that is carried out, following the key establishment phase, requires

p times more energy than the key generation did. All nodes that sense the event are included

42

Figure 3-9: Network lifetime as a function of the node density

in the active cluster.

The goal of the simulation is to assess the impact of the o¤-loading scheme on the overall

network lifetime. Each simulation iteration is executed until the �rst node runs out of battery,

so as to be consistent with the de�nition of a network lifetime. Assuming that on average 30

minutes separate two consecutive events, and that N = 300; rs = 80; rt = 50; Ebat = 2000J ,

�gure 3-9, depicts the network lifetime (in days) as a function of the number of nodes (M)

deployed. Naturally, as the node density increases, so does the probability that an event will

be sensed, thereby incurring energy consumption for both communications and computations.

That suggests a negative impact on the network lifetime. However, higher node densities

increase the probability that assisting nodes will be found for o¤-loading computations. This

helps distribute the energy-consumption, thus increasing network lifetime.

As can be observed from �gure 3-9, the o¤-loading procedure increases the network�s lifetime

It is also clear that with or without o­ oading, for a denser network, the lifetime decreases. This

is due to the fact that since the network is more dense, an event is sensed by more nodes (which

improves the accuracy of the monitoring process as a whole), and more assisting nodes are called

upon. The impact of o¤-loading results in an increase of about 20% in network lifetime, which

is a highly desirable property. In addition to the increase in network lifetime, it is important

to note that the main attribute of o¤-loading is reduction in the time it takes to establish the

43

Figure 3-10: Network lifetime as a function of the transmission radius

secret key (since nodes operate in parallel). Moreover, we see that even for a small number

of nodes, utilizing the o¤-loading scheme results in a longer lifetime, primarily due to the fact

that any o¤-loading is better than none.

When the network lifetime was studied as a function of node transmission radius (see �gure

3-9), it appeared that beyond a certain transmission range, the network lifetime increased

(insigni�cantly). This can be contributed to the fact that the larger the transmission radius

is, the more assisting nodes that can be found. Figure 3-10 depicts the results for the same

parameters as in �gure 3-9, with N = 64. For both �gures 3-9 and 3-10, 30 runs were performed

in each operation condition, with results re�ected by the error graphs.

44

Chapter 4

Delay-E¢ cient Group Key

Generation

A pivotal theme in this dissertation pertains to authentication aspects of key-generation tech-

niques in WSNs, with an emphasis on e¢ ciency and energy preservation. The group key

generation scheme presented in section 3.2.1 is based on pairwise communication and as such

carries an inherent drawback of substantial process delay. The latter impacts the time it takes

to establish a group key from the instant that the process begins until its completion. This

group key generation scheme�s �nal stage of the process, which comprises the exchange and val-

idation of the secret key to be used, introduces latency that is linear with respect to the number

of nodes in the cluster. This is true for all schemes that are based on pair-wise exchange of

information and prohibits the overall scalability key generation framework. To address this

key issue, this chapter describes a more delay-e¢ cient key generation scheme that is much less

dependent on the particular topology of the cluster.

We begin by asserting that fully-certi�ed key generation procedures are comprised of the

following three generic steps:

1. Verifying the authenticity of users�public keys by validating their associated certi�cates.

Here the validator is assured that a submitted public key corresponds to the ID of the

user that claims to be the owner of the key. Such validation is achieved via reference to

the CA�s public key.

45

2. Verifying the authenticity of the exchanged ephemeral values. This is based on referring

to the users public key, whose authenticity was veri�ed in the preceding step.

3. Generating the session key, based on the ephemeral values veri�ed in Step 2.

Various group-key generation procedures and their associated authentication schemes have

been proposed in recent literature ([36], [12], [25], [43]). These works are based on distinctly

performing all three steps described. Here, a novel group-key generation is treated, unrelated to

the group-key generation procedures presented in the references provided. This method devises

a complete group-key generation procedure in which steps 2 and 3 above are joined into one

mathematical operation. Step 1 is assumed to be independently performed prior to each cluster

formation event. It will be shown that the contribution of this new procedure does not concern

savings in computational e¤orts, but rather ease of management and a substantial reduction in

the overall time consumed by the key generation process.

4.1 Introductory Remarks

In order to understand the rationale behind the group key generation procedure presented in

this chapter, we must �rst look at three di¤erent procedures. The �rst is the Burmester and

Desmedt (BD) algorithm [13], [14], which treats step 3 alone by establishing a group key. The

second is the Menezes-Qu-Vanstone (MQV) [65] key generation procedure, which treats steps

2 and 3 in one algorithm. The third is the Digital Signature Algorithm (DSA) [34] signature

generation and veri�cation, pertaining to steps 1 and 2 independently.

All three procedures are performed over the �eld GF (p), where the private key and the

public key of node i (if used) are xi and Yi, respectively, where Yi = Gxi mod p; and G

pertains to a primitive element in the �eld. All bold notations represent a point on the elliptic

curve, assuming one chooses to work under the �eld GF (2n). We next review these fundamental

procedures as a prelude to the core contribution.

4.1.1 The Burmester and Desmedt (BD) Group-key Generation

The BD group-key generation procedure comprises of the following steps:

46

a. Each Useri; i = 1; 2; 3; : : : ; n; generates Zi = Gri mod p; for a randomly selected 1 < ri <

p� 1.

b. The value Zi is broadcasted.

c. Each Useri then calculates and broadcasts Vi = [(Zi+1)=(Zi�1)]ri mod p, where the

indices are taken modulo n.

e. Key generation: each Useri computes the key

Ki = (Zi�1)
nri � (Vi)n�1 � (Vi+1)n�2 � (Vi+2)n�3 � � �Vi�2: (4.1)

As a result, all users end up with the same joint session-key

K = Grnrn�1+rn�1rn�2+:::+r2r1+r1rn (4.2)

This is based on observing that

Vi = [(Zi+1)=(Zi�1)]
ri = Gri+1ri�riri�1modp (4.3)

and

Ki = (Zi�1)
nri � (Vi)n�1 � (Vi+1)n�2 � (Vi+2)n�3 � � �Vi�2 = G

wmod p; (4.4)

where

w = nriri�1 + (n� 1)(ri+1ri � riri�1) + (4.5)

(n� 2)(ri+2ri+1 � ri+1ri) + :::

+(ri�1ri�2 � ri�2ri�3)

= riri�1 + ri+1ri + ri+2ri+1 + :::+ ri�1ri�2:

The generation of each of the values Zi; Vi; Ki requires one modular exponentiation. To

explicitly clarify, the long multiplication associated with the generation of Ki is of computa-

47

tional complexity equivalent to two modular exponentiations. This is shown in [14]. Since

this procedure concerns only step 3 (generating the session-key, based on the ephemeral values

veri�ed in Step 2), authenticity of the ephemeral values Zi is assumed. That is, Zi is provably

associated with an identi�ed Useri. The original presentations of the BD scheme did not treat

the issue of authenticating Zi, which is next addressed.

4.1.2 The Menezes-Qu-Vanstone (MQV) Key Generation

The MQV key generation procedure [65], combines step 2 and step 3, without the execution of

step 1. Let zi denote the scalar presentation of the element Zi. If Zi is an element of GF (p)

then in practice it can also be considered as a scalar zi, when needed. If Zi is a point on an

elliptic curve, i.e. an element in the �eld GF (2n), zi can be the x-coordinate of Zi. The MQV

procedure takes the following steps:

a. Useri and Userj respectively calculate Zi = Gri mod p and Zj = Grj mod p for randomly

selected ri and rj .

b. Useri sends Yi and Zi to Userj ; Userj sends Yj and Zj to Useri.

c. Useri and Userj respectively calculate Ki = (Zj �Y
zj
j)

(ri+zixi) mod p and Kj = (Zi

�Y zi
i)

(rj+zjxj) mod p; which is their joint session-key. The value of the generated joint

session-key is G(ri+zixi)(rj+zjxj) mod p

d. Key con�rmation: con�rm thatKi = Kj . Con�rming the validity of the exchanged values

is based on explicit certi�cation. Here, Yi and Yj are validated based on executing Step

1 described before.

The advantage of MQV lies in the fact that the validity of the ephemeral values Zi, Zj does

not have to be established by itself. Instead, Steps 2 and 3 are combined into a single step.

4.1.3 Digital Signature Algorithm (DSA)

The DSA procedure [34] can be used for signature generation as well as signature veri�cation

(which are an inherent part of steps 1 and 2). The following are the two procedures.

48

DSA signature generation

The signer, Useri, generates a signature based on his knowledge of the private key xi. Any

party is then able to verify Useri�s signature by referring to the public key Yi = Gxi mod p.

Here: q is a prime divisor of (p � 1). T =W((p�1))=q mod p, for any 1 <W < (p � 1) such

that W((p�1))=q mod p > 1. In the lines of DSA speci�cations, Useri signs a message m by

generating a random 0 < k < p� 1 and calculating

L = (Tkmodp)modq and s = (k�1(H(m) + xi � L))modq; (4.6)

where H(m) is a hash of m and L is a scalar representation of L. The signature is the pair

fL; sg, submitted together with m.

DSA signature veri�cation

Let m0;L0 and s0 denote the received versions of m;L and s; respectively. To verify the authen-

ticity of m0 (i.e., establish the fact that m0 = m), the veri�er calculates:

w = (s0)�1 mod q

u1 = H(m0) � w mod q

u2 = L0 � w mod q

(*) V = (Tu1 �Yu2
i mod p) mod q.

If V = L0 then the signature is veri�ed. That is, this step provides a yes or no answer

regarding the validity of m.

4.2 The Combined BD-MQV Group Key Generation

The procedure presented next is proposed to address latency in group-key generation for WSNs.

It concerns joining Steps 2 and 3 within a group-key generation framework. The suggested

procedure takes the following steps:

a. Useri, i = 1; 2; 3; : : : ; n, generates Zi = Gri mod p, for a randomly selected 1 < ri < p�1.

b. Each Useri broadcasts Yi and Zi.

49

c. Each Useri calculates and broadcasts

Vi = [(Zi+1Yi+1
zi+1)=(Zi�1Yi�1

zi�1)](ri+zixi)mod p; (4.7)

where, as before, xi and Yi = Gxi mod p are the private and public keys of Useri.

d. Key generation: Useri computes the key

Ki = (Zi�1Yi�1
zi�1)n(ri+zixi) � (Vi)n�1 � (Vi+1)n�2 � (Vi+2)n�3:::Vi�2: (4.8)

All users end up with the same key, having the form Gvmod p, where

v = n(ri�1 + xi�1zi�1)(ri + zixi)+

+(n� 1)(ri + zixi)(ri+1 + xi+1zi+1 � ri�1 � xi�1zi�1)+

+ (n� 2)(ri+1 + zi+1xi+1)(ri+2 + xi+2zi+2 � ri � xizi) + :::

+(ri�2 + zi�2xi�2)(ri�1 + xi�1zi�1 � ri�3 � xi�3zi�3)

= (rn + znxn)(rn�1 + zn�1xn�1)+

+ (rn�1 + zn�1xn�1)(rn�2 + zn�2xn�2) + : : :

+(r1 + z1x1)(rn + znxn)mod (p� 1)

For n = 2, K = G2(r1+z1x1)(r2+z2x2) mod p, which is the (squared) MQV key, with similar

security considerations

e. Key con�rmation: We note that if Useri does not know log Yi (i.e., it does not know xi

such that Yi = Gxi mod p), the chained procedure under which all Ki end up the same

fails, and hence each user ends up with a di¤erent key. Con�rming that the users share

the same key proves that all users know and have used the log of their certi�ed public

keys, which is the essence of discrete-log-based authentication.

Similar to the general MQV case, the procedure presented above is �semi-self-certi�ed�. That

is, steps 2-3 are combined into one step, but unlike fully self-certi�ed procedure, step 1 is still

performed independently.

50

A note on group-wise key-con�rmation: Step (e) above concerns key-con�rmation, whereby

all parties of the group are to be convinced that they share the same key. In practice, an

implicit key con�rmation is recommended in such cases. That is, the group members skip step

(e) and start communicating using their shared key. Only parties that have the correct key will

be able to correctly encrypt/decrypt messages, and there is no need for explicit preliminary key

con�rmation step.

The calculation of Vi in this combined BD-MQV procedure requires three exponentiations,

compared to one exponentiation in the original BD procedure. Since in the latter there is also a

need to verify the authenticity of the exchanged ephemeral values, a comparison with the num-

ber of exponentiations in the DSA procedure is relevant. These extra two exponentiations are

equivalent in complexity to a discrete-log-based signature veri�cation, as described in subsec-

tion 4.1.3 by the marked (*) in the DSA veri�cation procedure. The calculation of Ki requires

two exponentiations, as in the original BD procedure. Since in the latter, there is also a need

to verify the authenticity of the exchanged ephemeral values, we must also take into account

the extra exponentiation in the signature generation operation as described in subsection 4.1.3

by eq. (4.6) in the DSA generation procedure. Altogether, executing the combined BD-MQV

procedure requires �ve exponentiations, whereas in the original BD procedure along with the

needed DSA procedure there are six.

