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Abstract. The problem of automated defect detection in textured mate-
rials is investigated. A new algorithm based on multichannel filtering is
presented. The texture features are extracted by filtering the acquired
image using a filter bank consisting of a number of real Gabor functions,
with multiple narrow spatial frequency and orientation channels. For
each image, we propose the use of image fusion to multiplex the infor-
mation from sixteen different channels obtained in four orientations.
Adaptive degrees of thresholding and the associated effect on sensitivity
to material impurities are discussed. This algorithm realizes large com-
putational savings over the previous approaches and enables high-
quality real-time defect detection. The performance of this algorithm has
been tested thoroughly on real fabric defects, and experimental results
have confirmed the usefulness of the approach. © 2000 Society of Photo-
Optical Instrumentation Engineers. [S0091-3286(00)01912-7]
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vision researchers have proposed texture segmentation
methods based on the filter-bank motj2l.

1 Introduction

Motivated by human beings’ robust texture-segmentation
capabilities and by studies of human perception, many
computer vision researchers have developed a texture seg- :
mentation paradigm that is based on the Gabor filter. In this 1-1  Prior Work
paradigm, multiscale and multiorientation Gabor filters are Fabric defect segmentation has been studied for a long time
used for feature extraction. These features are then com-using various approach&s** Computing features that cap-
bined, typically using one or more polling mechanisms, to ture textural properties are at the heart of most of these
segment defects. The framework for texture segmentationapproaches. The success of a particular feature is in its
based on Gabor filters has been motivated by physiologicalability to describe texture that agrees with human percep-
evidence that the response of orientation-selective cells intion. Thus Gabor functions are good descriptors of texture
the visual cortex can be modeled using Gabor filters. features. A general framework for fabric defect detection
Gabor-shaped receptive fields are fundamental to biologicalcan be formulated by capturing fabric features through Ga-
processing of texture, but any extensions of this approachbor functions and then comparing these features with a ref-
to computer vision are only appropriate within a computa- erence(i.e., a defect-free fabric sampleDefect segmenta-
tional framework. tion can be successfully achieved by statistical calculations
In recent years, a large number of techniques for texture on these features. Texture features extracted from the co-
analysis have been based on Gabor filters. This approach imccurrence matri, autocorrelation of web imagésthe
inspired by the multichannel filtering theory of the process- Karhunen-Loee (KL) transform® and means and standard
ing of visual information in the biological model of the deviations of subblocRshave been used for detection of
human visual system. As proposed by Campbell and fabric defects. Modeling of fabric texture using the Gauss
Robsor? this theory argues that the human visual system Markov random field GMRF) and defect detection using
decomposes the retinal image into a number of filtered im- statistics derived from this model have been detailed in Ref.
ages each of which contains intensity variations over a nar- 10.
row range of frequency and orientation. Subsequent elec- The periodicity of yarns in textile fabric provides valu-
trophysiological and psychophysical experiments indicate able information, and therefore Fourier domain features
that the brain contains large array of neurons that filter for have been suggested for detecting fabric deféchen
orientation and size information at each point in visual defects cause global distortion in textile material, Fourier
cortex® Each of these neurons found in the visual cortex is analysis is most suitable. But that is not true for local fabric
tuned to a particular combination of frequency and orienta- defects, and therefore techniques that can simultaneously
tion in a narrow range, which is referred to astannel measure in the spatial and the spatial-frequency domain are
These channels are interpreted as bandpass filters and beanore useful. Therefore multiscale wavelet representation
a striking resemblance to Gabor functidnslotivated by ~ (MSWAR)'? and the Gabor filter barik'* have been used
this understanding of human perception, many computer-to detect fabric defects. Prior work has used compiex,

3176 Opt. Eng. 39(12) 3176—3190 (December 2000) 0091-3286/2000/$15.00 © 2000 Society of Photo-Optical Instrumentation Engineers



Kumar and Pang: Fabric defect segmentation . . .

real and imaginaryGabor functions; however, we only use hanced by the use of local nonlinear functions instead
real Gabor functions. of the multiresolution pyramid used in Ref. 13.

3. An image fusion technigue based on Bernoulli’s rule
of combinatiort? is proposed to integrate information
1.2 Present Work from different channels. This approach offers high

In this paper, we present a multichannel filtering technique det.ection rate gnd low falge-alarm rate.
based on real Gabor functions for segmentation of local 4. This algorithm is computationally economic, with the

texture defects. The technique has been developed and use of threshold tradeoff and smaller convolution

evaluated for on-line detection of local defects in textile masks. Performance analysis of this algorithm as a
webs. One of the advantages of the multichannel filtering function of sensitivity and mask size is also pre-

approach® over other textural feature extraction ap- sented.

proaches that use a small window size is its ability to seg- 5, A simple thresholding method is suggested to remove
ment both fine and coarse texture deféctShis is accom- isolated noisy pixels, which does not require any
plished by segmenting fine and coarse texture defects on morphological operations.

different scalegmultichannel. We now detail how our ap-
proach is motivated by earlier work on mechanisms in the Prior texture segmentation wdrkising real Gabor func-
visual cortex of mammals. tions has been concentrated on Brodatz’s alBtiHow-
Psychophysically observed spatial-frequency chahhels ever, the present work on defect segmentation pertains to
and neurophysiologically observed blob-, bar-, and edge- real, meaningful patterns from the textile industry.
sensitive neurort$ have been used to explain texture per- In this paper, “complex Gabor function” or “Gabor
ception in human vision. Malik and Perdfizhave pre- function” or “Gabor filter” refers to the real and imagi-
sented a model for preattentivetexture discrimination  nary parts(combined of a Gabor function. Similarly, “real
based on human visual mechanisms. They have shown thatGabor function” means only the real part of the Gabor
odd-symmetric (imaginary Gabor function and even- function, and “imaginary Gabor function” means only the
symmetric(real Gabor functiopfilters are not treated iden-  imaginary part.
tically in texture discrimination. One of the important con- The organization of the rest of this paper is as follows.
clusions of their work is that odd-symmetric filters are not In Sec. 2, preliminary theoretical foundations of this work
useful in texture discrimination but even-symmetric filters are introduced. Those include spatial- and frequency-
are. They excluded odd-symmetric filters from their model, domain description of Gabor filters, and a review of prior
since they could not find any texture for which an odd- work using real Gabor functions. In Sec. 3, a class of 2-D
symmetric mechanism was necessary. Therefore theirreal-Gabor-function masks are introduced, which are used
work'® supports our defect detection scheme using only to encode images into multiple cosine-modulated subim-
real (even-symmetricGabor functions and ignoring imagi- ages. That section includes a discussion of the selection of
nary (odd-symmetré%scz)nes. salient Gabor-function parameters for defect segmentation,
Some researchéfs*! have described how a well-known  followed by a brief discussion of supervised defect detec-
nonlinearity of visual system plays a significant role in tex- tion. Extraction of textural blob descriptors for online de-
ture discrimination. This nonlinearity is due to retinal fect segmentation is described in Sec. 4. Section 5 de-
adaptationg? and it follows a simple-cell-respong&abor- scribes statistical calculations on these texture descriptors.
shaped stage. This nonlinearity enables the human visual In Sec. 6, experimental results on synthetic as well as real
system to respond to local contrast over 10 log units of fabrics are reported. Section 7 gives a discussion, followed
illumination changes. As detailed in Ref. 18, there are at by conclusions in Sec. 8.
least two physiologically plausible causes for this nonlin-
earity: (@) a nonlinear contrast response function that typi- 2 Theoretical Foundations

