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Abstract. The problem of automated defect detection in textured mate-
rials is investigated. A new algorithm based on multichannel filtering is
presented. The texture features are extracted by filtering the acquired
image using a filter bank consisting of a number of real Gabor functions,
with multiple narrow spatial frequency and orientation channels. For
each image, we propose the use of image fusion to multiplex the infor-
mation from sixteen different channels obtained in four orientations.
Adaptive degrees of thresholding and the associated effect on sensitivity
to material impurities are discussed. This algorithm realizes large com-
putational savings over the previous approaches and enables high-
quality real-time defect detection. The performance of this algorithm has
been tested thoroughly on real fabric defects, and experimental results
have confirmed the usefulness of the approach. © 2000 Society of Photo-
Optical Instrumentation Engineers. [S0091-3286(00)01912-7]
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1 Introduction

Motivated by human beings’ robust texture-segmentat
capabilities and by studies of human perception, ma
computer vision researchers have developed a texture
mentation paradigm that is based on the Gabor filter. In
paradigm, multiscale and multiorientation Gabor filters a
used for feature extraction. These features are then c
bined, typically using one or more polling mechanisms,
segment defects. The framework for texture segmenta
based on Gabor filters has been motivated by physiolog
evidence that the response of orientation-selective cell
the visual cortex can be modeled using Gabor filte1

Gabor-shaped receptive fields are fundamental to biolog
processing of texture, but any extensions of this appro
to computer vision are only appropriate within a compu
tional framework.

In recent years, a large number of techniques for text
analysis have been based on Gabor filters. This approa
inspired by the multichannel filtering theory of the proce
ing of visual information in the biological model of th
human visual system. As proposed by Campbell a
Robson,2 this theory argues that the human visual syst
decomposes the retinal image into a number of filtered
ages each of which contains intensity variations over a n
row range of frequency and orientation. Subsequent e
trophysiological and psychophysical experiments indic
that the brain contains large array of neurons that filter
orientation and size information at each point in visu
cortex.3 Each of these neurons found in the visual cortex
tuned to a particular combination of frequency and orien
tion in a narrow range, which is referred to as achannel.
These channels are interpreted as bandpass filters and
a striking resemblance to Gabor functions.1 Motivated by
this understanding of human perception, many compu
3176 Opt. Eng. 39(12) 3176–3190 (December 2000) 0091-3286/2000/
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vision researchers have proposed texture segmenta
methods based on the filter-bank model.4,5

1.1 Prior Work

Fabric defect segmentation has been studied for a long
using various approaches.6–14 Computing features that cap
ture textural properties are at the heart of most of th
approaches. The success of a particular feature is in
ability to describe texture that agrees with human perc
tion. Thus Gabor functions are good descriptors of text
features. A general framework for fabric defect detecti
can be formulated by capturing fabric features through G
bor functions and then comparing these features with a
erence~i.e., a defect-free fabric sample!. Defect segmenta-
tion can be successfully achieved by statistical calculati
on these features. Texture features extracted from the
occurrence matrix,6 autocorrelation of web images,7 the
Karhunen-Loe`ve ~KL ! transform,8 and means and standar
deviations of subblocks9 have been used for detection o
fabric defects. Modeling of fabric texture using the Gau
Markov random field~GMRF! and defect detection usin
statistics derived from this model have been detailed in R
10.

The periodicity of yarns in textile fabric provides valu
able information, and therefore Fourier domain featu
have been suggested for detecting fabric defects.11 When
defects cause global distortion in textile material, Four
analysis is most suitable. But that is not true for local fab
defects, and therefore techniques that can simultaneo
measure in the spatial and the spatial-frequency domain
more useful. Therefore multiscale wavelet representa
~MSWAR!12 and the Gabor filter bank13,14 have been used
to detect fabric defects. Prior work has used complex~i.e.,
$15.00 © 2000 Society of Photo-Optical Instrumentation Engineers
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Kumar and Pang: Fabric defect segmentation . . .
real and imaginary! Gabor functions; however, we only us
real Gabor functions.

1.2 Present Work

In this paper, we present a multichannel filtering techniq
based on real Gabor functions for segmentation of lo
texture defects. The technique has been developed
evaluated for on-line detection of local defects in text
webs. One of the advantages of the multichannel filter
approach4,5 over other textural feature extraction a
proaches that use a small window size is its ability to s
ment both fine and coarse texture defects.15 This is accom-
plished by segmenting fine and coarse texture defects
different scales~multichannel!. We now detail how our ap-
proach is motivated by earlier work on mechanisms in
visual cortex of mammals.

Psychophysically observed spatial-frequency channe16

and neurophysiologically observed blob-, bar-, and ed
sensitive neurons17 have been used to explain texture pe
ception in human vision. Malik and Perona18 have pre-
sented a model for preattentive* texture discrimination
based on human visual mechanisms. They have shown
odd-symmetric ~imaginary Gabor function! and even-
symmetric~real Gabor function! filters are not treated iden
tically in texture discrimination. One of the important co
clusions of their work is that odd-symmetric filters are n
useful in texture discrimination but even-symmetric filte
are. They excluded odd-symmetric filters from their mod
since they could not find any texture for which an od
symmetric mechanism was necessary. Therefore t
work18 supports our defect detection scheme using o
real ~even-symmetric! Gabor functions and ignoring imag
nary ~odd-symmetric! ones.

Some researchers20,21 have described how a well-know
nonlinearity of visual system plays a significant role in te
ture discrimination. This nonlinearity is due to retin
adaptations,22 and it follows a simple-cell-response~Gabor-
shaped! stage. This nonlinearity enables the human vis
system to respond to local contrast over 10 log units
illumination changes. As detailed in Ref. 18, there are
least two physiologically plausible causes for this nonl
earity: ~a! a nonlinear contrast response function that ty
cally has sigmoid shape for neurons that exhibit a thresh
effect for low contrast and a saturation effect for high
contrast,~b! intracortical inhibition that could occur within
and among responses in different channels. Malik a
Perona,18 in their texture perception model, have chosen
use~b!, while ignoring~a!. In our work we use the nonlin
earity suggested in~a!. The main contributions of this pape
are summarized as follows:

1. This algorithm uses real Gabor functions instead
the complex Gabor functions used in Refs. 13 and
This is because the real Gabor function can act a
blob detector.5,26–29 More justification is given in
Sec. 1.2 and Sec. 3.