Executing an independent signature generation/veri�cation procedure performed when val-

idating ephemeral values (like in the DSA procedure) is not necessary in this group key gen-

eration. This also introduces signi�cant savings in management overhead. The original BD

scheme does not treat the need to validate the authenticity of the transmitted Zi, as described

in step 3. This overhead is omitted in the proposed procedure. However, as in the case of the

original BD, the procedure necessitates the computational overhead of executing step 1

We next compare the di¤erent performance metrics of the pairwise key generation scheme

described in chapter 3 with the combined BD-MQV scheme, as summarized in table 4.1. In the

case of operating over the �eld of GF (2n), every exponentiation is substituted by a point-by-

scalar multiplication. When examining the procedure one notes that there are six multiplica-

tions involved: one for step a, three for step c and two for step d. When adding the use of DSA

for verifying the authenticity of users�public keys, the signature veri�cation step necessitates

51

two extra multiplications. Altogether, each node is required to perform eight multiplications.

When comparing this procedure to the ephemeral procedure presented in chapter 3, we notice

that in the ephemeral self-certi�ed method there are only six multiplications involved.

The next criterion to be examined is the total number of value transmissions and receptions

involved in each protocol. The pairwise-based scheme requires each node to transmit three

values to its neighbors in the ring topology. Correspondingly, each node receives 6 values from

its neighbors (while three of them are recieved at the time of the other node�s transmission),

bringing the total number of values exchanged thus far to 6. This pertains to the key estab-

lishment phase, however another message is received and transmitted by each node during the

propagation of the secret key. This brings the total number of values exchanged in the network

to 8N . In the combined BD-MQV scheme, each node performs 3 transmissions, correspond-

ing to Yi and Zi and Vi; and receives 3(N � 1) values. Given that the BD-MQV protocol is

broadcast-based, the total number of transmissions is 3N .

When comparing the total process latency, however, there are signi�cant di¤erences between

the two approaches. Let tmult and tcomm denote the time consumed by a multiplication and

either a value transmission or reception, respectively. As can be seen in table 4.1, neglecting the

time consumed by the multiplications, which are independent of the network size, the latency

in the case of BD-MQV is 37.5% (3/8) of that of the pairwise scheme. This is a substantial

gain in terms of the overall process delay.

Naturally, expediting the process comes at a cost; in our case, energy cost. We de�ne emult

and ecomm as the energy consumed by a single multiplication and a single transmission/reception

event, respectively. While the pairwise scheme requires (11N) ecomm+(4N) emult, each node in

the BD-MQV case transmits 3 values and receives 3(N�1) values (from the other N�1 nodes in

the network), which translates to 3N2 overall message exchanges. This is indeed a considerable

energy cost to pay for a speedup gain, however in some applications such a trade-o¤ may be

viewed as acceptable.

52

Table 4.1: Performance comparison between the pairwise key generation scheme and the com-
bined BD-MQV method.

Performance metric Pairwise Combined BD-MQV
Multiplications 4N + 2N (a priori) 6N + 2N (a priori)

Transmission/receptions time (8N) tcomm (3N) tcomm
Total energy (11N) ecomm + (4N) emult

�
3N2

�
ecomm + (6N) emult

Process total latency (8N) tcomm + 4tmult (3N) tcomm + 6tmult

4.3 Network Lifetime Simulations

As indicated above, each of the N nodes in a cluster is required to perform 3N modular

exponentiations as well as receive N � 1 messages from other nodes that have broadcasted

their respective information. The simulation setup consisted of a 1000 ft. � 1000 ft. virtual

area over which 300 nodes were randomly deployed. These nodes have a sensing radius that

ranges between 50 to 300 ft. We further assume that each node has 5000 J of battery energy,

which is approximately the capacity of a AAA battery. In an e¤ort to obtain a coarse network

lifetime indication, two scenarios were considered: in the �rst, events occur randomly across

the area of interest; in the second, events were generated along random linear trajectories,

representing, for example, a path of vehicle motion across a �eld of interest. Figures 4-1 and

4-2 illustrate a deployment setup of 300 nodes with linear trajectories and randomly occurring

events, respectively.

Figure 4-3 depicts the network lifetime estimate as a function of the sensing radius. Each

point on the graph is an average over 1000 trials. Events are assumed to occur on average (in

both scenarios) once every hour. Up to 20 nodes are assumed to be included in a cluster that

is monitoring an event of interest. As such, if an event is sensed by more than 20 nodes, the

rest are assumed inactive in the context of that particular event. Moreover, the data security

portion is assumed to constitute 10% of the overall code running on the node. This appears

reasonable given the complexity of current WSN applications. We note from the results that as

the sensing radius increases, the network lifetime reaches an asymptotic value in both scenarios.

This can be explained by the fact that as the sensing radius increases so does the probability of

a node participating in the cluster that forms around an event. As a result, it will take a shorter

amount of time for one of the nodes to run out of energy. It is also noted that when events

53

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Figure 4-1: An illustration of a 1000 ft � 1000 ft area with 300 randomly deployed nodes
(circles) and linear trajectories of events (�x�symbols).

are correlated in time, as is the case with the second scenario, the network lifetime decreases.

This can be intuitively appreciated since individual nodes have a higher probability of being

activated several consecutive times as they overlap with the path of a given trajectory, thus

concentrating the energy consumption on a smaller set of nodes yielding a lower overall network

lifetime.

54

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Figure 4-2: An illustration of a 1000 ft � 1000 ft area with 300 randomly deployed nodes
(circles) and random events (�x�symbols)

50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

Sensing radius (ft)

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Random events
Linear trajectories

Figure 4-3: Network lifetime for the BD-MQV method as a function of the sensing range. The
security portion of the code is assumed to be 10% of the overall computational load.

55

Chapter 5

Countering Denial of Service (DoS)

Attacks

A fundamental requisite for security, other than providing data con�dentiality and authenti-

cation, is Denial of Service (DoS) mitigation. However, the computational e¤ort involved in

performing PKC operations remains substantial. From an energy consumption perspective, it

is imperative that the processing and communication resources be utilized only when required.

To that end, PKC implementations are more vulnerable to Denial of Service (DoS) attacks

when compared to traditional security methods that require less resources. In particular, if a

malicious party attacks a sensor node by repetitive requests to establish a key, the resources of

the attacked node can be exhausted quite rapidly. Combatting DoS attacks is the last frontier

to be conquered prior to making PKC deployment standard security practice in sensor networks.

This chapter focuses on a public key cryptographic approach for mitigating the impact of

DoS attacks in WSNs. The proposed novel RSA-based framework for combating DoS attacks

ensures that the malicious party will exhaust its resources prior to exhausting those of its

counterparts. In particular, the computational asymmetry in RSA signature generation schemes

is exploited to yield a resource-e¢ cient authentication mechanism which helps overcome DoS

attacks. Three methodologies for establishing an ephemeral key are presented in this context,

in which the proposed DoS mitigation mechanism is an embedded component. Implementation

results on the Intel Mote 2 platform substantiate the clear advantages of the proposed method.

56

Part A:
Alice proving to Bob her validity

A relatively energy draining procedure on Trudy ’s side

Part B:
Bob proving to Alice his validity

A relatively non energy draining procedure on Bob’s
side

Stage A:
Alice proving her validity to Bob

A relatively energy draining procedure on Alice’s part

If successful

Stage B:
Bob proving his validity to Alice

A relatively low energy draining procedure on Bob ’s
part

If successful: both users hold an
ephemeral shared secret key

Figure 5-1: The proposed procedure for Denial of Service (DoS) prevention and ephemeral
key-generation.

5.1 Outline of the Proposed DoS Mitigation Procedure

The procedures for key generation described in sections 2.5.2 and 2.5.3 do not include any

mechanism for DoS mitigation. The DoS attack considered would easily occur when a malicious

node repeatedly approaches legitimate nodes requesting the establishment of a joint secret key.

The energy consumed by the legitimate nodes in the process of key generation is substantial.

Therefore, such an attack strategy can drain their energy. An e¢ cient DoS mechanism should

be able to prevent such attacks. The proposed DoS mitigation approach has two complementing

parts. The �rst pertains to the instigator, Alice, who has to prove her validity to Bob, the party

(node) approached. The second part, which takes e¤ect only if Alice has indeed proven her

validity, pertains to Bob, who is required to prove his validity to Alice. We will demonstrate

that if the two procedures are successful, i.e., the identities of both Alice and Bob are validated,

then an ephemeral key can be issued. The latter implies that each time a certain legitimate

node wishes to establish a key with a neighboring node, not only is a DoS attack prevented,

but a di¤erent secret key will be generated. Figure 5-1 provides an illustration of the proposed

framework.

We shall refer to the following notations in the context of the proposed DoS mitigation

scheme:

� ni �! user i�s public key

57

� di �! user i�s private key

� CRi �! user i�s (CA issued) certi�cate

� IDi �! user i�s public key identi�cation

Notice that in sections 2.5.2 and 2.5.3, where ECC based self-certi�ed keys were established,

the private key, xi, was a scalar and the public key,Ui, was a point on the elliptic curve, whereas

in the scenario of DoS mitigation depicted here, both ni and di are scalars of the same length.

The latter are RSA related parameters.

The following sections describe, in detail, the two stages of the DoS mitigation method.

5.1.1 The Instigator Node Proving Its Validity

The speci�c scenario described in this case pertains to a malicious node that is attempting to

drain the energy of a trusted nodes. The �rst step of a key establishment protocol consists

of an instigator node (Alice) initiating communications with another node (Bob). We shall

refer to the instigating node as a suspicious node that is required to prove its identity. We

thus expect that during the �rst stage of the key exchange process, the majority of the energy

consumed will be on Alice�s part. This would mean that if a DoS attack is carried out, whereby

a malicious node repeatedly attempts to generate a key with a valid node, the latter will be

required to use as little energy as possible. We must assume that most of the nodes are not

jeopardized; hence the instigating nodes are to be presumed innocent until proven guilty. In

other words, the amount of energy drained from Alice will be signi�cant, yet not too high so

as to not deplete her battery too fast. However, if Alice is malicious, and attempts to establish

keys with various nodes, she will eventually run out of energy and /or expose her malicious

nature.

The method described next is based on the notion of key transport [29] using RSA [60]

with e = 3. We note that e = 3 is considered su¢ ciently secure [35]. The following four steps

constitute an ephemeral key exchange procedure that embeds the DoS mitigation mechanism:

Step 1 - Alice sends Bob her public key, nA; her identi�cation, IDA; and her certi�cate

(issued by the CA), CRA: The certi�cate is the CA�s signature on the association between nA

and IDA: An example for such an association can be: nA�IDA � H(nA; IDA): Note that IDA

58

can be a small number; nA can be 1024 bits (as in the protocol used here), hence H(nA; IDA)

depends on the length of nA: In this case, CRA = [H(nA; IDA)]
dCA modnCA: Naturally, only

the CA can create the CRA by using its private key dCA:

Step 2 - Bob veri�es the validity of the certi�cate (CRA) by testing the equality (CRA)
emod

nCA
?
= H(nA; IDA): If the latter holds, Bob knows that nA and IDA are undeniably connected.

Since e = 3; this step requires Bob to compute only two modular multiplications [48]. If indeed

(CRA)
3modnCA = H(nA; IDA); Bob can then continue with generating a message m (it will

later be shown how this message is utilized as part of the key generation process), compute

t = memodnA and transmit t to Alice. Again, since e = 3; Bob has to calculate only 2

modular multiplications at this step.

Step 3 - Alice needs to prove that she indeed possesses the private key dA, proving to her

counterpart that her identity is valid. This is true since the CA would have given this private

key only to her. Let sx denote the number of bits in x, the least signi�cant section of m. Alice

needs to calculate tdA modnA = m and send Bob x: Message m is comprised out of n bits such

that n >> sx. The rest of the bits in the message will be used for the ephemeral key generation,

as will later be described.

It should be noted that, in contrast to Bob, Alice has to perform a computationally heavy

task as dA typically consists of either 512 or 1024 bits. To that end, the approach proposed

shifts the computational burden on the instigating node.

Step 4 - Bob compares the binary vector x he receives from Alice with the sx least signi�cant

bits inm. If these are identical he determines that Alice�s identity is valid. If not, he asserts that

Alice is malicious and terminates the key establishment process. In this case Bob performed

merely four modular multiplications, two receptions and 1 transmission.

The above process has achieved several key goals. First, the instigating node (Alice) uses

more energy than the approached node (Bob) as she calculates tdA modnA: Yet this is an

accepted burden under the assumption that the calculation of tdA modnA is performed only

once per key generation. Second, if Alice is malicious and attempts to instigate key generation

with more than one node, calculating tdA modnA for various types of t0s (di¤erent from one

correspondent to another) will drain her energy. Third, if the same IDA is used over and over

again then she is bound to be ignored. If Alice is trustworthy, she will need to use her IDA

59

Alice Bob

nA
IDA
CRA

t

x LSB of message m

compares

(CRA)3 mod nCA =? H(nA, IDA)
If so, generates a message, m,

such that:
t=m3 mod nA

tdA mod nA = m

Figure 5-2: DoS mitigation based on the Key Transport procedure.

only twice for both key generations performed (assuming the use of the group key generation

described in [50]). Finally, if Alice attempts to impersonate another user by using a di¤erent

IDi; then it will immediately be identi�ed since (CRA)
emodnCA = H(nA; IDi) will not hold.