cally has sigmoid shape for neurons that exhibit athresholdIn this section, we briefly review the basic properties of

effect forbloyv contrastlanrc]i'bg'satur{ation Ileect for hirlgher Gabor functions. This is followed by an introduction of
contrast,(b) intracortical inhibition that could occur within _,prior work on real Gabor funcion.

and amsong responses in different channels. Malik a
Perona, n th?'r te?(ture perception model, have chosgn to 2.1  Multiscale and Multiorientation Gabor Filters
use(b), while ignoring(a). In our work we use the nonlin-

earity suggested ife). The main contributions of this paper A Gabor function is a complex exponential modulated by a
are summarized as follows: Gaussian function in the spatial domain, and is a shifted

Gaussian in the frequency domain. In general, an
1. This algorithm uses real Gabor functions instead of n-dimensional Gabor function is expressed'&s
the complex Gabor functions used in Refs. 13 and 14.

This is because the real Gabor function can act as ah(p)=f(p)m(p), 1)
blob detector.?5=° More justification is given in
Sec. 1.2 and Sec. 3. wheref(p) is a Gaussian functiofaperture given by

2. Computational and performance gain have been en- 1 1
f(p):[(27T)n|c|]12exp{_E(p_DO)TCl(p_po) ’ (2)

*Preattentive texture discrimination is attributed to difference in first-order
statistics of stimulus features such as the orientation, size, and brightness . . .
of constituent elements. andm(p) is a complex modulating function
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x10° Real Gabor function in spatisl domsin amplitudes are close, and this can be ensured by choosing a
L Gabor filter with small half-peak bandwidff.

254
2. 2.2 Prior Work Using Real Gabor Functions

LB e i The real part of a Gabor function has been shown to be
P [ - useful as a correlation filter for object detectfdn?®

e I Casasent and Smokeifhuse a weighted combination of
o) real Gabor functions to detect multiple classes of objects in

054.. clutter, with object distortions and contrast variations
adl present. Their work employed initial real-Gabor-function
” 1 parameters based on the nominal target characteristics,

el : : combined several real Gabor functions into a macro Gabor
i e B filter, and used a general neural network algorithm to refine

25+ parameters of the initial macro Gabor filter. A similar ap-
60 proach for object detection with reduced false alarms and

higher probability of detection has been suggested in Ref.
27. In this approach a clutter Gabor function has been em-
Fig. 1 Perspective view of real Gabor function in spatial domain. ployed to locate candidate clutter regions and an imaginary
Gabor function to detect object edges, in addition to a
macro Gabor filter suggested in Ref. 26. In Refs. 28 and 29
the spatial modulation frequency of a real Gabor function is
m(p)=exy j wy(pP—Po)] (3) selected to produce one large positive lobe and two smaller
negative lobes on either sid€ig. 1), since this selection

wherep, py, woeR", Cis annxn positive definite co- ~ Yields a proven blob detectd?. The prior work in Refs.
variance matrix an¢I,C| — detC. 26-29 has been focused on target detection. However, tex-

For the 2-D caséto be used hencefoiththe horizontal ture segmentation using only real Gabor functions has been

and vertical spatial coordinates are represented by the vecd€tailed in Ref. 5. Portilla et aP use real Gabor functions

tor p=[x,y]". The shape of Gaussian functibfp) is con- Z)nra?;(;ﬁctlon of texture features for synthesis of texture by
trolled by the matrixC, and the vectopy=[Xq,Yo]" stands '
for the translation of its origin. I, and o, are variances 3 Gapor Filters for Defect Segmentation

of the Gaussian function along theandy axes, respec- . . . . : .
9 y P In the spatial domain, an image is classically described as a

tively, then . . . .
collection of pixels, and in the frequency domain, as a sum
o2 0 of sinusoids of infinite extent. A fabric image can be rep-
c=| * !, (4) resented in either the frequency or the spatial domain. Both
0 oy are relevant in a vision system entailing frequency sam-

pling localized in space. The defect segmentation involves
where the constants, and o, determine the scale and the identification of regions with uniform textures in a given
width/aspect ratio, which is used to adjust the orientation image. Appropriate measures of texture are needed in order
sensitivity of the Gabor function. The vectes=[u,v]" to decide whether a given region has uniform texture. De-
represents two axial frequencies along two coordinates Thefect segmentation in texture requires simultaneous mea-
vector my=[Ug,v,]" represents the overall translation fre- Surements in both the spatial and the frequency domain.
quency of the Gabor function. In two dimensions, the Ga- Filters with small bandwidths in the frequency domain are
bor filter is tuned to the orientatiofi=tan Y(vy/uy) from more deswablg, because they allow us to make finer distinc-
theu axis. In the frequency domain, the Gabor function acts tions among different textures. On the other hand, accurate

as a 2-D bandpass filter represented as a shifted Gaussiariocalization of texture boundaries requires filters that are
frequency-centered ab,=[Uo,vo]". The axis of modula- ocalized in the spatial domain. However, the effective

O A : width of the filter in the spatial domain and its bandwidth in
t|or11|n the frequency dqmam is oriented at an angle of the frequency domain are inversely related. In this sense,
tan “(vg/ug) from theu axis.