2. Computational and performance gain have been

*Preattentive texture discrimination is attributed to difference in first-or
statistics of stimulus features such as the orientation, size, and brigh
of constituent elements.19
d

n

t

r

-

hanced by the use of local nonlinear functions inste
of the multiresolution pyramid used in Ref. 13.

3. An image fusion technique based on Bernoulli’s ru
of combination12 is proposed to integrate informatio
from different channels. This approach offers hig
detection rate and low false-alarm rate.

4. This algorithm is computationally economic, with th
use of threshold tradeoff and smaller convoluti
masks. Performance analysis of this algorithm a
function of sensitivity and mask size is also pr
sented.

5. A simple thresholding method is suggested to remo
isolated noisy pixels, which does not require a
morphological operations.

Prior texture segmentation work5 using real Gabor func-
tions has been concentrated on Brodatz’s album.23 How-
ever, the present work on defect segmentation pertain
real, meaningful patterns from the textile industry.

In this paper, ‘‘complex Gabor function’’ or ‘‘Gabor
function’’ or ‘‘Gabor filter’’ refers to the real and imagi-
nary parts~combined! of a Gabor function. Similarly, ‘‘real
Gabor function’’ means only the real part of the Gab
function, and ‘‘imaginary Gabor function’’ means only th
imaginary part.

The organization of the rest of this paper is as follow
In Sec. 2, preliminary theoretical foundations of this wo
are introduced. Those include spatial- and frequen
domain description of Gabor filters, and a review of pri
work using real Gabor functions. In Sec. 3, a class of 2
real-Gabor-function masks are introduced, which are u
to encode images into multiple cosine-modulated sub
ages. That section includes a discussion of the selectio
salient Gabor-function parameters for defect segmentat
followed by a brief discussion of supervised defect det
tion. Extraction of textural blob descriptors for online d
fect segmentation is described in Sec. 4. Section 5
scribes statistical calculations on these texture descript
In Sec. 6, experimental results on synthetic as well as
fabrics are reported. Section 7 gives a discussion, follow
by conclusions in Sec. 8.

2 Theoretical Foundations

In this section, we briefly review the basic properties
Gabor functions. This is followed by an introduction o
prior work on real Gabor function.

2.1 Multiscale and Multiorientation Gabor Filters

A Gabor function is a complex exponential modulated b
Gaussian function in the spatial domain, and is a shif
Gaussian in the frequency domain. In general,
n-dimensional Gabor function is expressed as24,25

h~p!5 f ~p!m~p!, ~1!

where f (p) is a Gaussian function~aperture! given by

f ~p!5
1

@~2p!nuCu#1/2expF2
1

2
~p2p0!TC21~p2p0!G , ~2!

andm(p) is a complex modulating function
s

3177Optical Engineering, Vol. 39 No. 12, December 2000
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Kumar and Pang: Fabric defect segmentation . . .
m~p!5exp@ j v0
T~p2p0!# ~3!

wherep, p0 , v0PRn, C is an n3n positive definite co-
variance matrix, anduCu5detC.

For the 2-D case~to be used henceforth!, the horizontal
and vertical spatial coordinates are represented by the
tor p5@x,y#T. The shape of Gaussian functionf (p) is con-
trolled by the matrixC, and the vectorp05@x0 ,y0#T stands
for the translation of its origin. Ifsx andsy are variances
of the Gaussian function along thex and y axes, respec-
tively, then

C5Fsx
2 0

0 sy
2G , ~4!

where the constantssx andsy determine the scale and th
width/aspect ratio, which is used to adjust the orientat
sensitivity of the Gabor function. The vectorv5@u,v#T

represents two axial frequencies along two coordinates
vectorv05@u0 ,v0#T represents the overall translation fr
quency of the Gabor function. In two dimensions, the G
bor filter is tuned to the orientationu5tan21(v0 /u0) from
theu axis. In the frequency domain, the Gabor function a
as a 2-D bandpass filter represented as a shifted Gaus
frequency-centered atv05@u0 ,v0#T. The axis of modula-
tion in the frequency domain is oriented at an angle
tan21(v0 /u0) from theu axis.

Figure 1 shows the perspective plot of the real com
nent of a Gabor function. In the frequency domain, a Ga
function is a 2-D bandpass filter, represented as a shi
Gaussian function centered at (u0 ,v0):

H~v!5exp@2 1
2 ~v2v0!TC~v2v0!#. ~5!

Equation~1! can be interpreted as the sum of two Gau
ian functions that are cosine~real! and sine~imaginary!
modulated. The impulse responses of these odd~real! and
even ~imaginary! Gabor functions are approximately Hi
bert pairs. This approximation is more exact when th

Fig. 1 Perspective view of real Gabor function in spatial domain.
3178 Optical Engineering, Vol. 39 No. 12, December 2000
-
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amplitudes are close, and this can be ensured by choos
Gabor filter with small half-peak bandwidth.24

2.2 Prior Work Using Real Gabor Functions

The real part of a Gabor function has been shown to
useful as a correlation filter for object detection.26–29

Casasent and Smokelin26 use a weighted combination o
real Gabor functions to detect multiple classes of object
clutter, with object distortions and contrast variatio
present. Their work employed initial real-Gabor-functio
parameters based on the nominal target characteris
combined several real Gabor functions into a macro Ga
filter, and used a general neural network algorithm to refi
parameters of the initial macro Gabor filter. A similar a
proach for object detection with reduced false alarms a
higher probability of detection has been suggested in R
27. In this approach a clutter Gabor function has been e
ployed to locate candidate clutter regions and an imagin
Gabor function to detect object edges, in addition to
macro Gabor filter suggested in Ref. 26. In Refs. 28 and
the spatial modulation frequency of a real Gabor function
selected to produce one large positive lobe and two sma
negative lobes on either side~Fig. 1!, since this selection
yields a proven blob detector.26 The prior work in Refs.
26–29 has been focused on target detection. However,
ture segmentation using only real Gabor functions has b
detailed in Ref. 5. Portilla et al.30 use real Gabor functions
for extraction of texture features for synthesis of texture
analysis.