In this case, Bob will only have wasted two modular multiplications and one reception. Figure

5-2 illustrates the complete DoS mitigation procedure depicted in stage A.

Two threat models should be considered in this context. First, Alice can attempt to drain

Bob�s energy by continuously requesting to establish a key, each time using a di¤erent ID.

Since Bob is only required to calculate (CRA)
3modnCA and compare it with H(nA; IDA);

the computations involved are two Montgomery multiplications alone [48]. Hence the energy

consumed in each attempt is relatively small. Moreover, the time Bob spends performing the

computations is rather small, thereby not introducing a signi�cant burden in that sense. Second,

a malicious node impersonating Alice can repeatedly initiate a key establishment process using

IDA. The question is how can Bob know which messages should be ignored? A possible

solution would be to maintain a list of IDs of recent nodes that resulted in failed validation

(step 2). Bob will then refrain from proceeding with key generation requests originating from

these nodes. A time-out mechanism should be employed such that banning of nodes expires

after a reasonable duration of time. An underlying assumption in all threat models considered is

that the attacking node has energy resources that are comparable to those of the node attacked.

60

5.1.2 The Approached Node Proving Its Validity

If the �rst part of the procedure is successful and Alice has proven that she is who she claims to

be, then Bob will need to do the same. However, if the �rst stage does not pass, Bob assumes

that Alice is not valid, and he will discard the rest of the procedure.

The second stage can be realized in three di¤erent ways: (1) using self-certi�ed �xed-

key generation [50], [8], [7],.(2) using key transport, and (3) using the Elliptic Curve Digital

Signature Algorithm (ECDSA) [41]. We next describe each of these methods and discuss their

respective advantages and disadvantages. Moreover, it will be shown that in each of the cases

an ephemeral key is established, which is a primary goal.

Self-Certi�ed DH Fixed Key-Generation

One of the methods in which Bob can prove his validity to Alice is by using the self-certi�ed

�xed-key method described in Subsection 2.5.2. The ephemeral method (described in Subsec-

tion 2.5.3) can certainly be used, but when the primary focus is to minimize energy drainage,

a self-certi�ed �xed-key generation is advisable (see subsection 2.5.2) since it consists of fewer

computations.

As a reminder, the notations are the following: G - a generating group-point, used by all

relevant nodes; ordG - the order of G. (exponents are calculated modulo ordG); d - the CA�s

private key; R - the CA�s public key (where R = d �G); xi - the private key of node i served

by the CA; Ui - the public key of a node i served by the CA; IDi - the identi�cation details,

or attributes, of node i;H(v;W) - a scalar obtained by performing a hash transformation on

the scalar v and group point W; hi - a random 160-bit scalar generated by the CA (for the

purpose of calculating xi); Ni; Nj- sensor nodes i and j, respectively.

We now go back to the description of the self-certi�ed �xed-key method used in 2.5.2:

A self-certi�ed DH �xed-key generation is achieved by the following two steps [8] : (1) Ni

and Nj exchange the pairs (IDi ;Ui) and (IDj ;Uj), respectively, and (2) Ni and Nj generate

the session-key,

61

Kij (generated by Ni) = xi � [H(IDj ;Uj)�Uj +R]

Kji (generated by Nj) = xj � [H(IDi ;Ui)�Ui +R]: (5.1)

The two keys are expected to be identical, having the value xi � xj �G. (i.e., Ni calculates:

xi� [H(IDj ;Uj)�Uj +R] = xi� [H(IDj ;Uj)�hi�G + d �G] = xi� [H(IDj ;Uj)� hi + d

]�G =xi�xj�G: Similar logic is applied by the calculations performed at Nj . However, these

identities hold only for valid ID�s. Therefore, to complete the authentication cycle there is a

need for key-con�rmation during which the two nodes either verify that they share an identical

key by encrypting and decrypting a test value or by establishing a communication session and

implicitly verify that they share the same key. Verifying that the keys generated by the two

nodes are equal then establishes their correct identities.

A primary contribution o¤ered by this method of self-certi�ed �xed-key generation lies in

the number of exponentiations needed to calculate the value xi � xj �G: As indicated above,

each node (among each pair of nodes) calculates the value xi�xj�G: Note that the calculations

performed by Ni are Kij = xi� [H(IDj ;Uj)�Uj +R] = xi�H(IDj ;Uj)� Uj + xiR: Further

note that the calculations have been separated into two parts. The �rst is a dynamic scalar by

point multiplication executed in an ad hoc manner (as it contains the value Uj): The second is

a scalar by point multiplication that can be calculated and stored "before" the key-generation

session commences, thereby avoiding the need for a real-time exponentiation (as it contains

information known a priori by node i). It is clear that Ni is able to calculate its session key by

a single online exponentiation (xi � H(IDj ;Uj)� Uj) instead of two. Similar considerations

apply to Nj .

We shall refer to the joint �xed-key shared by Alice and Bob as KAB�temp. In addition, as

an integrated part of the key generation process, if the two generated keys are indeed identical,

authentication is achieved. Therefore, the approached node has proven its validity to the

instigator.

The goal of the entire procedure is to establish a shared joint secret key. It is highly

desirable for that key to be ephemeral, i.e., two nodes generate a di¤erent key for each session

62

Stage A

If successful

Stage B:

Self­Certified DH Fixed Key­Generation
KAB­temp

KAB­final=H(KAB­temp,m')

Figure 5-3: Ephemeral key generation and denial of service mitigation using a self-certi�ed DH
�xed key-generation.

Message m, 512 bits

100 bits200 bits212 bits

xyz

Figure 5-4: Depicting a scenario where the original message is 512 bits.

established. Ephemeral key-generation is more secure and is generally preferred when time and

resources permit. A self-certi�ed DH ephemeral key-generation is also possible ([8]), but would

consume three times more energy when compared to the �xed-key case. In order to establish

an ephemeral key, the two nodes can utilize bits in message m, (generated by Bob) excluding

the �rst x least signi�cant bits. Hence, the �nal shared ephemeral key can be de�ned as

KAB�final = H(KAB�temp;m�); (5.2)

where H is a hash function and m�is the random message m, excluding the x least signi�cant

bits (see �gure 5-4). Another option would be to simply use the remanding portion of message

m, i.e., m0 as the �nal ephemeral key.

Key Transport

Bob can validate himself to Alice by using the RSA key transport method, similar to that

described in section 5.1.1. The random message m generated by Bob was encrypted using

Alice�s public key nCA and e. After sending the encrypted message t; such that t = memodnA;

63

Alice can decrypt the message back using her private key, dA: Eventually, both nodes share the

same secret message m. The remaining bits of message m (excluding the sx least signi�cant

bits that were used in stage A) are utilized to establish an ephemeral key. For example, if the

length of m is 512 and sx = 100, then there are 412 bits that can be used for authenticating

Bob and establishing the ephemeral secret key. In this scenario, y will denote the 200 bits that

follow x (as depicted in �gure 5-4). The subsequent 212 bits of message m will be labeled z.

The following summarizes the key transport procedure considered:

Step 1 - Bob calculates SB = ydB modnB, where y is the next LSB portion of message m.

Step 2 - Bob sends Alice his public key, nB; his identi�cation, IDB; his certi�cate (issued

by the CA), CRB; and SB: As described above, the certi�cate is the CA�s signature on the

association between nB and IDB: As such, CRB = [H(nB; IDB)]
dCA modnCA: Only the CA

can create CRB by using its private key dCA:

Step 3 - Alice veri�es the following: (CRB)
emodnCA

?
= H(nB; IDB): If true, Alice knows

that nB and IDB are undeniably linked. Since e = 3; Alice computes only two modular

multiplications. To check the validity of Bob, Alice checks the following two equalities

(CRB)
emodnCA

?
= H(nB; IDB) (5.3)

(SB)
emodnB

?
= y (5.4)

If true, Alice knows that the corresponding node is indeed Bob, since only he has the same

data, y: The ephemeral key resulting will be denoted by KAB�final = z, corresponding to the

most signi�cant portion of message m. Figure 5-5 illustrates the complete process.

Elliptic Curve Digital Signature Algorithm (ECDSA)

Bob can also validate himself to Alice by using ECDSA [4]. The latter is a method for digital

signatures based on ECC. The ECDSA variation proposed utilizing the components of the

message exchanged, m; is:

Step 1 - Bob generates a random number, u, calculates a public value, a point on the curve

V = u �G; where G is a generating group-point and calculates C; the scalar representation of

point V: Next, he computes L = u�1(y + dB � C)mod ordG. Finally, he transmits Alice the

64

Stage A

If successful

Stage B:

nB, CRB, IDB, SB

Validation
of the
values

KAB­final= z

If successful

Alice Bob

Figure 5-5: Ephemeral key generation and denial of service prevention using key transport.

signature pair (C;L).

Step 2 - Alice calculates h = L�1mod ordG; q1 = y �hmod ordG, and q2 = C �hmod ordG:

She next obtains the curve point: P = q1 � G + q2 � nB; where nB is Bob�s public key, and

calculates C�, the scalar representation of point P: The algorithm concludes when Alice validates

that C = C�: If the latter holds, Bob is validated.

Step 3 - The ephemeral key resulting will be denoted by KAB�final = z, corresponding to

the most signi�cant portion of message m. Figure 5-6 illustrates the complete process.

5.1.3 Mathematical Considerations

Let us look at a few mathematical calculations pertaining to Subsection 5.1.1. The following

calculations are associated with the public and private key possessed by Alice and the CA. (The

same calculations will hold to any other node in the cluster):

Calculating the public key nA and nCA :

We de�ne

nA = p1�p2

nCA = p3�p4

65

Stage A

If successful

Stage B:

(C, L)

KAB­final = z

If C’=C

Alice Bob

Calculates h, q1,
q2, P and C’

Figure 5-6: Ephemeral key generation and denial of service prevention using ECDSA.

where pi are Pseudo-random prime numbers of 256 bits. We note that there is a small �nite

group of 256-bit numbers, hence the use of pseudo-random prime. In general, if ap�1mod p = 1;

or: a
p�1
2 mod p = �1; for a large pool of di¤erent a�s, then there is a high probability that p is

prime.

The calculation of a
p�1
2 mod p involves the calculation of a modular multiplication of two

scalars, as treated by the Montgomery modular multiplication procedure

Montgomery Modular Multiplication Procedure:

Lets look at an example where the scalars are x and y: The purpose of the procedure is to yield

the result x � y mod p . The procedure processes values which consist of m-bit coe¢ cients. Let

vi denote the ith coe¢ cient of an integer v, where the least signi�cant coe¢ cient is denoted by

v0. We let k be the number of m-bit coe¢ cients in x and y. Moreover, we let r denote the

value of �p�10 mod 2m (To clarify, p0 represents the least signi�cant coe¢ cient of the modulus

p). The Montgomery procedure can thus be described as follows:

begin

s = 0; t = 0; v = 0

for i = 0 to k � 1

t = s+ xi�y

66

u = (t0�r)0
v = t+ u � p

s = v
2m

end (for loop)

if s > n then s = s� p

end

Notice that for each p; we need to calculate the value r = �p�10 mod 2m: This value depends

only on the least signi�cant coe¢ cient of the modulus p:

Calculating the private key dA and dCA:

dA = e
�1mod'(nA)

� '(nA)-Euler�s Totient Function

Euler�s Totient Function '(m) returns the number of integers less than m, including 1 that

are relatively prime to m. [For m = p (p- prime), '(p) = p� 1].

Hence, '(nA) = (p1 � 1)(p2 � 1):

� When using e = 3; as in this case, dA = e�1mod '(nA) = 3�1mod (p1 � 1)(p2 � 1):

In order to calculate the value dA = e�1mod'(nA); the following simple procedure can be

performed:

Lets choose p1; p2 such that p1; p2 = 2 mod 3

=) (p1 � 1)mod 3 = (p2 � 1)mod 3 = 1

=) (p1 � 1)(p2 � 1)mod 3 = 1

=) '(nA)mod 3 = 1

=) 2'(nA) + 1 = 3x; 8x () x = 3�1mod '(nA) � dA
=)

dA =
2'(nA) + 1

3

Using the same logic, the private key of the CA is:

dCA = e
�1mod'(nCA) =

2'(nCA) + 1

3

67

(In this case we do not need to evaluate the multiplicative inverse, enabling an easier cal-

culation).

Checking The Certi�cate:

As described in Subsection 5.1.1, as a part of the procedure, the approached node needs to

check the certi�cate of the instigating node by performing the following:

CRA = [H(nA; IDA)]
dCA modnCA

As a consequence, the calculations are as follows:

(CRA)
emodnCA

?
= H(nA; IDA) () (CRA)

3modnCA
?
= H(nA; IDA)

=) the calculations is the following:

(CRA)
3 =

h
[H(nA; IDA)]

dCA
i3
modnCA = [H(nA; IDA)]

dCA�3modnCA:

Since dCA = 3�1mod'(nCA); dCA � 3 = 1

=) (CRA)
3 = [H(nA; IDA)]

1modnCA = H(nA; IDA)

[H(nA; IDA) < nCA = p1�p2] :

5.2 Implementation Results

This section presents implementation results pertaining to all three methods described in stage

B, in which the approached node proves its validity, providing a comparison in terms of timing

and energy resources.