. . Gabor filters achieve the maximum possible joint resolu-
Figure 1 shows the perspective plot of the real compo- P J

nent of a Gabor function. In the frequency domain, a Gabor tions in the spatial and frequency domats.

function is a 2D band gt ed it ESCofet et at>*'*used a combination of real and imagi-
unction 1s a 2-D bandpass Tilter, represented as a shiftedy, 5 capor functions to detect defects. In our work, we use
Gaussian function centered aty(v,):

only real Gabor functions and ignore imaginary ones. Real
Gabor functions act as proven blob detectOrayhile
H(w)=exd — 3 (w—ap) 'Clo—wg)]. (5 imaginary Gabor functions act as proven edge detecfors.
As discussed in Sec. 1.2, Malik and Perhaave shown
Equation(1) can be interpreted as the sum of two Gauss- that odd-symmetric mechanisnignaginary Gabor func-
ian functions that are cosingea) and sine(imaginary tions herg are not useful in texture discrimination. While
modulated. The impulse responses of these @edd) and analyzing defects against texture background, we have
even (imaginary Gabor functions are approximately Hil- found that the contribution from imaginary Gabor functions
bert pairs. This approximation is more exact when their is insignificant but they account for nearly 50% of the total
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computation time. Thus, we approximate the impulse re- v
sponse of real and imaginary Gabor functions as Hilbert
pairs as used by SHf.
The analytical form of a 2-D real Gabor function in the
spatial domain is given by

1
h(x,y)mn=mcoswﬁ( Pn—Po)

1
xex[{—E(Pn_po)TC_l(pn_po) ) (6)

;

wherem is the index for scale andis an index for orien-
tation. The spatial modulation frequenay, is only in one
direction, since we use Gabor function to detect only height
and width. The vectop, shifts the origin of the real Gabor
function, so that the output for each input position is shifted
by py. The real Gabor functions for different orientations
are obtained by the coordinate transformafigs J,,p,, and
Po=JnPo, with®

?w "

cosf, —sind,

: (7)

Jn

sind,  coséy Fig. 2 Frequency-domain representation of 16 Gabor filters on log-

) ) polar scale.
The angled,, rotates the real Gabor function for any desired

orientation. The parametets,, and 6,, represent the angu-

lar frequency and orientation for thran channel. The pa- An appropriate filter design with small convolution
rametersr, ando, , which define the matrix, control the masks allows an efficient implementation of real Gabor
bandwidth of the function. functions in the spatial domain. The size of this real-Gabor-

In this scheme, power-spectrum sampling of an input function mask is an important parameter. Reliable measure-
image at different scales and orientations is performed. Thements of texture features call for large mask sizes. On the
complete set of self-similar Gabor functions used to sample other hand, large mask size significantly increases the com-
the input image is obtained by rotatidquarying 6,) and putational load, which is undesirable for on-line inspection.
scaling(varying ,,) of the basic Gabor function. 'I_'his is because _the'total number of real_operati(mkji—

Sixteen Gabor filters that sample the input image in the tions and multiplicationsfor each of the sixteen channels
Fourier domain in a log-polar scheme at four orientations is proportional toN?, whereNx N is the mask size. With-
and four scales are shown in Fig®2The circles in this out any significant degradation in performance we have
figure represent the bandwidth of corresponding Gabor fil- been able to useX 7 filter masks instead of99 as used
ters at half-peak magnitude. As detailed in Sec. 3.1, four in Ref. 13. This has resulted in about 40% saving of com-
spatial frequencies fay,fmad2,f mad4fmad8) shown in putational load per frame. Similarly, with some marginal
Fig. 2 are distributed in octaves, each of which is further and acceptable degradation in performance, we have been
rotated in steps of 45 de@, 45, 90, 135 deg Thus a bank  able to use X5 filter masks, which results in about 70%
of real Gabor functions corresponding to the 16 channels saving (as compared with 89 mask$ of computational
shown in Fig. 2 is used to capture features from the input load per frame. This is also supported by the findings by
image. As a compromise between computational load andRanden and Husg¥that for most textureéin their texture
performance, we have limited the total number of channels segmentation experiment 5x5 mask is adequate and
to 16. Moreover, there is psychophysical evidence that the only a few texture pairs have required larger mask sizes.
human visual system uses a similar number of charinels.  The performance of this algorithm as a function of mask
For an input image(x,y) and anNXN real Gabor func-  size for various defects is presented in Sec. 6. Every image

tion given by Eq.(6), the filtered imagd ,(X,y) is ob- pixel of fabric under inspection is convolved with the real

tained as Gabor function mask6) to obtain the filtered pixel value.
This operation provides us with a set of 16 images from

Fn(XY) =N(X,Y) mr* i (X,Y) each of the 16 channels, which is used as a feature vector

for defect segmentation.

N N
:kzl 2‘1 hmn(k.Di(x=k,y=1). ® 3.1 Selection of Parameters

In order to discriminate defects against the textured back-
The above operation requires half the computational time ground, it is necessary to select a set of channel filters that
required by that of Ref. 13, in which complex Gabor func- will accomplish the task. Gabor filters act as bandpass fil-
tions were used, for the calculation of feature vectors. ters, and by an appropriate choice of their parameters, they
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~3(2In2)*”?

Wm

(10
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In this way, the radial and angular bandwidths are constant
on the log-polar scale, and are equal to one octave and
36.87 deg, respectively.

The spatial-frequency plane of the acquired fabric image
is divided into four different orientation, 45, 90, and
135 deg. A common method of decomposing the fre-
quency band, motivated by a human-vision mofietas
been to use an octave-baridyadid decompositiorn:>°
Therefore, we divide the radial axis of the spatial-frequency
plane into four equal octave bantentered af,, f,, f3,
and f,). In a bandwidth of one octave, the spatial fre-
guency increases by a factor of two. The highest central
frequency for each direction is located at the Nyquist fre-
quency to avoid ringing and noi$e.The resultant filter
bank performs log-polar sampling of acquired fabric image.
Fig. 3 Sixteen real Gabor functions in spatial domain. The width of the thinnest yarn of this fabric, expressed
in terms of the number of pixels, determines the maximum
frequency of interest. Let; be this maximum frequency,

