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Abstract. The exchange of ideas between computer science and sta-
tistical physics has advanced the understanding of machine learning
and inference significantly. This interdisciplinary approach is currently
regaining momentum due to the revived interest in neural networks and
deep learning. Methods borrowed from statistical mechanics complement
other approaches to the theory of computational and statistical learning.
In this brief review, we outline and illustrate some of the basic concepts.
We exemplify the role of the statistical physics approach in terms of a
particularly important contribution: the computation of typical learn-
ing curves in student teacher scenarios of supervised learning. Two, by
now classical examples from the literature illustrate the approach: the
learning of a linearly separable rule by a perceptron with continuous
and with discrete weights, respectively. We address these prototypical
problems in terms of the simplifying limit of stochastic training at high
formal temperature and obtain the corresponding learning curves.

1 Introduction

At least two major developments have led to the regained popularity of machine
learning in general and neural networks in particular [1–6]. Most importantly, the
ever-increasing availability of training data from various domains and contexts
have made possible the training of very powerful systems such as deep neural
networks [4–6]. At the same time, the computational power necessary for the
data driven adaptation and optimization of such systems, has become available.

Several concepts that had been developed earlier, some of them even decades
ago, could be realized and applied successfully in practice only recently. Examples
and further references can be found in [4–6]. In addition, novel computational
techniques and important modifications of the considered systems have con-
tributed to this success. This includes the use of pre-trained networks, sophisti-
cated regularization techniques, weight sharing in convolutional neural networks,
or the use of alternative activation functions [4–8].

While the relevance and success of the methods are widely recognized, sev-
eral authors note that the theoretical understanding does not yet parallel the
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practical advances of the field, see for instance [9–13] in the context of deep
learning. It is certainly desirable to strengthen and put forward the theoreti-
cal investigation of machine learning processes in general and deep learning in
particular. The development of novel concepts and the design and optimization
of practical training prescriptions would greatly benefit from better theoretical
understanding. This concerns, for instance, mathematical and statistical foun-
dations, the dynamics of training, and insights into the expected generalization
ability of learning systems.

Concepts borrowed from statistical mechanics have been applied in many
areas beyond the scope of traditional physics. In particular, analytical and com-
putational approaches developed for the study of complex physical systems can
be exploited within computer science and statistics. A prominent example is
the use of Markov chain Monte Carlo methods [14], which exploit mathematical
analogies between stochastic optimization and the statistical physics of systems
with many degrees of freedom. Similarly, analytical methods which had been
developed for the analysis of disordered systems [15], have been applied in this
context.

A somewhat surprising and very inspiring analogy was pointed out by John
Hopfield [16]: the conceptual similarity of simple dynamical neural networks with
models of disordered magnetic materials [15]. It attracted considerable interest
in neural networks and related systems within the physics community. Initially,
the analysis of thermal equilibrium states in so-called attractor neural networks
was in the center of interest [1,16,17]. However, the same concepts were applied
successfully to the investigation of learning and synaptic plasticity in neural
networks. Elizabeth Gardner’s pioneering work [18,19] paved the way for the
theory of learning in a large variety of machine learning scenarios, including the
supervised training of feedforward neural networks, methods of unsupervised
data analysis, and more general inference problems, see [20–22] for reviews.

A variety of analytical tools and modelling frameworks have been developed
and applied successfully to, for instance, the study of supervised learning in the
context of regression and classification tasks. Mostly, relatively simple and shal-
low feedforward neural networks have been analysed [20–22]. Frequently, these
training processes are modelled in the frame of a student and teacher scenario.
There, a specific neural network, the teacher, is assumed to define the target task,
e.g. a classification scheme. A student network is trained from a set of exam-
ples provided by the teacher and parameterizes a data driven hypothesis about
the target rule. This allows to explicitly control the complexity of the target
rule and of the learning system in the model. Moreover the performance of the
trained system can be quantified in terms of its similarity and agreement with
the teacher network. Learning can be interpreted as the stochastic optimization
of many degrees of freedem, which motivates possible training algorithms based
on statistical mechanics ideas. Also, analytical tools for the study of large sys-
tems in (formal) thermal equilibrium situations can be used, which describe the
model in terms of a few macroscopic quantities, only. Frequently, these so-called
order parameters appear naturally when analysing student teacher scenarios.
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Ultimately, methods developed in the theory of disordered systems allow for
the investigation of typical properties of the learning system. This concerns, for
instance, the computation of learning curves as an outcome of the stochastic
training process on average over the assumed randomness in the example data.