3 Gabor Filters for Defect Segmentation

In the spatial domain, an image is classically described a
collection of pixels, and in the frequency domain, as a s
of sinusoids of infinite extent. A fabric image can be re
resented in either the frequency or the spatial domain. B
are relevant in a vision system entailing frequency sa
pling localized in space. The defect segmentation invol
identification of regions with uniform textures in a give
image. Appropriate measures of texture are needed in o
to decide whether a given region has uniform texture. D
fect segmentation in texture requires simultaneous m
surements in both the spatial and the frequency dom
Filters with small bandwidths in the frequency domain a
more desirable, because they allow us to make finer dist
tions among different textures. On the other hand, accu
localization of texture boundaries requires filters that
localized in the spatial domain. However, the effecti
width of the filter in the spatial domain and its bandwidth
the frequency domain are inversely related. In this sen
Gabor filters achieve the maximum possible joint reso
tions in the spatial and frequency domains.31

Escofet et al.13,14 used a combination of real and imag
nary Gabor functions to detect defects. In our work, we u
only real Gabor functions and ignore imaginary ones. R
Gabor functions act as proven blob detectors,26 while
imaginary Gabor functions act as proven edge detecto32

As discussed in Sec. 1.2, Malik and Perona18 have shown
that odd-symmetric mechanisms~imaginary Gabor func-
tions here! are not useful in texture discrimination. Whil
analyzing defects against texture background, we h
found that the contribution from imaginary Gabor functio
is insignificant but they account for nearly 50% of the to
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Kumar and Pang: Fabric defect segmentation . . .
computation time. Thus, we approximate the impulse
sponse of real and imaginary Gabor functions as Hilb
pairs as used by Shi.24

The analytical form of a 2-D real Gabor function in th
spatial domain is given by

h~x,y!mn5
1

2puCu1/2cosvm
T ~pn2p0!

3expF2
1

2
~pn2p0!TC21~pn2p0!G , ~6!

wherem is the index for scale andn is an index for orien-
tation. The spatial modulation frequencyvm is only in one
direction, since we use Gabor function to detect only hei
and width. The vectorp0 shifts the origin of the real Gabo
function, so that the output for each input position is shift
by p0 . The real Gabor functions for different orientation
are obtained by the coordinate transformationp̃n5Jnpn and
p̃05Jnp0 , with25

Jn5Fcosun 2sinun

sinun cosun
G . ~7!

The angleun rotates the real Gabor function for any desir
orientation. The parametersvm andun represent the angu
lar frequency and orientation for themn channel. The pa-
rameterssx andsy , which define the matrixC, control the
bandwidth of the function.

In this scheme, power-spectrum sampling of an in
image at different scales and orientations is performed.
complete set of self-similar Gabor functions used to sam
the input image is obtained by rotation~varying un) and
scaling~varying vm) of the basic Gabor function.

Sixteen Gabor filters that sample the input image in
Fourier domain in a log-polar scheme at four orientatio
and four scales are shown in Fig. 2.30 The circles in this
figure represent the bandwidth of corresponding Gabor
ters at half-peak magnitude. As detailed in Sec. 3.1, f
spatial frequencies (f max,fmax/2,f max/4,f max/8) shown in
Fig. 2 are distributed in octaves, each of which is furth
rotated in steps of 45 deg~0, 45, 90, 135 deg!. Thus a bank
of real Gabor functions corresponding to the 16 chann
shown in Fig. 2 is used to capture features from the in
image. As a compromise between computational load
performance, we have limited the total number of chann
to 16. Moreover, there is psychophysical evidence that
human visual system uses a similar number of channe1

For an input imagei (x,y) and anN3N real Gabor func-
tion given by Eq.~6!, the filtered imageI mn(x,y) is ob-
tained as

I mn~x,y!5h~x,y!mn* i ~x,y!

5 (
k51

N

(
l 51

N

hmn~k,l !i ~x2k,y2 l !. ~8!

The above operation requires half the computational t
required by that of Ref. 13, in which complex Gabor fun
tions were used, for the calculation of feature vectors.
An appropriate filter design with small convolutio
masks allows an efficient implementation of real Gab
functions in the spatial domain. The size of this real-Gab
function mask is an important parameter. Reliable measu
ments of texture features call for large mask sizes. On
other hand, large mask size significantly increases the c
putational load, which is undesirable for on-line inspectio
This is because the total number of real operations~addi-
tions and multiplications! for each of the sixteen channel
is proportional toN2, whereN3N is the mask size. With-
out any significant degradation in performance we ha
been able to use 737 filter masks instead of 939 as used
in Ref. 13. This has resulted in about 40% saving of co
putational load per frame. Similarly, with some margin
and acceptable degradation in performance, we have b
able to use 535 filter masks, which results in about 70%
saving ~as compared with 939 masks! of computational
load per frame. This is also supported by the findings
Randen and Husøy33 that for most textures~in their texture
segmentation experiment! a 535 mask is adequate an
only a few texture pairs have required larger mask size

The performance of this algorithm as a function of ma
size for various defects is presented in Sec. 6. Every im
pixel of fabric under inspection is convolved with the re
Gabor function mask~6! to obtain the filtered pixel value.
This operation provides us with a set of 16 images fro
each of the 16 channels, which is used as a feature ve
for defect segmentation.

3.1 Selection of Parameters

In order to discriminate defects against the textured ba
ground, it is necessary to select a set of channel filters
will accomplish the task. Gabor filters act as bandpass
ters, and by an appropriate choice of their parameters, t

Fig. 2 Frequency-domain representation of 16 Gabor filters on log-
polar scale.
3179Optical Engineering, Vol. 39 No. 12, December 2000
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Kumar and Pang: Fabric defect segmentation . . .
can be tuned to discriminate local fabric defects. The s
tial modulation frequency of real Gabor functions is s
lected so as to produce one large positive lobe and
smaller negative lobes on either side~Fig. 1!, since this
yields a proven blob detector.5,26 In Ref. 26 real Gabor
functions were shaped to produce blob detectors for ob
detection, while our work is similar to Ref. 5, in whic
multiscale and multiorientation real Gabor functions~Fig.
3! are used to capture texture features. We have consid
the model with circular symmetry (sx5sy5s) and a spa-
tial bandwidth proportional to spatial frequency. For Gab
filter defined by Eq.~1!, the half-peak-magnitude axia
(Ba) and orientation (Bu) bandwidths as shown in Fig. 4
are defined as4,5

Ba5 log2Fvms1~2 ln 2!

vms2~2 ln 2!G , Bu52 tan21F ~2 ln 2!

vms G .
~9!

Several experiments have shown that the freque
bandwidth of cells in the visual cortex is about on
octave.34 This justifies the choice for fixing the axial band
width as one octave. From Eq.~9! this can be achieved by

Fig. 4 Frequency-domain parameters of a Gabor filter.

Fig. 3 Sixteen real Gabor functions in spatial domain.
3180 Optical Engineering, Vol. 39 No. 12, December 2000
t

d

s5
3~2 ln 2!1/2

vm
. ~10!