can be tuned to discriminate local fabric defects. The spa- &lS0 denoted by, This choice of radial frequency guar-
tial modulation frequency of real Gabor functions is se- antees that the passband of the filter with highest radial
lected so as to produce one large positive lobe and two frequency(i.e., f,) falls inside the image array. Thus we
smaller negative lobes on either sid€ig. 1), since this select the next radial frequency of the Gabor filter, at
yields a proven blob detectdf® In Ref. 26 real Gabor  the next lower octave channé&ne octave awayi.e., f,
functions were shaped to produce blob detectors for object=f /2. Similarly, f ,= f a2t ™ (Mm=1,2,3,4). For a par-
detection, while our work is similar to Ref. 5, in which ticular fabric, if it is found that the thinnest yarn occupies
multiscale and multiorientation real Gabor functioifsg. 12 pixels, then we choosk,,,=1/12 cycle/pixel. With a
3) are used to capture texture features. We have consideregnaximum frequency of this order, we expect to detect few
the model with circular symmetryo,= oy=0) and a spa-  defects whose sizes are approximately that of one yarn. The
tial bandwidth proportional to spatial frequency. For Gabor |arger defects can be located with filters of lower frequen-
filter defined by Eq.(1), the half-peak-magnitude axial cies. That is, the greater the extent of the defect, the lower
(B,) and orientation B,) bandwidths as shown in Fig. 4 s the filter frequency needed to detect it. The contour lo-
are defined &< cations of 16 Gabor filters along with their center frequen-
cies are shown in Fig. 2.

wnot+(21In2)

(2In2)
wno—(21In2) '

, B,=2tan !
QMo

B,=log,

3.2 Supervised Segmentation of Defects

9
© If a priori knowledge regarding the orientation and size of

Several experiments have shown that the frequency local fabric defects is made available to the process, it can
bandwidth of cells in the visual cortex is about one be regarded as supervised defect segmentation. In such
octave® This justifies the choice for fixing the axial band- cases, segmentation can be performed using just one appro-
width as one octave. From E(P) this can be achieved by priately tuned Gabor filter instead of the bank of Gabor
filters discussed in last subsection. Figure 5 clearly depicts
successful supervised defect segmentation using a Gabor
filter. From the visual examination of the fabric sample in
Fig. 5(@) it can be observed that the defect is approximately
one yarn wide and is located at about 90 deg in the spatial
plane. Since one yarn in this image occupies 24 pitagbs
proximately, a Gabor filter located at=1/24 cycle/pixel
is chosen. A 1%15 (ad hog Gabor filter mask withf
=1/24,6=90 deg, and half-peak bandwidth of one octave
[Eqg. (10)] was found to be appropriate for attenuation of
background and accentuation of defects. Further &9
median filter was used to suppress the speckle-like noise
from the filtered image, and the resulting image was thresh-
olded to obtain a binary image of the segmented defect as

g shown in Fig. %¢). The thresholding value is obtained from
Eqg. (18), as detailed in Sec. 5.2. The median filtering at-
Fig. 4 Frequency-domain parameters of a Gabor filter. tenuates irrelevant spectral features that do not contribute to
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AT TERRRAT Y The block diagram of this procedure is shown in Fig. 6
N\ }\\N\\ ‘\\\‘\‘k\\\g :13‘3\3\\\;‘\‘\5 and discussed here. The procedure starts with an acquired
A M \&\ \\‘\§Q~\¢¢{&\ image of fabric with defects(x,y). The acquired images
AR \ \\.",\ IQ\\\M\{J}:\\E exhibit artifacts of brightness gradient due to nonhomog-
\L\\\\\\\\ \\ ! ;\_'-.,"\;‘}'_\‘.\'Q\\ :':-}-..,;Q\:\-"-.-: ‘Q: enous lighting. These artifacts are corrected by subtracting
- \‘\\\n\“\ \.‘\.\::\{(RQ AR 3\\ a reference image from the acquired images. This reference
\\\\\‘N\ \‘:\\{\ \ \\\ \\\\\“ \-\\t}\‘% image of plain white paper is acquired under the same illu-
h \\\-\\‘u\\\.\ {ﬁx\\\-.\\\\\'\\\\\ {C\ﬁk\\‘t'\\l\ mination condition. The Gabor functions described in Sec.

s 3.1 are applied to this corrected image and the 16 filtered

images F1 to F16 are obtained. As detailed in the next
subsection, a nonlinear operator on these images generates
corresponding blob descriptors T1 to T16. A similar set of
operations on a defect-free fabric sam@kferenceis used
to obtain blob descriptord®R1 to R16 for a reference fabric
sample. As shown in Fig. 6, the mean and standard devia-
tions from each of the sixteen blob descriptdRd to R16

o are computed at the beginning and stored before the fabric

L)

e et R

inspection. This set of means and standard deviations is
utiized to generate a feature difference array
(TDDY, ..., TDD16). Section 5 explains the operation of
the sensitivity control, which is used to monitor noise and
generates 16 imagéS1 to S16. As shown in Fig. 6 and
detailed in Sec. 5.1, these images are subjected to image

l fusion, and a set of four imagébll to N4) corresponding
C]

to each of the four scalds) is obtained. These images are
in turn combinedSec. 5.1 to a single image outpiM so as

f to further reduce false alarms. This imagés subjected to
Fig. 5 Supervised defect segmentation: (a) and (d), test samples; calibration, which is detailed in Sec. 5.2, and the result is a
(b) and (e), corresponding Gabor-filtered images; (c) and (f), bina- final image of segmented defects any) in the fabric

rized filtered images with segmented defects. sample under inspection.