The successful applications of these concepts include, among other relevant
topics, the highly interesting phenomenon of symmetry breaking phase transi-
tions which result in discontinuous learning curves: Frequently, the success of
training is found to depend critically on the number of available examples or
other model parameters [20–25]. Currently, the interest in this type of analysis
is gaining momentum again in the context of deep learning and other popular
learning paradigms, see [26–31] for examples.

In the following section, we briefly outline and illustrate the statistical physics
of student teacher scenarios in supervised learning. We present two variants of
a simple and by now classical example: the learning of a linearly separable rule
with a perceptron network with continuous or discrete weights, respectively. The
perceptron has been discussed extensively in the literature and serves as a pro-
totypical system for the understanding of machine learning processes, see e.g.
[1,20–22]. For the sake of brevity, we focus on a particularly simplifying approach,
the consideration of stochastic training in the limit of high (formal) tempera-
ture. It was introduced and applied to perceptron training in [22]. Despite its
conceptual simplicity and mathematical ease, this example illustrates the basic
concepts very well and yields non-trivial results and insights into the learning
process.

This contribution is based on a tutorial talk at the Workshop on Brain
Inspired Computing, BrainComp 2019. It is obviously far from providing a com-
plete overview of the statistical physics of learning. The intention is to attract
the reader’s attention in terms of selected example applications of the approach
and to provide references as a starting point for further exploration of this highly
relevant area of research.

2 Statistical Physics of Learning: Learning Curves

Typically, the statistical physics based computation of learning curves in super-
vised learning proceeds along the following steps:

1) A student and teacher scenario is defined, which parameterizes the target rule
and fixes the complexity of the student hypothesis.

2) It is assumed that training examples and test instances are generated accord-
ing to a specific input density, while target labels are provided by the teacher
network.

3) The study of large systems in the thermodynamic limit allows to describe
systems in terms of relatively few macroscopic quantities or order parameters.

4) The outcome of stochastic training processes is interpreted as a formal ther-
mal equilibrium, in which thermal averages can be considered.
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5) An additional disorder average over a randomly generated set of training
data is performed in order to obtain typical results independent of the actual
training set.

The following sections illustrate the above points in the context of learn-
ing a linearly separable rule [20–22], before two concrete example scenarios are
analysed in Sect. 2.6.

2.1 Learning a Linearly Separable Rule: Student and Teacher

We consider the supervised learning of a linearly separable classification of N -
dimensional data. In our model, the target rule is defined through a teacher
perceptron with fixed weight vectors w∗ ∈ R

N and output

S∗(ξ) = sign [w∗ · ξ] = ±1 for any ξ ∈ R
N. (1)

Here, the feature vector ξ represents N numerical inputs to the system and S∗

corresponds to the correct output. The teacher weight vector parametrizes an
(N − 1)-dim. hyperplane which separates positive from negative responses.

We note that the norm |w∗| of the weights is irrelevant for the perceptron
response (1). Throughout the following, we therefore consider normalized teacher
weights with w∗ · w∗ = N.

In the learning scenario, information about the rule is only available in the
form of a data set which comprises P examples:

D = {ξμ, S∗(ξμ)}μ=1,2,...,P . (2)

Here we assume that the labels S∗μ = S∗(ξμ) provided in D are reliable and
represent the rule (1) faithfully. We refrain from considering corruption by dif-
ferent forms of noise, for simplicity, and refer the reader to the literature for the
corresponding extensions of the analysis [20,21].

A second simple perceptron serves as the student network in our model. Its
adaptive weights w ∈ RN parameterize a linearly separable function

S(ξ) = sign [w · ξ] . (3)

The weight vector w is chosen in a data-driven training process which is based
on the available data D and corresponds to the student hypothesis about the
unknown target. As a consequence of the invariance

sign [ (λw) · ξ] = sign[w · ξ] for arbitrary λ > 0

we will also consider normalized student weights with w ·w = N in the following.