The methodology descried in stage A and all of the three methodologies discussed in stage B

were implemented on the Intel Mote 2 [6] platform. The latter employs the Intel PXA271 XScale

Processor running at a clock frequency ranging from 13 MHz to 416 MHz. The core frequency

can be dynamically set in software, allowing the designer to carefully adjust the timing/power

trade-o¤ so as to optimize performance of a particular application. Functions were taken from

the TinyECC package [49]. The latter targeted the MICA2 platform and provided a basic

library of ECC-based functions, including scalar multiplication and exponentiation operations.

Customizations for the XScale processor, including 32-bit operation optimizations, were carried

out. In addition, supplementary functions, such as e¢ cient Montgomery arithmetic, were added.

All codes are written in NesC running on the TinyOS operating system. Nodes exchange

68

messages using a 2.4 GHz embedded low-power radio transceiver. In all of the implementations

depicted below, the clock frequency was 312MHz, scalars (for key transport usage) were 1024

bits, scalars (for ECC based computations) were 160 bits, and points on the curve (for ECC

based computations) were 160 bits for each of the vertices. It should be noted that 160-bit keys

in ECC are equivalent, from a cryptocomplexity perspective, to 1024-bit keys in RSA.

Self-certi�ed �xed-key generation, excluding DoS mitigation, takes one dynamic point-by-

scalar multiplications. Hence, on the Intel mote 2 platform the process takes 42 msec to

complete and consumes 22 mJ at each node (see table 3.3)

Stage A, in which Alice proves her validity to Bob, is identical regardless of the methodology

chosen in Part B. For the latter, it is imperative to understand the overhead involved in cal-

culating tdA modnA = m: All other calculations and communications are relatively negligible.

For a key size of 1024 bits (for both dA and nA) the computation took Alice 230 msec and

drained 105.8 mJ. On the other hand, Bob�s calculation of (CRA)
3modnCA took 1.02 msec

and drained only 0.469 mJ. The energy consumed when Alice performs her procedure is three

orders of a magnitude larger than the energy consumed when Bob performs his. The results

were 230 msec and 105.8 mJ, substantiating the e¤ectiveness of the procedure proposed. All

other computations and transmissions are relatively negligible.

In stage B, when using key transport, Bob is required to perform the exact symmetrical

procedure that Alice preformed in stage A, i.e., SB = ydB modn: Hence Bob will spend 230

msec and 105.8 mJ. In the validation process, Alice will perform the following two calculations:

(CRB)
emodnCA; (SB)

3modnB and will have spent 2.04 msec and 0.938 mJ. When using

ECDSA, the important computations are point-by-scalar multiplications. As described above,

Bob preforms one point-by-scalar multiplication while Alice performs two. When using the

self-certi�ed �xed-key method, each of the nodes performs one point-by-scalar multiplication.

Each multiplication takes about 42 msec and consumes 22 mJ. Please see tables 5.1 and 5.2 for

details. All other computations and transmissions are relatively negligible.

As expected, using key transport as means of certi�cation is not bene�cial in resource

constrained environments. In other applications, where resources are not scarce, key transport

can be extremely useful, since there is no need for additional elliptic curve calculations (as

in ECDSA and �xed-key scenarios). It should be noted that calculations of the key transport

69

Table 5.1: Time (msec) and energy (mJ) consumed while performing stage A and stage B for
1024-bit RSA and 160-bit ECC on the Intel mote 2 patform for 312 MHz core clock

Time (msec) Energy (mJ) Total
Alice Bob Alice Bob Time Energy

Stage A 230 1.02 105.8 0.469 231.02 106.27
Stage B

Key Transport 2.04 230 0.938 105.8 232.04 106.738
ECDSA 83 42 44 22 125 66
Fixed Key 42 42 22 22 84 44

Table 5.2: Total time (msec) and energy (mJ) consumed by each of the three techniques for
ephemeral key establishment in the DoS mitigation

Time (msec) Energy (mJ)
Total consumption Both stages Both stages
Key Transport 463.06 213.01
ECDSA 356.02 172.27
Fixed Key 315.02 150.27

method in both stages are almost symmetric when it comes to the computational load that Bob

and Alice have. When comparing ECDSA to �xed-key generation, we come to the conclusion

that the �xed-key method is more e¢ cient since it implies a 15% energy gain and reduced time.

70

Chapter 6

Light-weight Arithmetic Algorithms

Given that wireless sensor nodes are very limited in energy, memory and processing resources,

it is imperative to e¢ ciently utilize the existing resources in any computational task performed.

The cryptography �eld employs numerous fundamental arithmetic algorithms. Two such algo-

rithms, the Montgomery arithmetic for modular multiplication and the generation of a modular

multiplicative inverse, are treated in this chapter. As indicated in previous chapters, the core

calculation (for example, when establishing a secret key) using ECC is the point-by-scalar

multiplication. As part of this elaborate calculation, there is a need to compute modular multi-

plication between two scalars. It is this modular scalar-by-scalar multiplication that utilizes the

above mentioned algorithms. In order to multiply we need to use the Montgomery arithmetic

for modular multiplication, and as part of this arithmetic, the modular multiplicative inverse

of a scalar is computed. While simulating various key generation schemes, it became apparent

that these two algorithms are frequently called upon, which raised the clear need for their e¢ -

cient lightweight realization. The following sections provide a description of the algorithms and

their proposed light-weight implementations in detail.

6.1 A System-Level E¢ cient Utilization of the Montgomery

Procedure

Modular exponentiation constitutes a fundamental building block in public key cryptographic

operations. In Elliptic Curve Cryptography (ECC) implementations, the exponentiation is

71

PKC
key

establishment

Point by scalar
multiplication

Modular scalar
by scalar

multiplication

Montgomery
procedure

Modular
multiplicative

inverse

Figure 6-1: The chain of importance in the PKC key establishment process, illustrating the
essential role of the Montgomery procedure

associated with a scalar curve-point multiplication, which we shall refer to as the ECC expo-

nentiation core [44], [55]. Such cores facilitate the execution of several modular multiplication

operations needed in various applications, ranging from digital signatures to key establishments.

The challenge faced by the designers concern the e¢ cient execution of these modular multipli-

cation operations when providing for a speci�c application. A typical chain of importance is

depicted in �gure 6-1.

This section pertains to public key cryptographic certi�cation. In explicit certi�cation, the

CA signs the association between a user�s ID/attributes (and other administrative details), and

the user�s public key. The CA does so by using standard digital signature techniques in which

the generated signature acts as a certi�cate attesting to the validity of the values submitted by

users. In implicit certi�cation [32],[63],[7], authenticity of parameters submitted by a user is

established as an inherent part of executing the application served by these parameters, where

the CA�s public key is one of the inputs to the process.

Next, a description of the steps to be carried out by the CA when generating explicit or

implicit certi�cates is provided. These steps are carried out in order to simplify the execution

of the operations subsequently performed by the veri�ers of the issued certi�cates. In view of

the above, we consider the modular multiplication operations that employ an exponentiation

core, treating the core as a given module.

An exemplifying case of explicit certi�cation (that is, a direct digital signature generated by

the CA) is the Elliptic Curve Digital Signature Algorithm [4] (ECDSA). An exemplifying case

for implicit certi�cation is the self-certi�cation methodology presented in [7]. The framework

presented here can be applied to a wide range of public key cryptographic applications.

72

6.1.1 Observations on Montgomery Arithmetic Constructs

We next brie�y review the Montgomery modular multiplication of two scalars, p and q, to yield

p � q mod n [48]. The procedure (also presented in 5.1.3) processes values represented in base

2m, that is, they consist of m-bit coe¢ cients. Let vi denote the ith coe¢ cient of an integer

v, where the least signi�cant coe¢ cient is denoted by v0. We let k be the number of m-bit

coe¢ cients in p and q. Moreover, we let r denote the value of �n�10 mod 2m (To clarify, n0

represents the least signi�cant coe¢ cient of the modulus n). The Montgomery procedure can

thus be described as follows:

Procedure 1: Montgomery modular multiplication

begin

s = 0; t = 0; v = 0

for i = 0 to k � 1

t = s+ qi�p

u = (t0�r)0
v = t+ u � n

s = v
2m

end (for loop)

if s > n then s = s� n

end

In the above, s = p�q �2�mkmodn. However, our purpose is to obtain the result: p�qmodn.

The operation t = s+ qi � p that is executed k times, where k is the number of m bit coe¢ cients

comprising the multiplier q, is the pure multiplication operation p � q. Similarly, the operation

v = t + u � n is also a pure multiplication. The only di¤erence between multiplication of the

form t = s + qi � p and that of the form v = t + u � n is the fact that the qi0s are known a

priori, while the u�s are generated dynamically. There are two additional m-bit operations

in the procedure, involving single coe¢ cients, both intended to guarantee that t and v do

not exceed k + 1 coe¢ cients (with an exception of a possible 1-bit over�ow). These m bit

operations e¤ectively render the entire procedure a �character-level shift-and-add operation�.

Intuitively, the division essence of modular multiplication is realized at them bit character-level,

by the dynamic generation of the u�s. This holds since division is based on dynamic decisions

73

concerning the subtraction of a divisor, while in multiplication, the decisions of whether to add

the multiplicand or not are known in advance and depend on the particular structure of the

multiplier.

As indicated before, in Procedure 1, s = p � q � 2�mkmodn. However, our purpose is to

obtain the result: p � qmodn. In order to eliminate the undesired multiplicative factor 2�mk;

we apply Procedure 1 for a second time, where p and q are replaced by p � q � 2�mkmodn (the

result obtained from the �rst round) and 22mk - a system constant that can be precalculated

and stored. The output of the second stage will be the desired result of p � qmodn:

As indicated, Procedure 1 does not yield the �nal desired result of p � qmodn, but rather

the value p � q � 2�mkmodn, necessitating the execution of Procedure 1 for a second time.

This introduces a major deviation from the ultimate goal of calculating p � qmodn using two

pure m bit multiplications, hence using Procedure 1 only once. Here we will show how this

ultimate goal can be achieved for the case of executing modular multiplication operations that

employ an exponentiation core within the framework of public key cryptographic certi�cation.

In particular, we provide detailed treatment of both explicit and implicit certi�cation. The

former is shown for digital signature generation and veri�cation based on ECDSA, while the

latter pertains to self-certi�ed Di¢ e-Hellman key-establishment [7].

A fundamental observation is that if the CA employs Procedure 1 only once during certi�cate

generation, that is, it executes two pure m bit multiplications, then the certi�cate veri�ers are

also required to employ Procedure 1 only once. In these cases, the undesired multiplicative

factor of the Montgomery arithmetic operation has no e¤ect, thus the procedure is executed

only once.

6.1.2 Explicit Certi�cation based on ECDSA

The ECDSA [4] algorithm enables signature generation and signature veri�cation procedures.

As a preliminary stage, all participants agree on speci�c curve parameters and a generating

point, G, of order ordG (exponents are calculated modulo ordG). The signer�s private key is

s while his public key is the curve pointW = s �G, where � represents a scalar curve-point

multiplication. Letting f denote the message to be signed, the following outlines the signature

generation and veri�cation procedures:

74

Procedure 2: ECDSA signature generation

1. The CA generates a random number u and calculates V = u�G

2. Let c be a scalar representation of V, utilizing the standard procedure speci�ed in [4],

the CA calculate d = u�1 � (f + s � c) mod ordG to obtain the pair (c; d) as the signature.

Procedure 3: ECDSA signature veri�cation

1. Compute h = d�1 mod ordG, m = f �h mod ordG and q = c �h mod ordG, based on the

veri�er�s knowledge of G; ordG;W; f; c, and d:

2. Obtain the curve point P = m�G+ q �W.

Let c�be the scalar representation of P, using the standard procedure speci�ed in [4].

3. If c�= c then the signature is determined to be valid.

In both procedures (yielding the signature generation and signature veri�cation operations)

there is a need to perform a modular multiplication, hence necessitating the need to execute

procedure 1 twice.

We next describe how the execution of the control operations can be carried out using pure

multiplications in the framework of explicit certi�cation.

Observing the expression d = u�1 � (f + s � c) mod ordG in Procedure 2, where the pair

(c; d) is the generated signature, we let the signing CA calculate h = d�1modordG = u �

(f + s � c)�1modordG. Furthermore, we let t = c � 2�mkmod ordG; which can be calculated

by multiplying c by 1, using Procedure 1. Thus, the explicit certi�cate is the pair (t; h).

Subsequently, the veri�er performs the following:

1. Computes

m = f � h � 2�mkmodordG and q = c � h � 2�mkmodordG: (6.1)

2. Computes the curve point P = m�G+ q �W

3. Let t�be the scalar representation of P, if t0 = t then the signature is determined to be

valid.

75

As can be observed from the above, the calculation of the modular multiplication represented

in equation 6.1 is achieved by executing Procedure 1 only once. No operation was made to

remove the multiplicative factor 2�mk, as this is compensated by using the new certi�cate

(t; h):

6.1.3 Implicit Certi�cation in Self-certi�ed Procedures

Let d be the CA�s private key and R its public key (where R = d � G). User i, served by

the CA, is denoted by Ni, with a private key, xi. hi is a random scalar, unique to each user,

generated by the CA for the purpose of calculating the private keys. Ui is de�ned as the public

key of user i, and H(v;W) is a scalar obtained by performing a hash transformation on the

scalar v and curve-pointW: To issue N 0
is public and private keys, the CA generates the random

scalar hi. Respectively, the two keys are given by

Ui = hi �G (6.2)

xi = [H(IDi;Ui) � hi + d] mod ordG:

N 0
js public and private keys are issued in a similar manner.