4.1 Extraction of Texture Blob Descriptors

an efficient segmentation using thresholding. Figuf@) 5  For reliable defect segmentation, it is necessary to have a
shows another fabric sample, in which the observed defectset of feature vectors that can characterize the texture.
is approximately 2 yarns wide and is oriented at 90 deg in These texture features form the basis for defect segmenta-
the spatial plane. A similar processing of this image yields tjon. Now our objective is to find a transform function that
the segmented defect shown in Figf)5 For the fabric  can enhance the changes in each of the 16 images F1 to
sample images shown in Fig. 5, defect segmentation cang16 which may correspond to a defect, in such a way that
also be achieved with a convolution mask smaller than 15 3 thresholding operation can segment the defect from the
X 15 (ad hog, but with some degradation in performance: textured background. Talukdar and Casafemave devel-
the segmented defect is not so clear as in Fig. 5. oped a linear maximum representation and discrimination
A supervised approach will have limitations as com- feature(MRDF) that has been shown to outperform stan-
pared to the flexibility of unsupervised approach. However, dard linear feature extraction techniques such as the Fisher
in many industrial inspection applications it may be as- linear discriminant, Fukunaga-KoontgK) transform, and
sumed that the orientation and resolution of defects are Karhunen-Loge (KL ) transform for segmentation of image
fixed. Supervised defect segmentation can be economicallydata. However, linear transforms are only optimal when the
implemented on general-purpose hardware for inspection ofdata are Gaussian and symmetrically distributed about the
defects of known sizes in a known direction. However, un- mean. They are not necessarily the best for image data that
supervised defect segmentation is a more critical task and isare not characterized by Gaussian probability density func-
more suitable for on-line detection of local defects in the tions. Therefore, nonlinear transforms are necessary. Sev-
textile industry. This problem is discussed in the next sec- eral nonlinear transforms, such as independent-component
tion. analysis and nonlinear principal-component analysis, are it-
erative (and may fail to converge to the globally optimal
. . solution and have limitations on the rank of decision sur-
4 Online Defect Detection faces. These shortcomings of nonlinear_transforms have
Any online fabric defect detection system must be capable been addressed by Talukdar and Casd$&hwith the use
of integrating defects captured at different orientations and of a nonlinear MRDF. They have derived a closed-form
resolution levels of the Gabor filter. The desired output is a solution that automatically finds the best nonlinear trans-
binary image of local defects in the fabric. The desired form, which is a polynomial mapping of the input, without
procedure must be robust, automatic, and applicable to fab-any increased computational complexity as compared with
ric with different structures. Vibration-free images of the linear approaches. Applications of the nonlinear MRDF
fabric under test are acquired using backlighting. have been successfully demonstrated for estimation of the
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Vibration free image of
fabric under inspection
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Fig. 6 Schematic diagram of on-line defect segmentation setup.

In our work, we assume that the energy distribution in
the frequency domain identifies a texture or a defect. Based
only discrimination is necessaiyot representation and on this assumption, we have used a local energy function to
therefore adiscriminatorynonlinear MRDF can potentially  calculate texture blob descriptors. The objective of the local
be used to enhance the performance of the 16 filtered im-energy function is to estimate the energy in the sixteen
ages(F1 to F16. Primarily because of the need to minimiz filtered images in the local region. We prefer a nonlinear
computational requirements in a real-time environment, we local energy function, as it is computationally efficient.
have not investigated nonlinear MRDF for this work. Some of the commonly used nonlinear functi e the

pose of an unknown imad®e and x-ray inspection of
pistachio-nut image¥® For our defect detection problem,
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magnitude|x|, the squardx|?, and the rectified sigmoid comparison for each pixel of a defective fabric with the
[tanhBx|. Unser and Edefl have proposed and analyzed corresponding pixel of defect-free fabric is made. If the
several combinations of the first and the second nonlinear-difference is small, the probability of a pixel corresponding
ity for texture segmentation. They have concluded that the t0 the defect-free sample is high. If the difference is large,
nonlinear function that squares along with logarithmic nor- it is highly probable that this pixel corresponds to a defect.
malization is the best combination. However, they did not For each of the texture blob descriptors, the texture descrip-
test the rectified sigmoid, which is also an important non- tor difference(magnitudg TDD can be written as

linear function similar to the sigmoidal activation function

commonly used in artificial neural networks. In contrast to TDD(X,Y) =[T(X,y) — Myetect freds (12)

the rectified sigmoid, the magnitude and squaring functions ) )

do not require any tuning parameters. However, in the cur- Where Mgerect.rreeiS the mean of the corresponding texture
rent application, this may be a disadvantage, as the paramblob descriptors for defect-free fabri®1 to R16. Next,
eter 8 might be tuned. Furthermore, the nonlinearity of the the standard thresholding operation to reduce the noise is
sigmoid is supported by human visual models for texture performed. For each of the pixels in TDD, we find corre-
discrimination, as discussed in Sec. 1.2. Therefore, the lo-sponding pixels ir§

cal energy function proposed by Jain and Furrokhiisa ]

appropriate for our application. T1 is obtained as TDD(x,y) if TDD(x,y)=7sd,

SOy = 0 otherwise. (13

TL1(x,y)=|f[FL1(x,y)]|, f(t)=tanhgt. (11

o , i The thresholding is thus proportional to the standard de-
Similarly, a new set of 16 images, described here as textureyjation (sd. This standard deviation is calculated for
blob descriptor¢T1 to T16 are obtained. The paramei&r  gefect-free fabric from each of its sixteen texture blob de-
which gives the saturation characteristics of this function, scriptors, R1 to R16. The magnitude of the coefficient
depends on the dynamic range of gray levels in the ac- gepends on the sensitivity as fixed by the user.
quired images? Empirically, this is fixed at 0.3 to give a The motivation behind the introduction afensitivity
fast-saturating, thresholdlike function. _ control in our algorithm is twofold. When we increase the

The application of the local energy function transforms gjze of fabric in the image frame in an attempt to increase

the sinusoidal modulations in the filtered image to square e performance, the mean gray-level variation in the re-
modulations. Therefore, this operation can be interpreted assylting image tends to be uniform. Now the thresholding
blob detectior. Since the nonlinear function used for each limit has to be much smallethighly sensitive to discrimi-
of the 16 filtered images F1 to F16 is odd-symmetric, the nate the defective pixels. We have found that a thresholding
texture blob descriptors T1 to T16 are accompanied by both |imjt equal to one standard deviation increases the sensitiv-
dark and light blobs. R ity and is most suitable for large-area images with uniform

_ Individual blobs in T1 to T16 are identified and are as- mean gray level. Second, when the fabric size in the image
signed to defect or defect-free texture. Texture descriptors frame is small so that gray-level variations are considerably
for the referencedefect-freg fabric sample(R1 to R16 nonuniform, a thresholding limit of twice the standard de-
are obtained in a similar manner. For each of these 16 jation (medium sensitivity is appropriate. On the other
texture descriptors corresponding to the defect-free samplengng. when the number of yarn impurities in the fabric is
we obtain the mean and standard deviation. This set thigh, the sensitivity has to be kept low=3) to discrimi-
means and standard deviations is used for further characate the defects against the noisy background. Thus the
terization of each pixel from the texture blob descriptors sensitivity control largely depends on the fabric texture and

(T1 to T16. image acquisition conditions, and must be adjusted accord-
ingly.
5 Statistical Defect Segmentation Now we have obtained 16 threshold feature difference