2.2 The Density of Input Data

In realistic learning situations it is expected that the density of input features
is correlated with the actual task to a certain extent. In real world classifica-
tion problems, for instance, one would expect a more or less pronounced cluster
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structure which reflects the class memberships already. Clustered or more gen-
erally structured input densities have been considered in the statistical physics
literature, see [26] for a recent discussion and further references. Here, however,
we follow the most frequent approach and resort to the simplifying assumption
of an isotropic input density which generates input vectors independently. In
a sense, this constitutes a worst case in which the only information about the
target rule is contained in the assigned training labels S∗(ξ), while no gap or
region of low density in feature space marks the class boundaries.

Specifically, we assume that components of example vectors ξμ in D consist
of independent, identically distributed (i.i.d.) random quantities with means and
covariances 〈

ξμ
j

〉
= 0,

〈
ξμ
j ξν

k

〉
= δμν δjk (4)

with the Kronecker symbol δmn =1 if m �=n and δmm =0.

2.3 Generalization Error and the Perceptron Order Parameter

The performance of a given weight vector w in the student teacher model can
be evaluated with respect to a test input ξ /∈ D. If we assume that the test input
follows the same statistics as the training examples, i.e.

〈ξj〉 = 0, 〈ξjξk〉 = δjk, (5)

we can define the so-called generalization error as the expectation value

εg(w,w∗) = 〈ε (S(ξ, S∗(ξ))〉 where ε(S, S∗) =
{

1 if S �= S∗

0 else, (6)

serves as a binary error measure. Hence, the generalization error quantifies the
probability for disagreement between student and teacher for a random input
vector. It is instructive to work out εg explicitly under the assumption of i.i.d.
inputs. To this end, we consider the arguments of the threshold function in
student and teacher perceptron:

x = w · ξ/
√

N and x∗ = w∗ · ξ/
√

N.

Assuming that the random input vector ξ satisfies Eq. (5), x and x∗ corre-
spond to sums of N random quantities. By means of the Central Limit Theorem
(CLT) there density is given by a two-dim. Gaussian, which is fully specified by
first and second moments. These can be obtained immediately as

〈x〉 = 〈x∗〉 = 0,
〈
x2

〉
=

1
N

∑

i,j

wi wj 〈ξiξj〉 =
w2

N
= 1,

〈
(x∗)2

〉
=

(w∗)2

N
= 1

and 〈xx∗〉 =
1
N

∑

i,j

wi w∗
j 〈ξiξj〉 =

w · w∗

N
≡ R, (7)

where we have exploited the normalization of weight vectors. The covariance
〈xx∗〉 is given by the scalar product of student and teacher weights. The moments
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(7) fully specify the two-dimensional normal density P (x, x∗) and we obtain the
generalization error as the probability of observing xx∗ < 0:

εg(w,w∗) =
[∫ 0

−∞

∫ ∞

0

+
∫ ∞

0

∫ 0

−∞

]
P (x, x∗)dxdx∗ =

1
π

arccos(R). (8)

This result can be obtained immediately by an intuitive argument: The probabil-
ity for a random vector ξ to fall into the hypersegments between the hyperplanes
defined by w and w∗ is directly given by ∠ (w,w∗) /π which corresponds to the
right hand side of Eq. (8).

In the following, the overlap R = w ·w∗/N plays the role of an order param-
eter. This macroscopic quantity summarizes essential properties of the N micro-
scopic degrees of freedom, i.e. the adaptive student weights wj . It is also the
central quantity in the following analysis of the training outcome.

2.4 Training as a Stochastic Process and Thermal Equilibrium

The outcome of any practical training process will clearly depend on the actual
choice of an algorithm and its parameters that is used to infer a suitable weight
vector w from a given data set D. Generically, the training process is guided by a
cost function, such as the quadratic deviation of the student output from the tar-
get in regression systems or the number of incorrect responses in a classification
problem.

Frequently, gradient based methods can be used for the optimization of con-
tinuous weights w ∈ R

N , often incorporating some form of noise as in the popular
stochastic gradient descent. The search for optimal weights in a discrete space
with, e.g., w ∈ {−1,+1}N could be performed by means of a Metropolis Monte
Carlo method, as an example.

The degree to which the system is forced to approach the actual minimum of
the cost function is controlled implicitly or explicitly in the training algorithm.
Example control parameters are the learning rate in gradient descent or the
temperature parameter in Metropolis like schemes. In the statistical physics
approach to learning, this concept is taken into account by considering a formal
thermal equilibrium situation as outlined below.