In this way, the radial and angular bandwidths are cons
on the log-polar scale, and are equal to one octave
36.87 deg, respectively.

The spatial-frequency plane of the acquired fabric ima
is divided into four different orientations~0, 45, 90, and
135 deg!. A common method of decomposing the fr
quency band, motivated by a human-vision model,34 has
been to use an octave-band~dyadic! decomposition.5,30

Therefore, we divide the radial axis of the spatial-frequen
plane into four equal octave bands~centered atf 1 , f 2 , f 3 ,
and f 4). In a bandwidth of one octave, the spatial fr
quency increases by a factor of two. The highest cen
frequency for each direction is located at the Nyquist f
quency to avoid ringing and noise.35 The resultant filter
bank performs log-polar sampling of acquired fabric imag

The width of the thinnest yarn of this fabric, express
in terms of the number of pixels, determines the maxim
frequency of interest. Letf 1 be this maximum frequency
also denoted byf max. This choice of radial frequency guar
antees that the passband of the filter with highest ra
frequency~i.e., f max) falls inside the image array. Thus w
select the next radial frequency of the Gabor filter,f 2 , at
the next lower octave channel~one octave away!, i.e., f 2

5 f max/2. Similarly, f m5 f max212m (m51,2,3,4). For a par-
ticular fabric, if it is found that the thinnest yarn occupie
12 pixels, then we choosef max51/12 cycle/pixel. With a
maximum frequency of this order, we expect to detect f
defects whose sizes are approximately that of one yarn.
larger defects can be located with filters of lower freque
cies. That is, the greater the extent of the defect, the lo
is the filter frequency needed to detect it. The contour
cations of 16 Gabor filters along with their center freque
cies are shown in Fig. 2.

3.2 Supervised Segmentation of Defects

If a priori knowledge regarding the orientation and size
local fabric defects is made available to the process, it
be regarded as supervised defect segmentation. In
cases, segmentation can be performed using just one ap
priately tuned Gabor filter instead of the bank of Gab
filters discussed in last subsection. Figure 5 clearly dep
successful supervised defect segmentation using a G
filter. From the visual examination of the fabric sample
Fig. 5~a! it can be observed that the defect is approximat
one yarn wide and is located at about 90 deg in the spa
plane. Since one yarn in this image occupies 24 pixels~ap-
proximately!, a Gabor filter located atf 51/24 cycle/pixel
is chosen. A 15315 ~ad hoc! Gabor filter mask withf
51/24,u590 deg, and half-peak bandwidth of one octa
@Eq. ~10!# was found to be appropriate for attenuation
background and accentuation of defects. Further, a 939
median filter was used to suppress the speckle-like n
from the filtered image, and the resulting image was thre
olded to obtain a binary image of the segmented defec
shown in Fig. 5~c!. The thresholding value is obtained from
Eq. ~18!, as detailed in Sec. 5.2. The median filtering
tenuates irrelevant spectral features that do not contribut
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Kumar and Pang: Fabric defect segmentation . . .
an efficient segmentation using thresholding. Figure 5~d!
shows another fabric sample, in which the observed de
is approximately 2 yarns wide and is oriented at 90 deg
the spatial plane. A similar processing of this image yie
the segmented defect shown in Fig. 5~f!. For the fabric
sample images shown in Fig. 5, defect segmentation
also be achieved with a convolution mask smaller than
315 ~ad hoc!, but with some degradation in performanc
the segmented defect is not so clear as in Fig. 5.

A supervised approach will have limitations as com
pared to the flexibility of unsupervised approach. Howev
in many industrial inspection applications it may be a
sumed that the orientation and resolution of defects
fixed. Supervised defect segmentation can be economic
implemented on general-purpose hardware for inspectio
defects of known sizes in a known direction. However, u
supervised defect segmentation is a more critical task an
more suitable for on-line detection of local defects in t
textile industry. This problem is discussed in the next s
tion.

4 Online Defect Detection

Any online fabric defect detection system must be capa
of integrating defects captured at different orientations a
resolution levels of the Gabor filter. The desired output i
binary image of local defects in the fabric. The desir
procedure must be robust, automatic, and applicable to
ric with different structures. Vibration-free images of th
fabric under test are acquired using backlighting.

Fig. 5 Supervised defect segmentation: (a) and (d), test samples;
(b) and (e), corresponding Gabor-filtered images; (c) and (f), bina-
rized filtered images with segmented defects.
t

y
f

s

-

The block diagram of this procedure is shown in Fig.
and discussed here. The procedure starts with an acqu
image of fabric with defectsi (x,y). The acquired images
exhibit artifacts of brightness gradient due to nonhomo
enous lighting. These artifacts are corrected by subtrac
a reference image from the acquired images. This refere
image of plain white paper is acquired under the same i
mination condition. The Gabor functions described in S
3.1 are applied to this corrected image and the 16 filte
images F1 to F16 are obtained. As detailed in the n
subsection, a nonlinear operator on these images gene
corresponding blob descriptors T1 to T16. A similar set
operations on a defect-free fabric sample~reference! is used
to obtain blob descriptors~R1 to R16! for a reference fabric
sample. As shown in Fig. 6, the mean and standard de
tions from each of the sixteen blob descriptors~R1 to R16!
are computed at the beginning and stored before the fa
inspection. This set of means and standard deviation
utilized to generate a feature difference arr
~TDD1, . . . ,TDD16!. Section 5 explains the operation o
the sensitivity control, which is used to monitor noise a
generates 16 images~S1 to S16!. As shown in Fig. 6 and
detailed in Sec. 5.1, these images are subjected to im
fusion, and a set of four images~N1 to N4! corresponding
to each of the four scales~m! is obtained. These images a
in turn combined~Sec. 5.1! to a single image outputN so as
to further reduce false alarms. This imageN is subjected to
calibration, which is detailed in Sec. 5.2, and the result i
final image of segmented defects~if any! in the fabric
sample under inspection.