Texture features characterized by the enhanced local gray/Mages(S1 to S16, and our next task is to preserve the
level statistical distributioril1) are asymptotically uniform  Pixels in each of these images that correspond to a defect.
for defect-free fabric(in sufficiently large image areps .
Given a prototype of the fabric under test, defect segmen-°-1 /mage Fusion
tation requires identification of a proper distance among Evaluating the reliability of texture difference pixels from
such distributions. Classical approaches based on estimadifferent channels is crucial when the texture difference
tion of some statistical moments.g., mean value, standard images reveal inconsistencies. A number of fusion algo-
deviation or other statistical parametéfsillow very quick  rithms have been develop@d'~*3and used to reduce the
characterization of image pixels. On the other hand, meth- false-alarm rate while maintaining high probability of de-
ods based on higher-order statisti@g., co-occurrence tection. One approach that has been successfully used for
matrix, run-length metrics, statistical feature matrjge®- target detection involves deliberate generation of unwanted
vide more information but are highly demanding in both output(clutter followed by its subtraction from the detec-
computational and memory requirements. Primarily to tion output. Examples of this approach have been detailed
avoid a computational bottleneck in the online fabric defect in Refs. 41 and 42: the hit-miss transform, involving the
detection system, we have processed the texture blob deintersection fusion of the outputs from hit and miss filters,
scriptors T1 to T16 by using first-order statistical analysis. and the morphological wavelet transform, involving the
The set of texture blob descriptors T1 to T16 forms the subtraction of clutter-map output from analog clutter-
basis for defect segmentation. From these descriptors, areduction outpuf? Casasent and Smokeliruse imaginary
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and clutter Gabor-filter outputs to reduce false-alarm ratesels (N1 to N4) is combined. It is reasonable to assume that
in detection output generated by using only real Gabor a defect will appear on at least two adjacent resolution lev-
functions. Casasent and 4ehave performed qualitative els; otherwise it is highly unlikely that it is a defect. As
and quantitative analysis of binary and analog fusion algo- reported by Escofet et af, this consideration has been
rithms. A binary fusion algorithm uses the logical AND of found to reduce the false-alarm rate while preserving most
outputs obtained from several detection outputs. However, of the defective areas. This is ensured by computing geo-
such an algorithm does not weight the difference in confi- metric means of every adjacent level. For example, N12 is
dence levels between different detection outputs, and socomputed as
analog-and-hierarchical fusion algorithms have been shown
to produce better results, i.e., lower false-alarm rates. As N12(x,y)=[N1(x,y)N2(x,y)]*2 (16
detailed in Ref. 43, an analog-and-hierarchical fusion algo-
rithm uses a mapping function to convert different detec- Next, a set of three images N12, N23, and N34 are ob-
tion outputs into a common range. This step is motivated tained. An arithmetic mean will combine defects captured
by the fuzzification function used in fuzzy logic, and is also by them. This imagé\(x,y) in essence contains contribu-
used in a fusion algorithm based on Bernoulli's rule of tion from all sixteen texture descriptof$1 to T16:
combination** though with a different membership func-
tion. _ _ _ _ _ N(x,y) = 5[NL2(x,y) + N23(x,y) + N34(x,y)]. 17)

The main function of the image fusion module in our
wor!< is to attenuate bac_kgrqund pixels an_d accentuate de-g o> cglipration
fective pixels from four directions. Bernoulli's rule of com- ) i ) ) . .
bination, which is often used in image fusif is ex- Finally, thls last image is subjected to thresholdmg_. A
tended here for integrating images from four directions. For thresholding value is selected such that values below it are
each of the four images at every scafe the following considered as belongmg to regular texture in the f{;\bnc_, and
mapping function is used to convert pixel values into a values above as belonging to defects. This value is suitably

common output range from 0 to 1: obtained by calibration of the system at the beginning of
the operation. For calibration, a fabric sample without any
—mi defects and yarn impurities is used. With the use of this
X, min X,
Omn(X,y) = Smo(X,Y) [ Sm(%,Y)] (14 reference image gefectrred X, y) IS Obtained from Eq(17).

ma{ Smn(X,Y) ]—min[ Syn(X,y)]”

where the image inp&,,(x,Yy) is the same aS(x,y) from

The threshold valuey, is obtained by

Eg. (13), but has been subscripted with indices for scale mh_XTS\),(V{NdEfec"freéx’y)}’ (18)

and orientatiom as in Eq.(6). Thus for Eq.(14) the feature '

difference images S1 to S4 are denoted $y(x,y) to where W is a window centered at the image. Thus the

S14(X,y) to indicate that the images have originated from threshold valuey,, is the maximum amplitude of gray lev-

real Gabor functions at scaljm=1 and orientationn els, within the windowW, in the imageN gefect.fredX,Y) Ob-

=1,2,3,4,(0, 45, 90, and 135 deg tained from the reference image. The window size is cho-
Next, a fused outpuN.(x,y) is generated for every sen to avoid the effects of border distortitit is obtained

scalem, by fusion of the normalized imagé$4) from four by removing 10 pixelgad hog¢ from each side of the image

directions: Ngefect-fre X, Y). This choice depends on the mask size of

the real Gabor functions; for a>¥7 mask, at least seven

‘ pixels from the border have to be ignored. The magnitude

Nm(X'Y):nZl Omn(X,¥) = [Om1(X,Y) Oma(X,y) of 7y, is such that isolated noisy pixels M(x,y) are com-
pletely isolated in the output binary image. Binarization
+ O (X,Y)Oma(X,Y) + Oma(X,Y) Oma(X,Y) based on this threshold limit helps to suppress the noise,
although this operation also suppresses some of the defects
+O0ma(X,Y)Oma(X,¥) + Oma(X,y) Oma(X,y) captured at different orientations and frequencies. In prior
+Opma(X,Y) Oma (X,¥)]- (15 Wwork,!® the threshold value was based on the mean and

standard deviation of the final ima@gh gefec-ired X, y) here.