In the context of the perceptron student teacher scenario we consider a cost
function of the form

H(w) =
P∑

μ=1

ε(Sμ, S∗μ) with Sμ = sign[w · ξμ], S∗μ = sign[w∗ · ξμ]. (9)

With the binary error measure of Eq. (6), the cost function represents the number
of disagreements between student and teacher for a given data set.

Without referring to a particular training prescription we can describe the
outcome of suitable stochastic procedures in terms of a Gibbs-Boltzmann density
of weight vectors

Peq(w) =
e−βH(w)

Z
with Z =

∫
dμ(w) e−βH(w). (10)
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It describes a canonical ensemble of trained networks in thermal equilibrium at
formal inverse temperature β = 1/T . The cost function E(w) plays the role of
the energy of state w and the normalization Z is known as the partition function.
The measure dμ(w) is implicitly understood to incorporate restrictions of the
N -dimensional integration such as the normalization w2 = N . Similarly, Z can
be written as a sum over all possible weight configurations for systems with
w ∈ {−1,+1}N .

In the limit β → ∞, T → 0, only the groundstate with minimal energy can be
observed in the ensemble, as any other state will have an exponentially smaller
Peq. On the contrary, for β → 0, T → ∞, the energy becomes irrelevant and
every state Peq can occur with the same probability. In general, the parameter
β controls the mean energy of the system which can be written as a thermal
average of the form

〈H〉β =
∫

dμ(w)H(w)
e−βH(w)

Z
= − ∂

∂β
ln Z. (11)

Quite generally, thermal averages can be written as appropriate derivatives of
the so-called free energy F = − 1

β ln Z, which is also in the center of the following
analysis. Introducing the microcanonical entropy S(E) we can rewrite

Z =
∫

dE e−βE+S(E) where S(E) = ln
∫

dμ(w) δ[H(w) − E] (12)

with the Dirac delta-function δ[. . .]. For large systems in the thermodynamic
limit N → ∞ we assume that entropy and energy are extensive, i.e. that S = N s
and E = N e with e, s = O(1). A saddle-point integration yields

lim
N→∞

(− ln Z/N) = βF/N = β e − s(e) (13)

where the right hand side βF/N has to be evaluated in its minimum with respect
to e for a given β.

2.5 Disorder Average and High-Temperature Limit

The consideration of a formal thermal equilibrium in the previous section refers
to a particular data set D, since the energy function H(w) is defined with respect
to the given example data. In order to obtain typical results independent of
the particularities of a specific data set, an additional average over randomly
generated D has to be performed.

In the simplest case, we consider data sets which comprise P independent
vectors ξμ with i.i.d. components that obey (4). Hence the corresponding density
factorizes over examples μ = 1, 2, . . . P and components j = 1, 2, . . . N of the
feature vectors in D.

The randomness in D can be interpreted as an external disorder which deter-
mines the actual energy function H(w) and the corresponding thermal equilib-
rium. In addition to the thermal average discussed in the previous section, the
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associated quenched average is denoted as 〈. . .〉D. Quantities of interest have to
be studied in terms of appropriate averages of the form 〈〈. . .〉β〉D which can be
derived from the quenched free energy

〈F 〉
D

= − 〈ln Z〉
D

/
β.

The computation of 〈ln Z〉
D

is, in general, quite involved and requires the appli-
cation of sophisticated methods such as the replica trick [1,15,20–22].

We refrain from discussing the conceptual difficulties and mathematical sub-
tleties of the replica approach. Instead we resort to a very much simplifying limit,
which has been presented and discussed in [22]. In the extreme setting of learning
at high formal temperature with β → 0, the so-called annealed approximation

〈ln Z〉
D

≈ ln 〈Z〉
D

becomes exact and can be exploited to obtain the typical training outcome [20–
22]. Note that in this limit also

〈Z〉
D

=
〈∫

dμ(w)e−βH(w)

〉

D

=
∫

dμ(w)e−β〈H(w)〉D with

〈H(w)〉D =
P∑

μ=1

〈
ε(Sμ, S∗μ)

〉

D

= P εg.〉D. (14)

Here we make use of the fact that the i.i.d. random examples in D contribute
the same average error which is given by εg. It is expressed as a function of the
order parameter R in Eq. (8). We can now perform a saddle point integration in
analogy to Eqs. (12, 13) to obtain

lim
N→∞

(− ln〈Z〉D/N) = β〈F 〉D/N =
βP

N
εg(R) − s(R). (15)

Again, the right hand side has to be evaluated in its minimum, now with respect
to the characteristic order parameter R of the system. The entropy term

s(R) =
1
N

ln
∫

dμ(w)δ[w · w∗ − NR] (16)

can be obtained analytically by an additional saddle point integration making use
of the integral representation of the δ-function [1,20–22]. Since s(R) depends on
potential constraints on the weight vectors as represented by dμ(w), we postpone
the computation to the following sections.