4.1 Extraction of Texture Blob Descriptors

For reliable defect segmentation, it is necessary to hav
set of feature vectors that can characterize the text
These texture features form the basis for defect segme
tion. Now our objective is to find a transform function th
can enhance the changes in each of the 16 images F
F16, which may correspond to a defect, in such a way t
a thresholding operation can segment the defect from
textured background. Talukdar and Casasent36 have devel-
oped a linear maximum representation and discriminat
feature~MRDF! that has been shown to outperform sta
dard linear feature extraction techniques such as the Fi
linear discriminant, Fukunaga-Koontz~FK! transform, and
Karhunen-Loe`ve ~KL ! transform for segmentation of imag
data. However, linear transforms are only optimal when
data are Gaussian and symmetrically distributed about
mean. They are not necessarily the best for image data
are not characterized by Gaussian probability density fu
tions. Therefore, nonlinear transforms are necessary. S
eral nonlinear transforms, such as independent-compo
analysis and nonlinear principal-component analysis, are
erative ~and may fail to converge to the globally optim
solution! and have limitations on the rank of decision su
faces. These shortcomings of nonlinear transforms h
been addressed by Talukdar and Casasent36,37 with the use
of a nonlinear MRDF. They have derived a closed-fo
solution that automatically finds the best nonlinear tra
form, which is a polynomial mapping of the input, withou
any increased computational complexity as compared w
linear approaches. Applications of the nonlinear MRD
have been successfully demonstrated for estimation of
3181Optical Engineering, Vol. 39 No. 12, December 2000
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Fig. 6 Schematic diagram of on-line defect segmentation setup.
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pose of an unknown image38 and x-ray inspection of
pistachio-nut images.36 For our defect detection problem
only discrimination is necessary~not representation!, and
therefore adiscriminatorynonlinear MRDF can potentially
be used to enhance the performance of the 16 filtered
ages~F1 to F16!. Primarily because of the need to minim
computational requirements in a real-time environment,
have not investigated nonlinear MRDF for this work.
ical Engineering, Vol. 39 No. 12, December 2000
-

In our work, we assume that the energy distribution
the frequency domain identifies a texture or a defect. Ba
on this assumption, we have used a local energy functio
calculate texture blob descriptors. The objective of the lo
energy function is to estimate the energy in the sixte
filtered images in the local region. We prefer a nonline
local energy function, as it is computationally efficien
Some of the commonly used nonlinear functions33 are the
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Kumar and Pang: Fabric defect segmentation . . .
magnitudeuxu, the squareuxu2, and the rectified sigmoid
utanhbxu. Unser and Eden39 have proposed and analyze
several combinations of the first and the second nonlin
ity for texture segmentation. They have concluded that
nonlinear function that squares along with logarithmic n
malization is the best combination. However, they did n
test the rectified sigmoid, which is also an important no
linear function similar to the sigmoidal activation functio
commonly used in artificial neural networks. In contrast
the rectified sigmoid, the magnitude and squaring functi
do not require any tuning parameters. However, in the c
rent application, this may be a disadvantage, as the pa
eterb might be tuned. Furthermore, the nonlinearity of t
sigmoid is supported by human visual models for text
discrimination, as discussed in Sec. 1.2. Therefore, the
cal energy function proposed by Jain and Furrokhnia5 is
appropriate for our application. T1 is obtained as

T1~x,y!5u f @F1~x,y!#u, f ~ t !5tanhbt. ~11!

Similarly, a new set of 16 images, described here as tex
blob descriptors~T1 to T16! are obtained. The parameterb,
which gives the saturation characteristics of this functi
depends on the dynamic range of gray levels in the
quired images.33 Empirically, this is fixed at 0.3 to give a
fast-saturating, thresholdlike function.

The application of the local energy function transform
the sinusoidal modulations in the filtered image to squ
modulations. Therefore, this operation can be interprete
blob detection.5 Since the nonlinear function used for ea
of the 16 filtered images F1 to F16 is odd-symmetric,
texture blob descriptors T1 to T16 are accompanied by b
dark and light blobs.

Individual blobs in T1 to T16 are identified and are a
signed to defect or defect-free texture. Texture descrip
for the reference~defect-free! fabric sample~R1 to R16!
are obtained in a similar manner. For each of these
texture descriptors corresponding to the defect-free sam
we obtain the mean and standard deviation. This se
means and standard deviations is used for further cha
terization of each pixel from the texture blob descripto
~T1 to T16!.

5 Statistical Defect Segmentation

Texture features characterized by the enhanced local g
level statistical distribution~11! are asymptotically uniform
for defect-free fabric~in sufficiently large image areas!.
Given a prototype of the fabric under test, defect segm
tation requires identification of a proper distance amo
such distributions. Classical approaches based on est
tion of some statistical moments~e.g., mean value, standar
deviation! or other statistical parameters40 allow very quick
characterization of image pixels. On the other hand, me
ods based on higher-order statistics~e.g., co-occurrence
matrix, run-length metrics, statistical feature matrices! pro-
vide more information but are highly demanding in bo
computational and memory requirements. Primarily
avoid a computational bottleneck in the online fabric def
detection system, we have processed the texture blob
scriptors T1 to T16 by using first-order statistical analys

The set of texture blob descriptors T1 to T16 forms t
basis for defect segmentation. From these descriptor
-

-

-

s

,
f
-

-

-

-

a

comparison for each pixel of a defective fabric with th
corresponding pixel of defect-free fabric is made. If t
difference is small, the probability of a pixel correspondi
to the defect-free sample is high. If the difference is lar
it is highly probable that this pixel corresponds to a defe
For each of the texture blob descriptors, the texture desc
tor difference~magnitude! TDD can be written as

TDD~x,y!5uT~x,y!2mdefect-freeu, ~12!

wheremdefect-freeis the mean of the corresponding textu
blob descriptors for defect-free fabric~R1 to R16!. Next,
the standard thresholding operation to reduce the nois
performed. For each of the pixels in TDD, we find corr
sponding pixels inS:

S~x,y!5H TDD~x,y! if TDD ~x,y!>t sd,

0 otherwise.
~13!

The thresholding is thus proportional to the standard
viation ~sd!. This standard deviation is calculated fo
defect-free fabric from each of its sixteen texture blob d
scriptors, R1 to R16. The magnitude of the coefficient
depends on the sensitivity as fixed by the user.

The motivation behind the introduction ofsensitivity
control in our algorithm is twofold. When we increase th
size of fabric in the image frame in an attempt to increa
the performance, the mean gray-level variation in the
sulting image tends to be uniform. Now the thresholdi
limit has to be much smaller~highly sensitive! to discrimi-
nate the defective pixels. We have found that a threshold
limit equal to one standard deviation increases the sens
ity and is most suitable for large-area images with unifo
mean gray level. Second, when the fabric size in the im
frame is small so that gray-level variations are considera
nonuniform, a thresholding limit of twice the standard d
viation ~medium sensitivity! is appropriate. On the othe
hand, when the number of yarn impurities in the fabric
high, the sensitivity has to be kept low~t 53! to discrimi-
nate the defects against the noisy background. Thus
sensitivity control largely depends on the fabric texture a
image acquisition conditions, and must be adjusted acc
ingly.