Fixed Key-Generation

We brie�y review the steps to be executed in achieving self-certi�ed �xed-key generation (as

discussed in section 2.5.2).

1. Ni and Nj exchange the pairs (IDi;Ui) and (IDj ;Uj), respectively

2. Kij (generated by Ni) = xi � [H(IDj ;Uj) � Uj + R]; while Kji (generated by Nj) =

xj � [H(IDi;Ui)�Ui +R]: Note that all scalar by scalar multiplications are calculated

modulo ordG:

All modular multiplications needed for the above procedures are performed mod ordG.

Since Ui = hi � G; the argument H(IDj ;Uj) � Uj necessitates the calculation of

H(IDj ;Uj) � hi � G, where H(IDj ;Uj) � hi is a modular multiplication necessitating

76

the execution of Procedure 1 twice.

These operations can be the result of executing Procedure 1 only once, based on the follow-

ing:

Key issuing by the CA: N 0
is public and private keys are

Ui = hi �G (6.3)

xi =
h
H(IDi;Ui) � hi � 2�mk + d

i
mod ordG

The argument H(IDi;Ui) � hi � 2�mk is derived by performing Procedure 1 only once. Similar

calculations hold for user Nj :

Key-generation: In order to generate the �xed-key, the two steps are:

1. Ni and Nj exchange the pairs (IDi;Ui) and (IDj ;Uj), respectively

2. Kij = xi� [H(IDj ;Uj) � 2�mk �Uj +R]; and Kji = xj � [H(IDi;Ui) � 2�mk �Ui+R]:

Hence Kij = xi � [H(IDj ;Uj) � 2�mk �Uj +R] = xi � (H(IDj ;Uj) � 2�mk � hi + d) �G

= xi � xj �G: Similar considerations apply for Kji: A key con�rmation should now follow. If

indeed Kij = Kji; then we observe �xed-key self-certi�cation.

It should be noted that all modular multiplications performed by Ni and Nj were based on

executing Procedure 1 only once. No operation was made to remove the multiplicative factor

2�mk, as this is compensated by the CA carrying out the same operation during the key issuing

process.

Ephemeral Key-Generation

As described in section 2.5.3, in order to achieve a self-certi�ed ephemeral key-generation, users

Ni and Nj perform the following:

1. Ni and Nj generate a random scalar pvi and pvj ; respectively

2. Ni calculates the ephemeral value EVi = pv i � G: Nj calculates the ephemeral value

EVj = pv j �G

77

3. Ni and Nj exchange the values (IDi;Ui;EVi) and (IDj ;Uj ;EVj), respectively

4. Kij (generated by Ni)= pvi � [H(IDj ;Uj)]�Uj +R] + (xi + pvi)�EVj ;

Kji (generated by Nj) = pvj � [H(IDi;Ui)]�Ui +R] + (xj + pvj)�EVi

All modular multiplications in the above procedures are preformed mod ordG: Again,

sinceUi = hi�G; the argumentH(IDj ;Uj)�Uj necessitates the calculation ofH(IDj ;Uj)�

hi which is a modular multiplication necessitating the execution of Procedure 1 twice. .

These operations can be the result of executing Procedure 1 only once, based on the follow-

ing:

Key issuing by the CA: Considering users Ni and Nj ;we have

Ui = hi �G (6.4)

xi =
h
H(IDi;Ui) � hi � 2�mk + d

i
mod ordG;

Uj = hj �G

xj =
h
H(IDj ;Uj)� hj � 2�mk + d

i
mod ordG:

Once again, the distinction in the proposed improvement lies in the arguments H(IDj ;Uj) �

hj �2�mk and H(IDj ;Uj) �hj �2�mk derived by performing Procedure 1 only once. The following

steps are followed in order to generate the self-certi�ed ephemeral key:

1. Ni and Nj generate a random scalar pvi and pvj ; respectively

2. Ni calculates the ephemeral value EVi = pv i � G: Nj calculates the ephemeral value

EVj = pv j �G

3. Ni and Nj exchange the values (IDi;Ui;EVi) and (IDj ;Uj ;EVj), respectively

4. Kij (generated by Ni) = pvi � [H(IDj ;Uj)] � 2�mk �Uj +R] + (xi + pvi)�EVj ;

5. Kji (generated by Nj) = pvj � [H(IDi;Ui)] � 2�mk �Ui +R] + (xj + pvj)�EVi

78

PKC
key

establishment

Point by scalar
multiplication

Modular scalar
by scalar

multiplication

Montgomery
procedure

Modular
multiplicative

inverse

Figure 6-2: The chain of importance in the PKC key establishment process, illustrating the
important role of the modular multiplication procedure

Hence Kij = pvj� [H(IDj ;Uj) �2�mk�Uj+R]+(xj+pvj)�EVi = pvj� [H(IDj ;Uj) �

2�mk �hi+d]�G+(xj+pvj)�EVi =pvi�xj�G+xi�pvj�G+pvi�pvj�G. Similar

considerations apply for Kji:

A key con�rmation should now follow. If indeed Kij = Kji ;then we observe an ephemeral

key self-certi�cation.

As in the case of �xed-key generation, all modular multiplications performed by Ni and

Nj were based on executing Procedure 1 only once. No operation was applied to remove the

multiplicative factor 2�mk, as this is compensated by the CA performing the same operation

during key issuing.

Procedure 1 ends with the need to subtract the modulus n from the resultant value s, in

cases of s > n . While this may be computationally negligible, it somewhat disrupts the goal

of treating Procedure 1 as a pure two-multiplications operation. In this respect, it is observed

that for the cases in which the value generated by the procedure is intended to be used as a

scalar in an ECC scalar-point multiplication (or as an exponent in public key cryptographic

implementations over integers), this �nal operation in Procedure 1 can be discarded. In other

words, the value s can be kept as it is, even if it exceeds s. This is permitted since the

multiplication of s by a point reduces it modulo ordG.

6.2 Modular Multiplicative Inverse

When attempting to calculate a modular multiplication between two scalars, we utilized the

Montgomery algorithm as indicated in the previous section. In order to perform these com-

putations, one must calculate a negative modulo 2m multiplicative inverse. The multiplicative

inverse modulo 2m of an odd value b, denoted by b�1mod2m, is a value r where b�r = 1mod 2m.

79

Without loss of generality it can be assumed that b < 2m, (i.e., b is an m-bit value), since oth-

erwise b is �rst taken mod2m (i.e., only the least m signi�cant bits in the binary representation

of b are selected) before proceeding with the calculation of r. The binary representation of r

also consists of m bits. Consequently, this section is divided into two parts. The �rst pertains

to the calculation of a modular 2m multiplicative inverse of a parameter, i.e. b�1mod (2m) ;

and the second addresses the calculation of a negative modular 2m multiplicative inverse of a

parameter, i.e. �b�1mod (2m).

All of these basic computations are extremely useful and desired tools in the world of number

theory, in general, and in the �eld of cryptography in particular. Classic example of scenarios

in which the modulus is a power of 2 are the Montgomery modular multiplication [48] and the

exact division problem [64], [40]. In the latter, one has a list of odd word-sized numbers each

divisible by k, and there is a need to divide all of them by k. Here it is needed to compute

b�1mod2m where m is the number of bits in a word.

This section presents procedures for calculating a multiplicative inverse modulo 2m using

a novel mathematical approach that is not an extension or modi�cation of known approaches

such as: [24] , [46], [37], [61], [47]. These known algorithms that perform the above calculations

involve a number of steps linearly proportional to the number of characters in a number. This

chapter demonstrates an e¢ cient methodology for a character-based computation of modular

multiplicative inverses that involve a power of 2, reducing these calculations to a logarithmic

number of steps. Hence, the amount of calculations involved and the computational resources

are tremendously decreased form an O(m) complexity to a O(logm) complexity, where m is the

amount of characters in the number.

6.2.1 Calculating the expression b�1mod (2m)

This section presents a procedure for calculating the multiplicative inverses modulo 2m based

on a novel mathematical approach. The procedure is suitable for software implementation on a

general-purpose processor. When counting the total number of word-level processor multiplica-

tions, the computational e¤ort involved in calculating a multiplicative inverse is two thirds that

of a single multiplication of m-bit values, in addition to a few word-level multiplications. For

standard processor word sizes, the number of these additional multiplications does not exceed

80

12.

As indicated above, the multiplicative inverse modulo 2m of a value b, is a value r, where

b � r = 1mod 2m. By de�nition, b is not necessarily restricted to be an m� bit integer, although

in practice this is usually the case. Hence, the desired result is r = b�1mod2m. Cases where

the modulus is a power of 2 are encountered in various modular multiplication procedures

(such as in the Montgomery algorithm for modular multiplications). These calculations are

straightforward but at the same time consume a great deal of computation.

Straightforward Calculations

The following are several known or straightforward algorithms for calculating b�1mod2m. The

�rst is taken from Dusse and Kaliski [24].

Algorithm 1 Dusse and Kaliski�s method for calculating r = b�1mod2m

y1 = 1

for i = 2 to m

if b � yi�1 < 2i�1mod2i

then yi = yi�1

else yi = yi�1 + 2i�1

The value of ym is the desired result r = b�1mod2m:

The following is a straightforward method for obtaining the same result.

Algorithm 2 Calculating r = b�1mod2m by controlled additions of left-shifts of b

Since b �r = 1mod 2m, the m least signi�cant bits of the complete product b �r are of the form

000:::01. To obtain r, one should therefore add selected left-shifts of the binary representation

of b such that the addition of the shifts generates the m least signi�cant bits 000:::01. The

coe¢ cients of the added left-shifts form the binary representation of r. (We form here a standard

shift-and-add multiplication, where the multiplicand b is known, and the m least signi�cant bits

of the product are given. From this we recover the multiplier r, bit by bit, starting from the

LSB.)

This algorithm is always feasible to implement since b is odd, having 1 as the least signi�cant

bit. Hence, by adding selected left-shifts of b to an accumulated sum that starts with b, one can

81

xx… ...x 00… ...01
m bits m bits

Figure 6-3: Illustration of the identity expression r � b = x � 2m + 1

always generate a value whose m least signi�cant bits are of any form, including 000:::01. In

other words, Algorithm 2 is executed by �sliding�b left across an accumulated sum, such that

the least signi�cant bit of b generates the bits of the given product, one at a time, from right

to left.

As an example, let kH and kL respectively denote the higher half and lower half of the

binary representation of an 2m � bit value, k. Each of these halves is an m � bit value. The

relation b � r = 1mod (2m) means that b � r = x � 2m + 1 for some integer x. This means that

the following m � bit identity hold: (b � r)L = (000:::01)2. Figure 6-3 visually illustrates this

identity.

Since the multiplication r �b has the structure indicated above, calculating r becomes rather

straightforward.

1. Lets look at the following example where we want to calculate the modular 24 multi-

plicative inverse of 3, for m = 4. In other words, we would like to calculate r where

r = 3�1mod
�
24
�
: We begin by shifting and adding the binary representation of 3, i.e.

(0011)2, until the least signi�cant part of the additions will consist of the sequence "0001".

Figure 6-4 shows the manner by which additions are employed. Since the coe¢ cients of

the added shifts are 20; 21 and 23; the representation of r is: 20 + 21 + 23 = (11)10 =

(1011)2) 11; which is the modular 24 multiplicative inverse of 3:

The above bit-wise straightforward procedure for calculating a multiplicative inverse modulo

2m is rather time consuming. If such a calculation is seldom performed in a given application, it

may be justi�ed to utilize the bit-wise procedure. However, when there is a need to frequently

perform such a calculation, it is advisable to try and execute this procedure by performing

character-level multiplication, fully exploiting the processing power of a given processor.

82

 0 0 1 1
 0 0 1 1

 0 0 1 1

0 1 0 0 0 0 1

Figure 6-4: Shifting and adding the binary representation of 3 until the least signi�cant part of
the additions includes four bits in the format "0001"

Calculating b�1mod2m can be based on initially computing 2�mmod b and then recovering

b�1mod2m by one division of a 2m-bit value by an m-bit value as shown by Algorithm 3a

followed by Algorithm 3b below.

Algorithm 3 Calculating r = b�1mod2m in two steps

Algorithm 3a: Calculating 2�mmod b by m successive divisions of 2 mod b

d = 1

for i = 1 to m

if d is odd then d = d+ b

d = d=2

The �nal value of d is, of course, 2�mmod b:

Algorithm 3b: Recovering r = b�1mod2m out of s = 2�mmod b

The desired r = b�1mod2m is recovered out of s = 2�mmod b as follows:

t = s � 2m

u = (t� 1)=b

r = 2m � u

To realize why Algorithm 3b is valid note that the relation s = 2�mmod b means that

t = s � 2m = u � b+1 and the value u, calculated in the second step of Algorithm 3b, is therefore

an integer. That is, u � b = s � 2m� 1. Taking both sides of the latter relation mod2m yields the

congruence u�b = �1mod 2m. That is, (�u)�b = 1mod 2m, and therefore �u = r = b�1mod2m.

However, �u = (2m � u)mod 2m, which completes the validity proof for Algorithm 3b.

