537 research outputs found

    A Generative Model of Natural Texture Surrogates

    Full text link
    Natural images can be viewed as patchworks of different textures, where the local image statistics is roughly stationary within a small neighborhood but otherwise varies from region to region. In order to model this variability, we first applied the parametric texture algorithm of Portilla and Simoncelli to image patches of 64X64 pixels in a large database of natural images such that each image patch is then described by 655 texture parameters which specify certain statistics, such as variances and covariances of wavelet coefficients or coefficient magnitudes within that patch. To model the statistics of these texture parameters, we then developed suitable nonlinear transformations of the parameters that allowed us to fit their joint statistics with a multivariate Gaussian distribution. We find that the first 200 principal components contain more than 99% of the variance and are sufficient to generate textures that are perceptually extremely close to those generated with all 655 components. We demonstrate the usefulness of the model in several ways: (1) We sample ensembles of texture patches that can be directly compared to samples of patches from the natural image database and can to a high degree reproduce their perceptual appearance. (2) We further developed an image compression algorithm which generates surprisingly accurate images at bit rates as low as 0.14 bits/pixel. Finally, (3) We demonstrate how our approach can be used for an efficient and objective evaluation of samples generated with probabilistic models of natural images.Comment: 34 pages, 9 figure

    Fabric defect segmentation using multichannel blob detectors

    Get PDF
    The problem of automated defect detection in textured materials is investigated. A new algorithm based on multichannel filtering is presented. The texture features are extracted by filtering the acquired image using a filter bank consisting of a number of real Gabor functions, with multiple narrow spatial frequency and orientation channels. For each image, we propose the use of image fusion to multiplex the information from sixteen different channels obtained in four orientations. Adaptive degrees of thresholding and the associated effect on sensitivity to material impurities are discussed. This algorithm realizes large computational savings over the previous approaches and enables high-quality real-time defect detection. The performance of this algorithm has been tested thoroughly on real fabric defects, and experimental results have confirmed the usefulness of the approach.published_or_final_versio

    GAP Test:A Cognitive Evaluation Procedure for Shape Descriptors

    Get PDF

    Characteristics of flight simulator visual systems

    Get PDF
    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality
    corecore