Now we have obtained 16 threshold feature differen
images~S1 to S16!, and our next task is to preserve th
pixels in each of these images that correspond to a def

5.1 Image Fusion

Evaluating the reliability of texture difference pixels from
different channels is crucial when the texture differen
images reveal inconsistencies. A number of fusion al
rithms have been developed29,41–43and used to reduce th
false-alarm rate while maintaining high probability of d
tection. One approach that has been successfully used
target detection involves deliberate generation of unwan
output ~clutter! followed by its subtraction from the detec
tion output. Examples of this approach have been deta
in Refs. 41 and 42: the hit-miss transform, involving t
intersection fusion of the outputs from hit and miss filters41

and the morphological wavelet transform, involving th
subtraction of clutter-map output from analog clutte
reduction output.42 Casasent and Smokelin27 use imaginary
3183Optical Engineering, Vol. 39 No. 12, December 2000
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Kumar and Pang: Fabric defect segmentation . . .
and clutter Gabor-filter outputs to reduce false-alarm ra
in detection output generated by using only real Ga
functions. Casasent and Ye43 have performed qualitative
and quantitative analysis of binary and analog fusion al
rithms. A binary fusion algorithm uses the logical AND o
outputs obtained from several detection outputs. Howe
such an algorithm does not weight the difference in co
dence levels between different detection outputs, and
analog-and-hierarchical fusion algorithms have been sh
to produce better results, i.e., lower false-alarm rates.
detailed in Ref. 43, an analog-and-hierarchical fusion al
rithm uses a mapping function to convert different det
tion outputs into a common range. This step is motiva
by the fuzzification function used in fuzzy logic, and is al
used in a fusion algorithm based on Bernoulli’s rule
combination,44 though with a different membership func
tion.

The main function of the image fusion module in o
work is to attenuate background pixels and accentuate
fective pixels from four directions. Bernoulli’s rule of com
bination, which is often used in image fusion,12,44 is ex-
tended here for integrating images from four directions. F
each of the four images at every scalem, the following
mapping function is used to convert pixel values into
common output range from 0 to 1:

Omn~x,y!5
Smn~x,y!2min@Smn~x,y!#

max@Smn~x,y!#2min@Smn~x,y!#
, ~14!

where the image inputSmn(x,y) is the same asS(x,y) from
Eq. ~13!, but has been subscripted with indices for scalem
and orientationn as in Eq.~6!. Thus for Eq.~14! the feature
difference images S1 to S4 are denoted byS11(x,y) to
S14(x,y) to indicate that the images have originated fro
real Gabor functions at scalem51 and orientationn
51,2,3,4,~0, 45, 90, and 135 deg!.

Next, a fused outputNm(x,y) is generated for every
scalem, by fusion of the normalized images~14! from four
directions:

Nm~x,y!5 (
n51

4

Omn~x,y!2@Om1~x,y!Om2~x,y!

1Om2~x,y!Om3~x,y!1Om3~x,y!Om4~x,y!

1Om4~x,y!Om1~x,y!1Om4~x,y!Om2~x,y!

1Om3~x,y!Om1~x,y!#. ~15!

Thus for every scalem51,2,3,4, we obtain one fused im
age output Nm(x,y) from the four imagesSm1(x,y),
Sm2(x,y), Sm3(x,y), and Sm4(x,y) using Eqs.~14! and
~15!. As detailed in Ref. 12, the fused outputs tend to f
low one of the inputs closely if the other inputs possess
values. On the other hand, an input with very high valu
tends to dominate the outputs, regardless of their val
Thus the pixels from the defects captured in any of the f
orientations will dominate in the final fused image for ea
scale. Thus the fusion suppresses the noise and comb
sixteen images~S1 to S16! into four images~N1 to N4!.

Due attention to reducing false alarms should be giv
when the information gathered from the four resolution le
3184 Optical Engineering, Vol. 39 No. 12, December 2000
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-

.

s

els ~N1 to N4! is combined. It is reasonable to assume th
a defect will appear on at least two adjacent resolution l
els; otherwise it is highly unlikely that it is a defect. A
reported by Escofet et al.,13 this consideration has bee
found to reduce the false-alarm rate while preserving m
of the defective areas. This is ensured by computing g
metric means of every adjacent level. For example, N12
computed as

N12~x,y!5@N1~x,y!N2~x,y!#1/2. ~16!

Next, a set of three images N12, N23, and N34 are
tained. An arithmetic mean will combine defects captur
by them. This imageN(x,y) in essence contains contribu
tion from all sixteen texture descriptors~T1 to T16!:

N~x,y!5 1
3 @N12~x,y!1N23~x,y!1N34~x,y!#. ~17!

5.2 Calibration

Finally, this last image is subjected to thresholding.
thresholding value is selected such that values below it
considered as belonging to regular texture in the fabric,
values above as belonging to defects. This value is suita
obtained by calibration of the system at the beginning
the operation. For calibration, a fabric sample without a
defects and yarn impurities is used. With the use of t
reference image,Ndefect-free(x,y) is obtained from Eq.~17!.
The threshold valueh th is obtained by

h th5 max
x,yPW

$Ndefect-free~x,y!%, ~18!

where W is a window centered at the image. Thus t
threshold valueh th is the maximum amplitude of gray lev
els, within the windowW, in the imageNdefect-free(x,y) ob-
tained from the reference image. The window size is c
sen to avoid the effects of border distortion.22 It is obtained
by removing 10 pixels~ad hoc! from each side of the image
Ndefect-free(x,y). This choice depends on the mask size
the real Gabor functions; for a 737 mask, at least seve
pixels from the border have to be ignored. The magnitu
of h th is such that isolated noisy pixels inN(x,y) are com-
pletely isolated in the output binary image. Binarizatio
based on this threshold limit helps to suppress the no
although this operation also suppresses some of the de
captured at different orientations and frequencies. In p
work,13 the threshold value was based on the mean
standard deviation of the final image@Ndefect-free(x,y) here#.
As stated in Ref. 13, and from our experiments, this thre
old value generates large noise in the output and require
opening operation with a convolution mask~typically 3
33) to eliminate the noise. With the use of the thresho
value suggested in Eq.~18!, the opening operation is no
needed and this results in reduction of computational lo
which is critical for real-time implementation of this algo
rithm.