Another method of calculating modular multiplicative inverses is The Extended Euclid Al-

gorithm [46]. It is important to note that this algorithm treats odd moduli. Therefore, when

83

computing r = b�1mod2m, we �rst calculate the multiplicative inverse of 2m modulo the odd b,

and then exchange the role of the two values 2m and b. Algorithm 3a is precisely the Extended

Euclid Algorithm when used in calculating 2�m mod b, while Algorithm 3b is the procedure of

exchanging 2m and b. Methods of calculating modular multiplicative inverses further include

the Montgomery Inverse Algorithm [37], [61]. This algorithm, which treats an odd moduli,

consists of two phases of which the second is identical to Algorithm 3a. Since the modulus is

odd, calculating r = b�1mod2m further necessitates the procedure of Algorithm 3b. Other

methods presented in the literature for calculating b�1mod2m include lookup table techniques

such as that proposed in [47], which are inherently non-algorithmic.

E¢ cient Calculations

Let kH and kL denote the higher half and lower half of the binary representation of a 2i-bit

value k, respectively. Each of these halves is an i-bit value. For example, in the relation b � r

= 1mod 2i, i.e., b � r = x � 2i + 1 for some integer x, (b � r)L = (000:::01)2. In order to calculate

r = b�1mod2m;, we �rst consider the calculation of p = q�1mod22i given q�1L mod2i.

Theorem 1 Given b and r as i-bit values, where r = b�1mod 2i, and given q as a 2i-bit value

where qL = b; the value p = q�1mod22i can be e¢ ciently obtained by calculating its lower half;

pL, and its higher half, pH (both are i-bit values independently).

The Lower Half of p can be calculated as

pL = r; (6.5)

while the Higher Half of p can be calculated as

pH = � [[(r � b)H + (r � qH)L] � r]mod 2
i; (6.6)

where p is formed by the concatenation between pH and pL such that p = pH jpL:

84

Proof. The relation p = q�1mod22i suggests that p�q = 1mod 22i. From the multiplication

p � q, we derive that

(pHpL) � (qHqL) = pH � qH � 22i + (pH � qL + pL � qH) � 2i + pL � qL; (6.7)

as depicted in �gure 6-5. Therefore, the 2i least signi�cant bits of p � q = (pHpL) � (qHqL) can

be written as �
(pH � qL + pL � qH) � 2i + pL � qL

�
mod22i: (6.8)

Since p � q = 1mod 22i,

�
(pH � qL + pL � qH) � 2i + pL � qL

�
= 1mod 22i: (6.9)

Calculating the Lower Part of p

Since the i least signi�cant bits of (pH �qL+pL �qH) �2i+pL �qL are also the i least signi�cant

bits of pL �qL, only pL �qL dictates that the i least signi�cant bits of (pH �qL+pL �qH)L �2i+pL �qL
are 1 (see �gure 6-5 for details). That is,

pL � qL = 1 =) pL � qL = 1mod 2i =) pL = q
�1
L mod2i: (6.10)

Since qL = b and r = b�1mod2i;

pL = r:

Calculating the Higher Part of p

Given that the 2i least signi�cant bits of the expression (pH � qL+ pL � qH) � 2i+ pL � qL form

the value 1,

[(pH � qL + pL � qH)L + (pL � qL)H]mod 2i = 0 (6.11)

(see the middle section in Figure 6-5 for details). That is,

(pH � qL)L = �(pL � qL)H � (pL � qH)Lmod2i: (6.12)

85

Since the least signi�cant component, kL, of a number k is also k mod2i,

pH = �[[(pL � qL)H + (pL � qH)L] � q�1L]mod 2
i: (6.13)

As qL = b, r = b�1mod 2i and pL = r; we conclude that

pH = � [[(r � b)H + (r � qH)L] � r]mod 2
i: (6.14)

Example 1 To illustrate this result, we refer to the following example. For simplicity, all

numbers are displayed in hexadecimal base. Our purpose is to �nd p = q�1mod232, given that

q = 99F8A5EF and qL = b, where r = b�1 = (A5EF)
�1 = 290F mod 216. Using the e¢ cient

calculation method described in Theorem 1, we can derive that pL = r = 290F . In order to

calculate pH we are required to follow three easy steps:

1. (r � b)H = (290F �A5EF)H = 1A9D

2. (r � qH)L = (290F � 99F8)L = BD88

3. pH = �[((r � b)H + (qH � r)L) � r]mod 216 = �((1A9D +BD88) � 290F)mod 216 = 68D5

In order to obtain the �nal result, p, all that is left is the concatenation. Hence, p =

pH jpL = 68D5290F: The result can be checked by validating the following equality p � q =

68D5290F � 99F8A5EF = 3F0D37FD00000001 = 1 mod 232:

Theorem 1 speci�es the three operations: (r � b)H , (r � qH)L and [(r � b)H+(r � qH)L]�rmod2i:

All values are i-bit long. The �rst operation involves the multiplication of i-bit values. On the

other hand, when performing the latter two, only the lower half of the generated product is

(qH qL)
 . (pH pL)

 qL
 . pL

qL
 . pH

 + qH
 . pL

 qH
 .pH (m bits)(m bits)

Figure 6-5: The format of (pH � qL + pL � qH) � 2m + pL � qL

86

needed, requiring half of the full multiplication e¤ort. This leads us to the following conclusion:

Conclusion 1 The execution of Theorem 1 altogether involves the computation of two multi-

plications of i-bit values.

Theorem 1 is used in reaching the �nal goal of calculating b�1mod2m. The fundamental

process of the theorem can be iteratively repeated logm times, by doubling the number of bits

when calculating the modular inverse in each iteration. At the end of such process, we are left

with b�1mod2m: An illustrative example of this process is discussed in the subsection below.

Computational E¤orts

We begin with an introductory graphical illustration, depicted in Figure 6-6, demonstrating the

proposed procedure for calculating b�1mod2m; where m = 8-bits. Finding the multiplicative

inverse of the number 00abcdefgh00 comprises of the following steps:

0. Finding the multiplicative inverse of 0h0 modulo 21: Note that 0h0 is 1 since the number

00abcdefgh00 is odd. For the same reason, the inverse of 0h0 is also 1;

1. Finding the multiplicative inverse of 00gh00 modulo 22, by exploiting the result from step

(0);

2. Finding the multiplicative inverse of 00efgh00 modulo 24 using the result obtain in step

(1) and, �nally,

3. Finding the multiplicative inverse of the entire number 00abcdefgh00 modulo 28 by using

the result from step (2).

It is noted that steps (1)-(3) are achieved by using Theorem 1.

Overall Computational E¤orts in Terms of Word-Level Processor Multiplications

In the case treated by this section, r = b�1mod2m is calculated, where m is a power of 2.

Consider the case where each digit in the illustration of Figure 6-6 is a processor-word of k-bits.

In practice, k is a power of 2. Letting n = m
k , the representation of r and b consists of n words.

The process illustrated in Figure 6-6 suggests that log n consecutive doublings of h�1mod2k

yield r = (abcdefgh)�1mod2m (where h is the right most word of abcdefgh). In the j-th stage,

87

j = 0; 1; :::; log n�1, a value consisting of 2j words is doubled in size. Based on the observation

in Conclusion1, such doubling requires two multiplications of values consisting of 2j words. One

such multiplication requires (2j)2 = 22j single-word multiplications. The entire process thus

involves 2�
logn�1P
j=0

22j single-word multiplications. It should be noted that 2�22�(log n�1) = 2�(n2)
2,

i.e., during the last stage, a value consisting of n2 words is doubled, requiring 2 �(
n
2)
2 single-word

multiplications. The total number of single-word multiplications required when calculating

r = b�1mod2m, given the initial value h�1mod2k, is therefore 2 � [
logn�1P
j=0

22j] = 2(n2�1)
3 , where

n2 is the number of single-word multiplications executed when multiplying two m-bit operands.

By de�nition, each such operand consists of n words.

Let us now evaluate the computational e¤ort involved in calculating h�1mod2k. This calcu-

lation in itself requires log k executions of the process in Theorem 1, doubling 1-bit; 2-bit; :::; k2 -

bit, values. Since this section also concerns software implementations using a general-purpose

processor, these log k small values should each be considered as a complete processor word.

Thus, when implementing Conclusion 1, this e¤ort requires 2 � log k single-word multiplications.

As a result, when calculating r = b�1mod2m, the overall number of single-word multipli-

cations is:
2(n2 � 1)

3
+ 2 log k (6.15)

Standard sizes for a processor word are 8; 16; 32; 64-bits, for which log k = 3, 4, 5, 6, where

n2 is the number of single-word multiplications executed when multiplying two m-bit operands.

It is concluded that the computational e¤ort involved in calculating the multiplicative inverse

of an odd value b modulo 2m is two thirds of one multiplication of m-bit values, plus a negligible

number of single-word multiplications which in practical cases does not exceed 12 (= 2 log k).

a b c d e f g h
(0)

(1)

(2)

(3)

Figure 6-6: Finding the multiplicative inverse of the number represented by "abcdefgh".

88

Performance Comparison

The performance of the presented procedure for calculating b�1mod2m is compared to that

of other procedures based on two criteria: (1)the ability for software execution on a general-

purpose processor, and (2)the computational e¤ort, measured in terms of the overall number

of executed word-level multiplications.

The presented procedure was shown to be suitable for software implementation on a general-

purpose processor. When counting the total number of word-level multiplications, it was shown

that the computational e¤ort involved in calculating b�1mod2m is two thirds of one multipli-

cation of m-bit values, plus a few word-level multiplications, whose number in practice does

not exceed 12.

Algorithm 1 [24] is executed in m� 1 steps, each one involving the multiplication operation

b � yi�1, where the multiplicand consists of m bits. The procedure can be naturally performed

in software using a general-purpose processor. In contrast, this section presents an approach in

which the overall number of single-word multiplications is equivalent to a single m-bit multi-

plication, also executed on a general-purpose processor.

Algorithm 2 is executed in m steps, involving shifts-and-adds. Altogether this is equivalent

to one multiplication of m-bit values. Shifts and decisions are being made at the bit-level.

Therefore, on the one hand, the computational e¤ort is equivalent to one m-bit multiplication,

like the procedure presented in this section. On the other hand, the bit-level considerations

in Algorithm 2 pose implementation di¢ culties on a general-purpose processor, a disadvantage

which the procedure presented in this section overcomes.

Algorithm 3 is executed in m steps involving shifts-and-adds. Shifts and decisions in Algo-

rithm 3a are made at the bit-level. Therefore, the procedure presented in this section outper-

forms Algorithm 3 as far as both discussed criteria are concerned.

It should be noted that the Montgomery modular multiplication procedure [48] yields the

value x � y � 2�mmod b, for m-bit operands. Algorithm 3a can therefore be replaced by Mont-

gomery procedure, for x = y = 1 (yielding 2�mmod b). The replacement of Algorithm 3a by a

Montgomery multiplication can possibly have the advantage of running in software on a general

processor, utilizing word-level multiplications. Regardless of this e¤ort, there is still a need to

perform a division by an m-bit value, as required by Algorithm 3b. Therefore, the procedure

89

presented in this section signi�cantly outperforms this case too.

We next compare the procedure proposed in this section to the Extended Euclid Algorithm

[46] and to the Montgomery Inverse Algorithm [37], [61]. As shown in this section, Algo-

rithm 3a is precisely the Extended Euclid Algorithm when used in calculating 2�m mod b,

while Algorithm 3b is the procedure of exchanging the role of 2m and b, yielding the result

b�1mod2m. Hence, Algorithms 3a+3b are the implementation of the Extended Euclid Algo-

rithm for the case treated in this section. The Montgomery Inverse Algorithm treats an odd

modulus. Therefore, an implementation of this algorithm in calculating b�1mod2m would mean

that 2�mmod b is calculated �rst, and b�1mod2m is then recovered by executing Algorithm

3b. Accordingly, Algorithm 3b is still needed when using the Montgomery Inverse Algorithm.

Furthermore, Algorithm 3a is the second phase of the Montgomery Inverse Algorithm. There-

fore, when calculating b�1mod2m, the execution of Algorithms 3a+3b is more e¢ cient than the

Montgomery Inverse. It is concluded that the procedure presented in this section for calculating

b�1mod2m, which outperforms Algorithms 3a+3b as shown above, outperforms the Extended

Euclid Algorithm and the Montgomery Inverse Algorithm.

Beside the practical advantages (shown above) of the presented procedure, it should be noted

again that the mathematical approach taken by this section is di¤erent from those treated in

all of the above referenced papers.

Treating the Case where m is not a Power of 2

Let a�1 = b mod p and q be a divisor of p. Basic observations in number theory show that

[a mod q]�1 = b mod q: For clari�cation, letting a = 11, p = 14 and q = 7, it is evident that

11�1 = 9mod 14, and 4�1 = 2mod 7.

The procedure presented in section 6.2.1 treats the case where m is a power of 2 (allowing

for the described consecutive doublings). In cases where m is not a power of 2, the binary

representation of b consists of n = 2dlog me bits, and the value w = b�1mod2n is calculated

in dlog me steps, based on the procedure of section 6.2.1. Consequently, r = wmod2m is the

required result b�1mod2m. An important observation pertains to the fact that calculating

wmod2m can be done by taking the m least signi�cant bits in the binary representation of w.

