29,825 research outputs found

    Ab initio vibrational free energies including anharmonicity for multicomponent alloys

    Full text link
    A density-functional-theory based approach to efficiently compute numerically exact vibrational free energies - including anharmonicity - for chemically complex multicomponent alloys is developed. It is based on a combination of thermodynamic integration and a machine-learning potential. We demonstrate the performance of the approach by computing the anharmonic free energy of the prototypical five-component VNbMoTaW refractory high entropy alloy

    Tree Edit Distance Learning via Adaptive Symbol Embeddings

    Full text link
    Metric learning has the aim to improve classification accuracy by learning a distance measure which brings data points from the same class closer together and pushes data points from different classes further apart. Recent research has demonstrated that metric learning approaches can also be applied to trees, such as molecular structures, abstract syntax trees of computer programs, or syntax trees of natural language, by learning the cost function of an edit distance, i.e. the costs of replacing, deleting, or inserting nodes in a tree. However, learning such costs directly may yield an edit distance which violates metric axioms, is challenging to interpret, and may not generalize well. In this contribution, we propose a novel metric learning approach for trees which we call embedding edit distance learning (BEDL) and which learns an edit distance indirectly by embedding the tree nodes as vectors, such that the Euclidean distance between those vectors supports class discrimination. We learn such embeddings by reducing the distance to prototypical trees from the same class and increasing the distance to prototypical trees from different classes. In our experiments, we show that BEDL improves upon the state-of-the-art in metric learning for trees on six benchmark data sets, ranging from computer science over biomedical data to a natural-language processing data set containing over 300,000 nodes.Comment: Paper at the International Conference of Machine Learning (2018), 2018-07-10 to 2018-07-15 in Stockholm, Swede

    Pixel-Grounded Prototypical Part Networks

    Full text link
    Prototypical part neural networks (ProtoPartNNs), namely PROTOPNET and its derivatives, are an intrinsically interpretable approach to machine learning. Their prototype learning scheme enables intuitive explanations of the form, this (prototype) looks like that (testing image patch). But, does this actually look like that? In this work, we delve into why object part localization and associated heat maps in past work are misleading. Rather than localizing to object parts, existing ProtoPartNNs localize to the entire image, contrary to generated explanatory visualizations. We argue that detraction from these underlying issues is due to the alluring nature of visualizations and an over-reliance on intuition. To alleviate these issues, we devise new receptive field-based architectural constraints for meaningful localization and a principled pixel space mapping for ProtoPartNNs. To improve interpretability, we propose additional architectural improvements, including a simplified classification head. We also make additional corrections to PROTOPNET and its derivatives, such as the use of a validation set, rather than a test set, to evaluate generalization during training. Our approach, PIXPNET (Pixel-grounded Prototypical part Network), is the only ProtoPartNN that truly learns and localizes to prototypical object parts. We demonstrate that PIXPNET achieves quantifiably improved interpretability without sacrificing accuracy.Comment: 21 page

    The Statistical Physics of Learning Revisited:Typical Learning Curves in Model Scenarios

    Get PDF
    The exchange of ideas between computer science and statistical physics has advanced the understanding of machine learning and inference significantly. This interdisciplinary approach is currently regaining momentum due to the revived interest in neural networks and deep learning. Methods borrowed from statistical mechanics complement other approaches to the theory of computational and statistical learning. In this brief review, we outline and illustrate some of the basic concepts. We exemplify the role of the statistical physics approach in terms of a particularly important contribution: the computation of typical learning curves in student teacher scenarios of supervised learning. Two, by now classical examples from the literature illustrate the approach: the learning of a linearly separable rule by a perceptron with continuous and with discrete weights, respectively. We address these prototypical problems in terms of the simplifying limit of stochastic training at high formal temperature and obtain the corresponding learning curves.</p

    Digital image forensics via meta-learning and few-shot learning

    Get PDF
    Digital images are a substantial portion of the information conveyed by social media, the Internet, and television in our daily life. In recent years, digital images have become not only one of the public information carriers, but also a crucial piece of evidence. The widespread availability of low-cost, user-friendly, and potent image editing software and mobile phone applications facilitates altering images without professional expertise. Consequently, safeguarding the originality and integrity of digital images has become a difficulty. Forgers commonly use digital image manipulation to transmit misleading information. Digital image forensics investigates the irregular patterns that might result from image alteration. It is crucial to information security. Over the past several years, machine learning techniques have been effectively used to identify image forgeries. Convolutional Neural Networks(CNN) are a frequent machine learning approach. A standard CNN model could distinguish between original and manipulated images. In this dissertation, two CNN models are introduced to recognize seam carving and Gaussian filtering. Training a conventional CNN model for a new similar image forgery detection task, one must start from scratch. Additionally, many types of tampered image data are challenging to acquire or simulate. Meta-learning is an alternative learning paradigm in which a machine learning model gets experience across numerous related tasks and uses this expertise to improve its future learning performance. Few-shot learning is a method for acquiring knowledge from few data. It can classify images with as few as one or two examples per class. Inspired by meta-learning and few-shot learning, this dissertation proposed a prototypical networks model capable of resolving a collection of related image forgery detection problems. Unlike traditional CNN models, the proposed prototypical networks model does not need to be trained from scratch for a new task. Additionally, it drastically decreases the quantity of training images
    corecore