6 Results

We have tested this defect segmentation algorithm on b
synthetic and real test fabric images. The reason for tes
this algorithm on synthetic images was to ensure that
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Fig. 7 Synthetic test fabrics for evaluation: (a) with defect, (b) without defect, (c) with segmented
defect.
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algorithm is able to discriminate difficult fabric defect
which humans can discriminate preattentively. The ima
acquisition subsystem developed at the Industrial Autom
tion Laboratory at The University of Hong Kong has be
used to capture gray-level images of defective test fabr
All images used here were acquired using backlighti
Samples of the most commonly occurring fabric defe
~mixed filling, waste, mispicks, kinky filling, misreed, etc!
were gathered from a loom, and their gray-level imag
were used to evaluate the algorithm described. Some
these results are reproduced here.

Figures 7~a! and 7~b! show synthetic binary images o
the test and the reference fabric, respectively. The sec
row of the test image has two more pixels than the ot
rows. This simulated defect of thick yarn can be seen s
mented in the final image@Fig. 7~c!#. Figures 8~a! and 8~b!
show real fabric images, with defects segmented in F
8~c!. The border effect in the segmented image is found
be reasonably localized, and the border distortion can
ignored.

Accurate segmentation of defects is limited by poor ya
quality. Impurities that are naturally present in fabric yar
tend to obscure more subtle defects. This effect can be
in Figs. 9 and 10. The fabric image in Fig. 9 has defe
along with large yarn impurities. The defects are segmen
at three different sensitivities: low, high, and medium.
seen from results in Fig. 10, low sensitivity helps to su
press the yarn impurities but at the expense of losing so
pixels from the defect. However, when segmenting defe
from fabric with large impurities, the sensitivity has to b
reduced to avoid yarn impurities appearing as defects
output.

The image acquisition subsystem was adjusted to
quire large images while fabric is in motion with a veloci
.

f

d

-

n

-

of 30 cm/s. The acquired images were digitized in 3
3287 pixels, with 8-bit resolution~256 gray levels!. Nine
images of fabric with defects were chosen to have la
characteristic variability in composition and structure. It
assumed that these sample images are representative o
ric defects in the textile industry. All these images cov
10-cm width and 7.5-cm height of actual fabric. Figures 1
12, and 13 illustrate the defect segmentation achieved w
the proposed algorithm. Due to the increase in the are
fabric per frame, we have increased the sensitivityt
52). Figure 13~b! shows a fabric sample with defects th
are visible only with difficulty. The appearing defects on
alter the spatial arrangement of neighboring pixels and
the mean gray level. This change is registered by real
bor functions and enhanced by the local energy functi
and segmentation is successfully achieved as shown in
13~e!.

The lack of appropriate quantitative measures for
goodness of segmentation makes it very difficult to eva
ate and compare different defect detection methods. H
ever, a simple criterion that has been used in many tex
segmentation algorithms5,15,33is the percentage of misclas
sified pixels. In defect segmentation problem, it is defect
pixels that are of interest, and therefore the percentag
all defective pixels misclassified is what is reported he
~Table 1!. From this table some general observations can
made. With the increase in sensitivity from low to high, t
percentage of misclassified pixels increases for every im
sample~for a 737 mask!, except for the sample of Fig
11~b!. Another effect on performance due to the variati
in mask size can be observed. At the medium sensitivity
the mask size is increased from 535 to 939, for every
image sample there is a decrease in percentage of mis
Fig. 8 Fabric sample for test: (a) with defect, (b) without defects, (c) with segmented defect.
3185Optical Engineering, Vol. 39 No. 12, December 2000
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sified pixels, with the exception of the samples in Fig
11~b! and 12~b!. The image in Fig. 13~b! registered the
largest increase in performance~9.26 times! with the in-
crease in mask size from 535 to 939 at the medium
sensitivity. For the images shown in Figs. 12, 13, and

Fig. 9 Fabric sample with defects and yarn impurities.

Fig. 10 Segmented defects at (a) low, (b) medium, and (c) high
sensitivity.
3186 Optical Engineering, Vol. 39 No. 12, December 2000
Fig. 11 Various defective-fabric test samples (a),(b),(c), and bina-
rized segmented defects (d),(e),(f).

Fig. 12 Various defective-fabric test samples (a),(b),(c), and seg-
mented defects (d),(e),(f).
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Kumar and Pang: Fabric defect segmentation . . .
the percentage of misclassified pixels is below 2%, exc
for one sample in Fig. 12~a!. The conclusion that can be
drawn from Table 1 is that there is an overall reduction
percentage of pixels misclassified as defects with incre

Fig. 13 Various defective-fabric test samples (a),(b),(c), and bina-
rized segmented defects (d),(e),(f).
t

e

in mask size and with decrease in sensitivity, as intuitive
expected.

Another observation may be made in Fig. 14, where
percentage of pixels occupied by fabric defects in the
quired image is plotted against percentage of misclassi
pixels from the defect. We observe the general increas
false alarms with increase in size of defects in the fram

The criterion used in Table 1~percentage of misclassi
fied pixels! does not accurately reflect the ability of th
algorithm to segment the defect. A low percentage of m

Fig. 14 Performance as a function of defect size.
Table 1 Percentage of total defective pixels misclassified.

Mask
size

Percentage misclassified

Fig. 11(a) Fig. 11(b) Fig. 11(c)

L M H L M H L M H

5 5.98 42.11 39.66 0.23 0.10 0.14 0.02 0.03 0.04

7 0.61 34.92 37.83 0.33 0.14 0.28 0.00 0.22 0.05

9 2.30 14.40 30.02 0.42 1.63 0.70 0.00 0.03 0.02

Fig. 12(a) Fig. 12(b) Fig. 12(c)

L M H L M H L M H

5 0.01 0.43 2.80 0.13 0.29 0.21 1.89 3.92 4.28

7 0.04 0.17 2.57 0.06 0.84 0.25 1.60 1.67 2.69

9 0.03 0.08 0.75 0.13 0.33 0.04 1.02 1.81 3.34

Fig. 13(a) Fig. 13(b) Fig. 13(c)

L M H L M H L M H

5 0.68 1.28 2.14 0.10 1.76 1.79 2.58 5.30 5.69

7 0.08 0.53 3.42 0.11 0.76 9.34 1.07 1.41 3.13

9 0.96 0.56 3.81 0.01 0.19 4.87 0.40 1.58 3.63
3187Optical Engineering, Vol. 39 No. 12, December 2000



Kumar and Pang: Fabric defect segmentation . . .