90

As a concluding remark, one can see that various procedures have been proposed in the past

for calculating b�1mod2m. Some lend themselves to software execution on a general proces-

sor utilizing word-level multiplications. The overall computational e¤ort associated with such

procedures is equivalent to more than one multiplication of m-bit operands. Other procedures,

having overall computational e¤ort equivalent to one multiplication of m-bit operands, are ex-

ecuted on a bit-level and are not suitable for software implementation using a general-purpose

processor (i.e., they cannot e¢ ciently utilize word-level multiplications). This subsection pre-

sented a procedure for calculating r = b�1mod2m which on the one hand is suitable for soft-

ware implementation using a general-purpose processor, while on the other hand it utilizes

processor-word multiplications. When counting the total number of such multiplications, the

computational e¤ort involved in calculating r is two thirds of one multiplication of m-bit values,

plus a few word-level multiplications, whose number in practice does not exceed twelve. This

combines the best individual performances of known procedures, when considering minimal

computational e¤ort and ability for software execution on a general-purpose processor. To the

best of the authors�knowledge, the mathematical principle on which the proposed procedure

relies is novel and is not an extension or modi�cation of known approaches.

6.2.2 Calculating the Expression �b�1mod (2m)

This speci�c calculation of �b�1mod (2m) occurs frequently when performing any general mod-

ular calculations, in particular when establishing point-by-scalar multiplications using ECC.

The negative modular 2m multiplicative inverse of a parameter, b, is de�ned as�b�1mod(2m):

Accordingly, if we de�ne the parameter r0 to be the negative modular multiplicative inverse of

b, then r0 = �b�1mod (2m) : Hence, b � r0 mod (2m) = �1; or b � r0 = x � 2m � 1 (where x is

an arbitrary number). From the latter expression we understand that the product r0 � b is a

multiplicative of 2m; �1: To that end, this product is of the form of XF in hexadecimal format,

where X is an unde�ned character of m bits and F = (111::::1)2 with the length of m bits as

well.

If, theoretically, we would have had the positive modular 2m multiplicative inverse of b; i.e.

r; (e¢ cient calculation of which is showed in the section above), then the best and simplest way

of calculating the negative value would be to simply use the following identity: r0 = 2m � r:

91

xx… ...x 11… ...1
m bits m bits

Figure 6-7: The format of the expression r0 � b = x � 2m � 1

Unfortunately, having prior knowledge of r is almost never the case, hence e¢ cient calculations

are required here as well.

Straightforward Calculations

Let kH and kL respectively denote the higher half and lower half of the binary representation

of a 2m� bit value k. Each of these halves is an m� bit value. The relation b � r0 = 1mod (2m)

means that b � r0 = x � 2m � 1 for some integer x. This implies that the m-bit expression

(b � r0)L = (111:::111)2, as illustrated in �gure 6-7.

Since the multiplication r0 � b has the structure indicated above, calculating r is rather

straightforward:

1. Add shifts of the binary representation b such that the addition of the shifts generates

the m least signi�cant bits 111:::1

2. Adding the coe¢ cients of the added shifts form the binary representation of r0

Lets look at the following example in which we want to calculate the negative modular

Multiplicative Inverse of 13 given that m = 4. In other words, we would like to calculate r0

where r0 = �13�1mod
�
24
�
: We will begin by shifting and adding the binary representation of

13, i.e. (1101)2, until the least signi�cant part of the additions will include four 1�s (see �gure

6-8).

Since the coe¢ cients of the added shifts are 20; 21 and 23; the representation of r0 is

20 + 21 + 23 = (11)10 = (1011)2) 11, which is the negative modular multiplicative inverse

of 13: As indicated above, this bit-wise straightforward procedure for calculating a negative

multiplicative inverse modulo 2m is rather time consuming. Hence, a better and more e¢ cient

way of calculations is highly desirable.

92

 1101
 1101

1101
 10001111

Figure 6-8: Shifting and adding the binary representation of the number 13 until the least
signi�cant part of the additions includes four 1�s

E¢ cient Calculations

Let b and r0 be given m � bit values, where r0 = �b�1mod 2m. Let q be a given 2m � bit

value where qL = b: It is next shown how to e¢ ciently calculate p = �q�1mod 22m, utilizing

the above. We note the following known values:

1. The value of r0, where r0 = �b�1mod2m

2. The value of q

3. The fact that qL = b

As in section 6.2.1, obtaining p is partitioned into three steps; calculating the lower half;

i.e. pL (m-bits), calculating of the higher half, i.e. pH (m-bits) and �nalizing the entire

value p:

� The lower half of p is given by

pL = r

� The higher half is given by

pH = [[(r
0 � b)H + [r0 � qH]L + 1] � r0]mod 2m

� Calculate p by performing the following:

p = pH jpL

Proof of these derivations will proceed the following example.

93

As an example, let�s consider the case of �nding p = �q�1mod232, given that q = 99F8A5EF

and qL = b, where r0 = D6F1 = �A5EF�1mod216: Using the e¢ cient calculation described

above, we can derive that pL = r = D6F1: In order to calculate pH we need to follow three

easy steps:

1. (r0 � b)H = (D6F1xA5EF)H = 8B51

2. (r0 � qH)L = (99F8xD6F1)L = 4278

3. pH = [[(r0 � b)H + [r0 � (q)H]L + 1] � r0]mod 216 = (CDCAxD6F1)mod 216 = 972A

In order to receive an accurate result of p, all that is left is the concatenation, hence

p = pH jpL = 972AjD6F1 = 972AD6F1: The result can be checked using the following identity:

p � q = 972AD6F1 � 99F8A5EF = 5AEB6DF1FFFFFFFF = �1mod232: As in the previous

case, this method can be used to e¢ ciently and easily calculate the negative inverse modulo

2m of a large value, by �rst calculating the negative modular multiplicative inverse of a much

smaller part of this given value. The �rst calculation (the given r0 in the above expressions)

can be used for further calculations. Evaluation of the larger number will be based upon the

known r0 and will increase by powers of 2.

Proof

All of the parameters in the following proof represent binary numbers. By knowing r0; b and

m; where r0 = �b�1mod2m; we can show that calculating the expression p = �q�1mod22m

where qL = b; can be done by using the e¢ cient calculation described above. The identity

p = �q�1mod22m implies that p � q = �1mod 22m. Since p � pHpL and q � qHqL; the

expression p � q takes the form (pHpL) � (qHqL) = pH � qH � 22m + (pH � qL + pL � qH) � 2m +

pL � qL (as in the previous case). Requiring that (pHpL) � (qHqL) = �1mod 22m means that

(pH � qL + pL � qH) � 2m + pL � qL = �1mod 22m. That is, the least signi�cant 2m bits of

(pH � qL + pL � qH) � 2m + pL � qL should all be 10s.

Calculating the Lower Part of p We note the fact that the least signi�cant m bits of

(pH � qL + pL � qH) � 2m + pL � qL are the least signi�cant m bits of pL � qL. Hence, only

pL � qL dictates that the m least signi�cant bits of (pH � qL + pL � qH) � 2m + pL � qL will be

94

1�s. The last observation suggests that pL � qL = �1mod 2m: Since qL = b we conclude that

pL = �b�1mod2m. Since it is given that r0 = �b�1mod2m it follows that pL = r0.

Calculating the Higher Part of p According to the preceding result, the expression (pH �

qL + pL � qH) � 2m + pL � qL has m least signi�cant 10s, for pL = r0. The second portion of m (to

the left of these m least signi�cant 1�s) are identi�ed as [pH � qL+ pL � qH+ (pL � qL)H]mod 2m.

Given that [pH � qL + pL � qH+ (pL � qL)H] = �1mod 2m; the bits identi�ed as [pH � qL + pL �

qH+ (pL � qL)H]mod 2m should also be 1. Since pL = r0; we receive the following expression:

[pH � qL + r0 � qH+ (r0 � qL)H] = �1mod 2m. Furthermore, from the identity r0 = �b�1mod2m

it follows that b = � (r0)�1mod2m. Substituting this into the preceding relation yields: �pH �

(r0)�1mod2m = �r0 � qH � (r0 � b)H � 1mod 2m, that is: pH = r0 � [r0 � qH + (r0 � b)H + 1]mod

2m:

To avoid handling large values, the expression r0 � (q)H can be reduced mod 2m inside the

brackets, yielding the �nal relation: pH = r0 � [(r0 � qH)L + (r0 � b)H + 1]mod 2m:

95

Chapter 7

Summary of Contributions

This dissertation has described novel foundations needed to develop a more resilient infrastruc-

ture for securing resource-constrained sensor networks. In particular, practical algorithms for

accelerating the computations involved in both pairwise and group key establishments have

been of primary focus. Basic cryptographic arithmetic operations have been revised in order

to accommodate the unique attributes of WSNs. This has yielded interesting results that have

potential impact to the �eld of applied cryptography as a whole. The following summarizes the

primary contributions made in this dissertation.

7.1 Self-Certi�ed Public Key Generation with O¤-loading Pro-

visioning

A primary contribution made in this work pertains to the introduction of o¤-loading techniques

in the context of ECC-based self-certi�ed public key generation. O¤-loading non-secure tasks

from a component having low resources to an assisting node was described in detail, applied

to both �xed and ephemeral key generations. O¤-loading allows for prolonging of the network

lifetime, by distributing the computational e¤ort across more nodes. This directly answers the

challenge of minimizing resources, while adapting to the ad-hoc topology of the network. Suc-

cessful implementations of these algorithms on both the Intel mote 2 platform and TelosB mote

accentuate the practical aspects of this contribution. The positive impact of o¤-loading with

regard to network lifetime and overall reduction in computation time was evaluated through

96

simulations that addressed randomly deployed sensor nodes. To complement the pairwise key

generation scheme, an extension to group key generation has been proposed, introducing a

linear increase in energy and time with respect to the network density.

7.2 Delay-e¢ cient Group Key Generation

A more e¢ cient group key generation scheme has been proposed for WSN applications where

the overall process time is critical. The scheme is an extension to the Burmester and Desmedt

(BD) algorithm, with a trade o¤between energy consumption and overall key generation latency

when compared to the group key generation process established when using the self-certi�ed

pairwise key method. Executing an independent signature generation/veri�cation procedure

performed when validating ephemeral values is not necessary in this group key generation. As

in the case of pairwise key generation, identi�cation of malicious elements in the network is

achieved via key con�rmation processes.

7.3 Resource-e¢ cient Denial-of-service Mitigation

In order to address the fundamental issue of attacks that target the energy of sensor nodes by

repeatedly requesting key establishments, an e¢ cient scheme for mitigating such attacks has

been proposed and analyzed. The key idea is to shift the computational burden on the node

initiating the session, rather than that which is being approached. A careful study of various

alternatives for achieving this goal has been carried out.

7.4 Light-weight Arithmetic Algorithms

In order to retain high-performance when resources are scarce, it is imperative to revisit the

implementations of fundamental cryptographic functions. Here, a substantial contribution was

made in implementing Montgomery operations more e¢ ciently by considering the network

involved. Improvements of the modular multiplicative inverse calculation were also introduced.

For the latter, the computational resources were dramatically decreased from a complexity

of O(m) to that of O(logm). We have proven that this procedure for calculating the modular

97

multiplicative inverse is suitable for software implementation using a general-purpose processor,

while utilizing processor-word multiplications. This achievement was made without incurring

substantial memory cost (as is typical in other time/space trade-o¤ techniques).

98

Relevant Publications

The following is a list of publications covering the contributions made in this dissertation:

1. O. Arazi, H. Qi, �An E¢ cient Computation of Inverse Multiplicative Operations,� in

revision for publication in IEEE Transactions on Computers.

2. O. Arazi, H. Qi, D. Rose, �A Public Key Cryptographic Method for Denial of Service

Mitigation in Wireless Sensor Networks,� 4th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), June,

2007, San Diego, CA.

3. O. Arazi, H. Qi, �Toward Mitigating Denial of Service Attacks in Power-Constrained

Sensor Networks,� 2007 Cyber Security and Information Infrastructure Research Work-

shop, Oak Ridge National Lab (ORNL), TN, May 14-15, 2007.

4. O. Arazi, D. Rose, H. Qi, B. Arazi, "Self-Certi�ed Public Key Generation on the Intel

Mote 2 Sensor Network Platform" 3rd Annual IEEE Conference on Sensor, Mesh and

Ad Hoc Communications and Networks (SECON), Sept., 2006, Reston, VA.

5. O. Arazi, H. Qi, "Load-Balanced Key Establishment Methodologies in Wireless Sensor

Networks," International Journal of Sensor Networks (IJSN) (Special issue on Security

for Sensor Networks), Vol. 1, No. 2, April 2006.

6. O. Arazi and H. Qi, "Self-Certi�ed Group Key Generation for Ad Hoc Clusters in Wire-

less Sensor Networks," in Proc. of the 14th IEEE International Conference on Computer

Communications and Networks (ICCCN), San Diego, CA, Oct. 17-19, 2005.

7. O. Arazi, B. Arazi, H. Qi, I. Elhanany, D. Rose, "Self-Certi�ed Public Key Cryptog-

raphy for Resource-Constrained Sensor Networks," 2006 CyberSecurity and Information

Infrastructure Research Workshop, Oak Ridge National Lab (ORNL), TN, May 10-11,

2006.