Thus for every scalen=1,2,3,4, we obtain one fused im- As stated in Ref. 13, and from our experiments, this thresh-
age outputN,(x,y) from the four imagesSy;(x,y), old vz_;llue generates Ia_lrge noise in th_e output an_d requires an
S.2(%Y), Swa(xy), and Su(x,y) using Egs.(14) and opening qp(_aratlon with a conyolut|on mastypically 3
(15). As detailed in Ref. 12, the fused outputs tend to fol- < 3) to eliminate the noise. With the use of the threshold
low one of the inputs closely if the other inputs possess low V&lue suggested in Eq18), the opening operation is not
values. On the other hand, an input with very high values Needed and this results in reduction of computational load,
tends to dominate the outputs, regardless of their values.Which is critical for real-time implementation of this algo-
Thus the pixels from the defects captured in any of the four fithm.
orientations will dominate in the final fused image for each
scale. Thus the fusion suppresses the noise and combine8 Results
sixteen image$S1 to S16 into four imagesN1 to N4). We have tested this defect segmentation algorithm on both

Due attention to reducing false alarms should be given synthetic and real test fabric images. The reason for testing
when the information gathered from the four resolution lev- this algorithm on synthetic images was to ensure that the
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(@ {b) (e

Fig. 7 Synthetic test fabrics for evaluation: (a) with defect, (b) without defect, (c) with segmented
defect.

alg_orithm is able to _disc_:rir_ninate difficult_fabric def_ects, of 30 cm/s. The acquired images were digitized in 385
whlch .h.umans can discriminate preattentively. _The image x 287 pixels, with 8-bit resolutioi256 gray levels Nine
acquisition subsystem dev_eIopgd at the Industrial Automa- images of fabric with defects were chosen to have large
tion Laboratory at The University of Hong Kong has been characteristic variability in composition and structure. It is
used to capture gray-level images of defective test fabrics. 555 med that these sample images are representative of fab-
All images used here were acquired using backlighting. - gefects in the textile industry. All these images cover
Samples of the most commonly occurring fabric defects 14_cm width and 7.5-cm height of actual fabric. Figures 11,
(mixed filling, waste, mispicks, kinky filling, misreed, etc. 12, and 13 illustrate the defect segmentation achieved with

were gathered from a loom, and_ their gray_-level IMages ihe proposed algorithm. Due to the increase in the area of
were used to evaluate the algorithm described. Some Offabric per frame, we have increased the sensitivity (

these results are reproduced here. =2). Figure 18b) shows a fabric sample with defects that
gare visible only with difficulty. The appearing defects only
row of the test image has two more pixels than the other &lt€r the spatial arrangement of neighboring pixels and not
rows. This simulated defect of thick yam can be seen seg- € mean gray level. This change is registered by real Ga-
mented in the final imagg-ig. 7(c)]. Figures 8a) and 8b) bor functions and enhanced by the local energy function,
show real fabric images, with defects segmented in Fig. and segmentation is successfully achieved as shown in Fig.

8(c). The border effect in the segmented image is found to 13).

be reasonably localized, and the border distortion can be The lack of appropriate quantitative measures for the
ignored. goodness of segmentation makes it very difficult to evalu-

Accurate segmentation of defects is limited by poor yarn &€ and compare different defect detection methods. How-
quality. Impurities that are naturally present in fabric yarns €Ver, & simple criterion tfg%g_has been used in many texture
tend to obscure more subtle defects. This effect can be seer§égmentation algorithis>**is the percentage of misclas-
in Figs. 9 and 10. The fabric image in Fig. 9 has defects S|_f|ed pixels. In def_ect segmentation problem, it is defective
along with large yarn impurities. The defects are segmentedPixels that are of interest, and therefore the percentage of
at three different sensitivities: low, high, and medium. As all defective pixels misclassified is what is reported here
seen from results in Fig. 10, low sensitivity helps to sup- (Table 1. From this table some general observations can be
press the yarn impurities but at the expense of losing somemade. With the increase in sensitivity from low to high, the
pixels from the defect. However, when segmenting defects Percentage of misclassified pixels increases for every image
from fabric with large impurities, the sensitivity has to be sample(for a 7xX7 maskK, except for the sample of Fig.
reduced to avoid yarn impurities appearing as defects in 11(b). Another effect on performance due to the variation
output. in mask size can be observed. At the medium sensitivity, as

The image acquisition subsystem was adjusted to ac-the mask size is increased fromx% to 9X9, for every
quire large images while fabric is in motion with a velocity image sample there is a decrease in percentage of misclas-
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Fig. 8 Fabric sample for test: (a) with defect, (b) without defects, (c) with segmented defect.

Optical Engineering, Vol. 39 No. 12, December 2000 3185



Kumar and Pang: Fabric defect segmentation . . .

Fig. 9 Fabric sample with defects and yarn impurities.

sified pixels, with the exception of the samples in Figs.
11(b) and 12b). The image in Fig. 1®) registered the
largest increase in performan¢®.26 time$ with the in-
crease in mask size from>85 to 9X9 at the medium
sensitivity. For the images shown in Figs. 12, 13, and 14
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Fig. 11 Various defective-fabric test samples (a),(b),(c), and bina-
rized segmented defects (d),(e),(f).
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Fig. 10 Segmented defects at (a) low, (b) medium, and (c) high
sensitivity.
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Fig. 12 Various defective-fabric test samples (a),(b),(c), and seg-

mented defects (d),(e),(f).
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Fig. 13 Various defective-fabric test samples (a),(b),(c), and bina-

rized segmented defects (d),(e),(f).
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Fig. 14 Performance as a function of defect size.

in mask size and with decrease in sensitivity, as intuitively
expected.

Another observation may be made in Fig. 14, where the
percentage of pixels occupied by fabric defects in the ac-
quired image is plotted against percentage of misclassified
pixels from the defect. We observe the general increase in

the percentage of misclassified pixels is below 2%, except false alarms with increase in size of defects in the frame.

for one sample in Fig. 12). The conclusion that can be

The criterion used in Table (percentage of misclassi-

drawn from Table 1 is that there is an overall reduction in fied pixel9 does not accurately reflect the ability of the
percentage of pixels misclassified as defects with increasealgorithm to segment the defect. A low percentage of mis-

Table 1 Percentage of total defective pixels misclassified.