3188 Optical Engi
Table 2 Performance analysis for defect sample in Fig. 11(a). P1: defective pixels identified; P2:
actual defective pixels (obtained by visual examination); P3: noise (pixels appearing as defects in
defect-free region). Total pixels in image (window): 97455. Sensitivity: L (low), M (medium), H (high).

Class

Total pixels

535 737 939

L M H L M H L M H

P1 44 100 92 61 124 104 66 104 93

P2 653 653 653 653 653 653 653 653 653

P3 39 275 259 4 228 247 15 94 196
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classified pixels does not necessarily mean good defect
mentation, unless it is accompanied by a large numbe
pixels showing a defect in the defective region. Therefo
some of the results from Table 1 are elaborated in Table
3, and 4 to show complete statistics. We find a gene
increase in defective pixels~P1! with increase in sensitiv-
ity. However, this is accompanied by an increase in pix
appearing outside the defective region~P3!, i.e., noise.
With increase in mask size, output defective pixels~P1!
also increase. But this increase is very small and requ
about 50%~70%! more computation when the mask size
increased from 535 to 737 (939). Based on these ex
periments, we preferred to use 737 masks without any
significant change in output, and 535 masks with margina
compromise for defects of smaller sizes.

In the textile industry, the majority of weaving defec
occur either in the direction of motion~warp direction! or
perpendicular to it~pick direction!. Air-jet looms are most
popular, and their predominant defects are end-outs~miss-
ing or broken warp yarns!, slubs ~excess yarn!, and
mispicks~missing or broken pick yarns!. All these defects
have been successfully segmented as illustrated in the
vious figures. This algorithm has been evaluated with so
of the less commonly occurring defects, which are cau
by machine malfunction, such as holes@Fig. 11~a!# and oil
spots@Fig. 11~b!#. It can also potentially be used for opaqu
textured materials~timber, plastic etc.! illuminated with
front lighting.

The results achieved prove that this algorithm is robu
scalable, and computationally efficient and offers a h
detection rate. One of its limitations is that it requires ca
bration whenever the fabric type~texture! or image acqui-
neering, Vol. 39 No. 12, December 2000
-
f

,
l

-

sition conditions are varied. This calibration is proportion
to the width of the thinnest yarn in the fabric, which is
function of frequency-domain parameters. An extension
this technique that allows automatic calibration wou
therefore be highly desirable.

7 Discussion

The choice of elements of the proposed algorithm is mai
guided by two factors, computational complexity and p
formance. In a real-time environment, success of any a
rithm depends on computational complexity, and theref
the computational requirements are stringent. The fea
vectors should be combined in such a way as to reduce
probability of false alarm while maintaining high probab
ity of detection.

Some elements of the proposed algorithm are based
review of prior work by Escofet et al.13 While they success-
fully segmented fabric defects using complex Gabor filte
their approach had certain shortcomings. First, the con
bution from the imaginary Gabor function was very sma
and it could not justify the additional 50% of computatio
required for calculating its feature vector. Second, the co
putational requirements for the multiresolution pyram
~low-pass residual images! was very high, and therefore
local energy estimate proved to be a better recourse
terms of computation and performance. Third, 939 masks
used were not optimal, and we can justify the choice o
37 ~or even 535) masks through quantification of perfo
mance. Fourth, the previous work13 did not allow for yarn
impurities inherently present in fabric or for the physic
Table 3 Performance analysis for defect sample in Fig. 12(a). P1: defective pixels identified; P2:
actual defective pixels (obtained by visual examination); P3: noise (pixels appearing as defects in
defect-free region). Total pixels in image (window): 97455. Sensitivity: L (low), M (medium), H (high).

Class

Total pixels

535 737 939

L M H L M H L M H

P1 5890 9780 11629 5442 9675 12811 5362 8541 12649

P2 23609 23609 23609 23609 23609 23609 23609 23609 23609

P3 2 101 660 10 39 607 7 18 177
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Table 4 Performance analysis for defect sample in Fig. 13(a). P1: defective pixels identified; P2:
actual defective pixels (obtained by visual examination); P3: noise (pixels appearing as defects in
defect-free region). Total pixels in image (window): 97455. Sensitivity: L (low), M (medium), H (high).

Class

Total pixels

535 737 939

L M H L M H L M H

P1 4898 16987 19660 3822 15934 22548 2167 10001 17952

P2 40957 40957 40957 40957 40957 40957 40957 40957 40957

P3 28 526 876 32 216 1402 21 56 1684
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size of the fabric in the image used for processing.† Lastly,
the two methods suggested by the authors for binariza
generate unacceptably large noise, and the morpholog
operations suggested to remove this noise are computa
ally expensive. The threshold value computed by Eq.~18!
is simple and highly successful in removing isolated no
pixels, as shown from the results in this paper.

8 Conclusions

In this paper, a multichannel filtering approach for the d
tection of local fabric defects has been demonstrated.
age fusion has been successfully utilized in combining f
tures from different channels. We have shown that
performance of the algorithm is significantly improved
varying the sensitivity in the presence of yarn impuriti
and low spatial sampling rate. Furthermore, considera
computational saving has been achieved, which is att
uted to the use of real Gabor functions, smaller filter mas
and a local energy function.

The filtering and feature extraction operations~15! in
this algorithm account for most of the required compu
tions. However, these operations can be performed in
allel. Therefore, on-line implementation of this algorith
should utilize a high-performance DSP processor, such
the TMS320C80. Recently, real Gabor functions have b
implemented using cellular neural networks~CNNs!.24,45

The advantage of CNNs is that they can be implemen
using analog VLSI alongside photosensors~CMOS or CCD
arrays! integrated with camera hardware. Thus Gab
filtered outputs can be read off the chip directly. This a
proach will drastically relieve the computational bottlene
and make the use of DSP processors redundant.

The proposed algorithm is an alternative to curren
accepted methods that do not take advantage of the sp
arrangement of gray levels in neighboring pixels, and
stead rely on differences in their mean gray level. The
gorithm has been tested on real fabric with success,
results are shown in this paper. The algorithm can pot
tially be used for defect segmentation in any textured m
terial such as timber, paper, plastic, or carpet.

†The fabric size of 2563256 pixels, claimed in Ref. 13 is not consiste
with the results shown, as the aspect ratio of the images are not
Information regarding the physical size of the fabric in the image a
mode of acquisition~front or back lighting! is also missing.
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