8. B. Arazi, I. Elhanany, O. Arazi, and H. Qi, "Revisiting Public Key Cryptography for

Wireless Sensor Network," IEEE Computer Magazine, pp. 85-87, Nov. 2005.

99

Bibliography

100

Bibliography

[1] �Certicom ECC challenge,� Certicom, Inc., available at URL:

http://www.certicom.com/index.php.

[2] �Mica2 datasheet,�Crossbow Technology, Inc., available at URL: www.xbow.com.

[3] �Telosb datasheet,�Crossbow Technology, Inc., available at URL: www.xbow.com.

[4] �IEEE std 1363-2000: Speci�cations for public key cryptography,�Tech. Rep., 2000.

[5] E. T. A. Shamir, �Factoring large numbers with the twirl device,�in Crypto 2003, LNCS

2729, 2003, pp. 1�26, springer-Verlag.

[6] R. Adler, M. Flanigan, J. Huang, R. Kling, N. K. L. Nachman, C.-Y. Wan, and M. Yarvis,

�Intel mote 2: an advanced platform for demanding sensor network applications,�in Sen-

Sys 2005: Proceedings of the 3rd international conference on Embedded networked sensor

systems, 2005, pp. 292�298.

[7] B. Arazi, �Certi�cation of dl/ec keys,�in Proc. of the IEEE P1363 Study Group for Future

Public-Key Cryptography Standards, May 1999.

[8] O. Arazi, I. Elhanany, D. Rose, and H. Q. B. Arazi, �Self-certi�ed public key generation on

the intel mote 2 sensor network platform,�in Third Annual IEEE Communications Society

Conference on Sensor and Ad Hoc Communications and Networks, SECON 06, 2006.

[9] H. B. B. Chen, K. Jamieson and R. Morris, �Span: An energy-e¢ cient co-ordination

algorithm for topology maintenance in ad hoc wireless networks,� in MobiCom, Rome,

Italy, July 2001, pp. 70�84.

101

[10] D. Boneh, N. Modadugu, and M. Kim, Generating RSA keys on a handheld using an

untrusted server. New York: Springer-Verlag, 2000.

[11] G. Borriello, �Ten emerging technologies that will change the world,�Technology Review,

February 2003.

[12] E. Bresson, O. Chevassut, D. Pointcheval, and j. Quisquater, �Provably authenticated

group di¢ e-hellman key exchange,� in ACM Conference on Computer and Communica-

tions Security, 2001, pp. 255�264.

[13] M. Burmester and Y. Desmedt, �A secure and e¢ cient conference key distribution system,�

in EUROCRYPT �94, LNCS 950, 1995, pp. 275�286.

[14] � � , �A secure and scalable group key exchange system,�Information Processing Letters,

vol. 94, pp. 137�142, 2005.

[15] A. H. S. K. U. V. C. Blundo, A. D. Santis and M. Yung, �Perfectly-secure key distribution

for dynamic conferences,� in Advances in Cryptology - CRYPTO�92. Springer-Verlag,

Berlin, 1992, p. 471½U486.

[16] L. A. M. C. Blundo and D. R. Stinson, �radeo¤s between communication and storage in

unconditionally secure schemes for broadcast encryption and interactive key distribution,�

in Advances in Cryptology - CRYPTO�96. Berlin: Springer-Verlag, Berlin, 1996, p.

387½U400.

[17] Certicom, �Online elliptic curve cryptography tutorial,�Certicom, Inc., available at URL:

/www.certicom.com.

[18] H. Chan and A. Perrig, PIKE: Peer intermediaries for key establishment in sensor net-

works, 2005.

[19] H. Chan, A. Perrig, and D. Song, �Random key predistribution schemes for sensor net-

works,�in Proceedings of the 2003 IEEE Symposium on Security and Privacy, Washington

DC, USA, 2003, pp. 197�214.

[20] P. K. D. Carman and B. Matt, �Constraints and approaches for distributed sensor network

security,�in NAI Labs.

102

[21] P. N. D. Liu, �Establishing pairwise keys in distributed sensor networks,�in 10th Computer

and Communications Security, 2003.

[22] W. Di¢ e and M. E. Hellman, �New directions in cryptography,� IEEE Transactions on

Information Theory, vol. IT-22, no. 6, pp. 644�654, 1976.

[23] W. Du, J. Deng, Y. S. Han, and P. Varshney, �A pairwise key pre-distribution scheme for

wireless sensor networks,� in Proceedings of the 10th ACM Conference on Computer and

Communications Security (CCS), Washington DC, USA, October 2003, pp. 42�51.

[24] S. R. Dusse and B. S. Kaliski, �A cryptographic library for the motorola dsp5600,� in

Advances in Cryptology�EUROCRYPT�90, 1990, pp. 230�244, lNCS - Springer-Verlag.

[25] R. Dutta, R. Barua, and P. Sarkar, �Provably secure authenticated tree based group key

agreement,�in Proceedings of the 6th International Conference on Information and Com-

munications Security, LNCS 3269, 2004, pp. 92�104.

[26] W. B. W. P. E. Barker, W. Barker and M. Smid, �Recommendation for key management -

part 1: General national institute of standards and technology,�NIST Special Publication,

August 2005.

[27] Energizer, �AA battery datasheet,� Tech. Rep., 2005. [Online]. Available: available at:

http://data.energizer.com/PDFs/E91.pdf

[28] L. Eschenauer and V. D. Gligor, �A key-management scheme for distributed sensor net-

works,� in Proceedings of the 9th ACM conference on Computer and communications se-

curity, Washington, DC, November 2002, pp. 41�47.

[29] A. M. Eskicioglu and E. J. Delp, �A key transport protocol based on secret sharing ap-

plications to information security,� IEEE Transactions on Consumer Electronics, vol. 48,

no. 4, pp. 816�824, Novemeber 2002.

[30] D. Estrin, �Embedded everywhere: A research agenda for networked systems of embedded

computers,�National Research CouncilReport, 2001.

[31] A. Fiat and M. Naor, �Broadcast encryption,�in Advances in Cryptology - CRYPTO�93.

Springer-Verlag, Berlin, 1993, p. 480½U491.

103

[32] M. Girault, �Self-certi�ed public keys,� in Advances in Cryptology�EUROCRYPT�91,

March 1991, pp. 491�497, lNCS - Springer-Verlag.

[33] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, �Energy-e¢ cient routing proto-

cols for wireless microsensor networks,�in Proc. 33rd Hawaii International Conference on

System Sciences (HICSS), January 2000, pp. 3005�3014.

[34] F. Information, �Announcing the standard for digital signature standard (dss),�Processing

Standards Publication 186, May 1994.

[35] J. Jonsson and B. Kaliski, �Public-key cryptography standards (pKCS) #1: RSA cryp-

tography speci�cations version 2.1,�United States, 2003.

[36] M. Just and S. Vaudenay, �Authenticated multi-party key agreement,� in ASIACRYPT

�96, LNCS 1163, 1996, pp. 36�49.

[37] B. S. Kaliski, �The montgomery inverse and its applications,� IEEE Transactions On

Computers, vol. 44, no. 8, pp. 1064�1065, August 1995.

[38] Y. Kim, , A. Perrig, and G. Tsudik, �Tree-based group key agreement,�ACM Transactions

on Information and System Security, vol. 7, pp. 60�96, 2004.

[39] Y. Kim, A. Perrig, and G. Tsudik, �Group key agreement e¢ cient in communication,�

Communications of the ACM, vol. 53, no. 7, pp. 905�921, July 2004.

[40] N. Koblitz, A Course in Number Theory and Cryptography (Graduate Texts in Mathemat-

ics). Springer, September 1994.

[41] N. Koblitz, A. Menezes, and S. Vanstone, �The state of elliptic curve cryptography,�

Designs, Codes and Cryptography, vol. 19, pp. 173�193, 2000.

[42] J. F. Kurose and K. W. Rose, Computer Networking: A top down approach featuring the

Internet. Addison-Wesley, 2005.

[43] P. Lee, J. Lui, and D. Yau, �Distributed collaborative key agreement and authentication

protocols for dynamic peer groups,�IEEE/ACM Transactions on Networking, vol. 14, pp.

263�276, 2006.

104

[44] D. Malan, �ECCM,�available at URL: www.eecs.harvard.edu / malan/eccm.shtml.

[45] D. Malan, M. Welsh, and M. D. Smith, �A public-key infrastructure for key distribution

in tinyos based on elliptic curve cryptography,�in Proc. of 1st IEEE International Confer-

ence on Sensor and Ad Hoc Communications and Networks (SECON), Santa Clara, CA,

October 2004.

[46] J. L. Massey, �Cryptography: Fundamentals and applications,�Advanced Technology Sem-

inars, February 1993.

[47] D. Matula, A. Fit-Florea, and M. Thornton, �Table lookup structures for multiplicative

inverses modulo 2/sup k,�in ARITH-17, 17th IEEE Symposium on Computer Arithmetic,

June 2005, pp. 156 �163.

[48] P. Montgomery, �Modular multiplication without trial division,�Mathematics of Compu-

tation, vol. 44, pp. 519�521, 1985.

[49] P. Ning and A. Liu, �TinyECC: Elliptic curve cryptography for sensor networks,�Tech.

Rep., 2005, http://discovery.csc.ncsu.edu/software/TinyECC.

[50] O.Arazi and H. Qi, �Load-balanced key establishment methodologies in wireless sensor

networks,�International Journal of Sensor Networks, IJSN, vol. 1, no. 2, April 2006.

[51] N. I. of Standard and Technology, �Federal information data encryption

standard,� Processing Standard Publications 46-2, 1993, available at URL:

http://www.itl.nist.gov/�pspubs/�p46-2.htm.

[52] � � , �Data encryption standard fact sheet,� 1999, available at URL:

http://csrc.nist.gov/cryptval/des.txt.

[53] � � , �Draft federal information processing standard (�ps) 46-3 data encryp-

tion standard (des) and requests for comments,� 1999, available at URL:

http://csrc.nist.gov/cryptval/des/fr990115.htm.

[54] � � , �Advanced encryption standard (AES),� Federal Informa-

tion Processing Standard 197, November 2001, available at URL:

http://www.csrc.nist.gov/publications/�ps/�ps197/�ps-197.pdf.

105

[55] N. Peng, �Tinyecc: Elliptic curve cryptography for sensor networks (version 0.1),�available

at URL: http://discovery.csc.ncsu.edu/software/TinyECC/index.html.

[56] A. Perrig, J. Stankovic, and D. Wagner, �Security in wireless sensor networks,�Commu-

nications of the ACM, vol. 47, no. 6, pp. 53�57, June 2004.

[57] H. Qi and Y. Xu, �Decentralized reactive clustering for collaborative processing in sensor

networks,�in Proc. of the IEEE 10th International Conference on Parallel and Distributed

Systems (ICPADS), vol. 91, no. 8, Newport Beach, CA, July 2004, pp. 54�61.

[58] H. Qi, Y. Xu, and X. Wang, �Mobile-agent-based collaborative signal and information

processing in sensor networks,� in Proceedings of the IEEE, vol. 91, no. 8, August 2003,

pp. 1172�1183.

[59] D. W. R. Molva, G. Tsudik, Security and Privacy in Ad-hoc and Sensor Networks, ser.

Lecture Notes in Computer Science, 2005, vol. 3813.

[60] R. L. Rivest, A. Shamir, and L. Adleman, �A method for obtaining digital signatures and

public-key cryptosystems,�Communications of the ACM, vol. 21, no. 2, pp. 120�126, 1978.

[61] E. Savas and C. K. Koc, �The montgomery modular inverse - revised,�IEEE Transactions

On Computers, vol. 49, no. 7, pp. 763�766, July 2000.

[62] A. S. Tanenbaum, Computer Networks, 4th ed. Prentice Hall, 2003.

[63] S. Tsujii and T. Itoh, �An id-based cryptosystem based on the discrete logarithm problem,�

IEEE J. on Selected Areas in Communications, vol. 7, pp. 467�473, 1989.

[64] J. Tudor, �An algorithm for exact division,� Journal of Symbolic Computation archive,

vol. 15, no. 2, pp. 169 �180, February 1993.

[65] S. Vanstone, A. J. Menezes, and M. Qu, �Key agreement and transport protocol with

implicit signatures,�United States Patent 5,896,455, 1999.

[66] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, and P. Kruus, �Tinypk: Securing

sensor networks with public key technology,�in Proceedings of the Second ACM Workshop

on Security of Ad Hoc and Sensor Networks, Washington DC, USA, 2004, pp. 59�64.

106

Vita

Ortal Arazi was born in Pretoria, South Africa, on June 11, 1973. She attended Ben-Gurion

University in Israel, where she received a Bachelor of Science and Master of Science degrees

in Electrical and Computer Engineering, as well as a Master in Business Administration. In

2003, she has tought undergraduate computer engineering courses at San Jose State University,

California. In 2004, she began doctorate studies in Electrical and Computer Engineering at

the University of Tennessee, Knoxville, where she received the Doctor of Philosophy degree in

November 2007.

107

	Self-Certified Public Key Cryptographic Methodologies for Resource-Constrained Wireless Sensor Networks
	Recommended Citation

	tmp.1455807991.pdf.Hp0oY