Percentage misclassified

Fig. 11(a) Fig. 11(b) Fig. 11(c)
Mask
size L M H L M H L M H
5 5.98 42.11 39.66 0.23 0.10 0.14 0.02 0.03 0.04
7 0.61 34.92 37.83 0.33 0.14 0.28 0.00 0.22 0.05
9 2.30 14.40 30.02 0.42 1.63 0.70 0.00 0.03 0.02
Fig. 12(a) Fig. 12(b) Fig. 12(c)
L M H L M H L M H
5 0.01 0.43 2.80 0.13 0.29 0.21 1.89 3.92 4.28
7 0.04 0.17 257 0.06 0.84 0.25 1.60 1.67 2.69
9 0.03 0.08 0.75 0.13 0.33 0.04 1.02 181 3.34
Fig. 13(a) Fig. 13(b) Fig. 13(c)
L M H L M H L M H
5 0.68 1.28 2.14 0.10 1.76 1.79 2.58 5.30 5.69
7 0.08 0.53 3.42 0.11 0.76 9.34 1.07 141 3.13
9 0.96 0.56 3.81 0.01 0.19 4.87 0.40 1.58 3.63
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Table 2 Performance analysis for defect sample in Fig. 11(a). P1: defective pixels identified; P2:
actual defective pixels (obtained by visual examination); P3: noise (pixels appearing as defects in
defect-free region). Total pixels in image (window): 97455. Sensitivity: L (low), M (medium), H (high).

Total pixels
5X5 TX7 9X9
Class L M H L M H L M H
P1 44 100 92 61 124 104 66 104 93
P2 653 653 653 653 653 653 653 653 653
P3 39 275 259 4 228 247 15 94 196

classified pixels does not necessarily mean good defect segsition conditions are varied. This calibration is proportional
mentation, unless it is accompanied by a large number ofto the width of the thinnest yarn in the fabric, which is a
pixels showing a defect in the defective region. Therefore, function of frequency-domain parameters. An extension of
some of the results from Table 1 are elaborated in Tables 2,this technique that allows automatic calibration would
3, and 4 to show complete statistics. We find a general therefore be highly desirable.

increase in defective pixeld1) with increase in sensitiv-
ity. However, this is accompanied by an increase in pixels
appearing outside the defective regi¢R3), i.e., noise. . .
With increase in mask size, output defective pixéPd) 7 Discussion

also increase. But this increase is very small and requiresThe choice of elements of the proposed algorithm is mainly
about 50%(70%) more computation when the mask size is guided by two factors, computational complexity and per-
increased from &5 to 7X7 (9X9). Based on these ex- formance. In a real-time environment, success of any algo-
periments, we preferred to usex7 masks without any  rithm depends on comp_utational comple_xity, and therefore
significant change in output, and& masks with marginal ~ the computational requirements are stringent. The feature

compromise for defects of smaller sizes. vectors ;hould be combined.in suqh a way as to reduce the
In the textile industry, the majority of weaving defects probab|l|ty qf false alarm while maintaining high probabil-

occur either in the direction of motiofwarp direction or ity of detection. _

perpendicular to itpick direction). Air-jet looms are most Some elements of the proposed algorithm are based on a

popular, and their predominant defects are end-6uiss- review of prior work by Escofet et & While they success-

ing or broken warp yars slubs (excess yarm and fully segmented fabric defects using complex Gabor filters,
mispicks (missing or broken pick yarpsAll these defects  their approach had certain shortcomings. First, the contri-
have been successfully segmented as illustrated in the prePution from the imaginary Gabor function was very small,
vious figures. This algorithm has been evaluated with some @nd it could not justify the additional 50% of computations
of the less commonly occurring defects, which are caused "equired for calculating its feature vector. Second, the com-

by machine malfunction, such as ho[gsg. 11(a)] and oil putational requirements for the multiresolution pyramid
spots[Fig. 11(b)]. It can also potentially be used for opaque (10W-pass residual imagesvas very high, and therefore a
textured materialgtimber, plastic etd. illuminated with ~ local energy estimate proved to be a better recourse in
front lighting. terms of computation and performance. Thirck @ masks

The results achieved prove that this algorithm is robust, used were not optimal, and we can justify the choice of 7
scalable, and computationally efficient and offers a high X7 (or even 5<5) masks through quantification of perfor-
detection rate. One of its limitations is that it requires cali- mance. Fourth, the previous wdtlkdid not allow for yarn
bration whenever the fabric typgexture or image acqui- impurities inherently present in fabric or for the physical

Table 3 Performance analysis for defect sample in Fig. 12(a). P1: defective pixels identified; P2:
actual defective pixels (obtained by visual examination); P3: noise (pixels appearing as defects in
defect-free region). Total pixels in image (window): 97455. Sensitivity: L (low), M (medium), H (high).

Total pixels
5x5 X7 9%x9
Class L M H L M H L M H
P1 5890 9780 11629 5442 9675 12811 5362 8541 12649
P2 23609 23609 23609 23609 23609 23609 23609 23609 23609
P3 2 101 660 10 39 607 7 18 177
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Table 4 Performance analysis for defect sample in Fig. 13(a). P1: defective pixels identified; P2:
actual defective pixels (obtained by visual examination); P3: noise (pixels appearing as defects in
defect-free region). Total pixels in image (window): 97455. Sensitivity: L (low), M (medium), H (high).

Total pixels
5X5 X7 9x9
Class L M H L M H L M H
P1 4898 16987 19660 3822 15934 22548 2167 10001 17952
P2 40957 40957 40957 40957 40957 40957 40957 40957 40957
P3 28 526 876 32 216 1402 21 56 1684
size of the fabric in the image used for processingstly, References

the two methods suggested by the authors for binarization

generate unacceptably large noise, and the morphological 1.

operations suggested to remove this noise are computation-
ally expensive. The threshold value computed by @®)

is simple and highly successful in removing isolated noisy 3.

pixels, as shown from the results in this paper.

8 Conclusions

5
In this paper, a multichannel filtering approach for the de- 6
tection of local fabric defects has been demonstrated. Im- .
age fusion has been successfully utilized in combining fea-
tures from different channels. We have shown that the 8
performance of the algorithm is significantly improved by

varying the sensitivity in the presence of yarn impurities g,

and low spatial sampling rate. Furthermore, considerable
computational saving has been achieved, which is attrib-
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and a local energy function.
The filtering and feature extraction operatiofi®) in
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allel. Therefore, on-line implementation of this algorithm
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filtered outputs can be read off the chip directly. This ap- 17
proach will drastically relieve the computational bottleneck 1s.

and make the use of DSP processors redundant.
The proposed algorithm is an alternative to currently

accepted methods that do not take advantage of the spatiabo.

arrangement of gray levels in neighboring pixels, and in-

stead rely on differences in their mean gray level. The al- ;.

gorithm has been tested on real fabric with success, and
results are shown in this paper. The algorithm can poten-

terial such as timber, paper, plastic, or carpet.
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with the results shown, as the aspect ratio of the images are not 1:1.
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