In order to obtain meaningful results from the minimization with respect to
R in Eq. (15), we have to assume that the number of examples P scales like

P = α N/β with α = O(1). (17)

Obviously, P should be proportional to the number N of adaptive weights in
the system, which is consistent with an extensive energy. In addition, P has to
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βf

R

α = 1.0

βf

R

α = 3.0

βf

R

α = 5.0

Fig. 1. The quenched free energy βf as a function of the order parameter R in the
training scenario with spherical student and teacher perceptron, cf. Sect. 2.6. From left
to right, the rescaled numbers of examples are α = 1.0, 3.0 and 5.0, respectively.

grow like β−1 in the high temperature limit. The weak role of the energy in
this limit has to be compensated for by an increased number of example data.
In layman’s terms: “Almost nothing is learned from infinitely many examples”.
This also makes plausible the identification of the energy with the generalization
error. The space of possible input vectors is sampled so well that training set
performance and generalization behavior become indistinguishable.

Finally, the quenched free energy per weight, f = 〈F 〉D/N of the perceptron
model in the high temperature limit has the form

βf = α εg(R) − s(R), (18)

where α plays the role of an effective temperature parameter, which couples the
number of examples and the formal temperature of the training process. These
quantities cannot be varied independently within the simplifying limit β → 0 in
combination with P/N ∝ β−1.

2.6 Two Concrete Examples

Despite the significant simplifications and scaling assumptions, it is possible to
obtain non-trivial, interesting results also in the high temperature limit. Very
often, more sophisticated approaches, such as the replica method or the annealed
approximation for finite training temperatures, confirm the results for β → 0
qualitatively. Therefore, the simplified treatment has often been used to obtain
first, useful insights into the qualitative properties of various learning scenarios.
In this brief review, we restrict the discussion to two well-known results for
simple model situations. Both concern the training of a simple perceptron in a
student teacher scenario. Originally the models were treated in [22] and they have
been revisited in several reviews, for instance, [20,21]. We reproduce the results
here as particularly illustrative examples for the statistical physics approach to
learning.
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R

α

εg

α

Fig. 2. Typical learning curves of the perceptron with continuous weights in the student
teacher scenario, see Sect. 2.6. The left panel shows R(α), the right panel displays the
corresponding generalization error εg(α).

The Perceptron with Continuous Weights
Here we consider a student teacher scenario where the student weight vector
w ∈ R

N is normalized (w2 = N) but otherwise unrestricted.
The generalization error as a function of the student teacher overlap R is

given in Eq. (8). The corresponding entropy, Eq. (16), can be obtained by means
of a saddle point integration. Alternatively, one can interpret eNs as the volume
of an (N −1)-dimensional hypersphere in weight space with radius

√
1 − R2, see

[21] for the geometrical argument. One obtains

s(R) =
1
2

ln(1 − R2) + const., (19)

where the additive constant does not depend on R. Apart from such irrelevant
terms, we obtain the quenched free energy in the limit β → 0 as

βf = α
1
π

arccos R − 1
2

ln(1 − R2). (20)

In absence of training data, α = 0, the maximum of the entropy term in R = 0
governs the behavior of the system. In the high-dimensional feature space, the
student weight vector is expected to be orthogonal to the unknown w∗.

The free energy is displayed in Fig. 1 for three different values of α. As α
is increased, we observe that the minimum of βf is found in larger, positive
values of R, reflecting the knowledge about the rule as inferred from the set of
examples.

The student teacher overlap R(α) that corresponds to the minimum of βf is
displayed in Fig. 2 (left panel). In this simple case, it can be obtained analytically
from the necessary condition for the presence of a minimum:

∂βf

∂R
= 0 ⇒ R(α) =

α√
α2 + π2

. (21)

By means of Eq. (8) this result translates into a learning curve εg(α), which is
shown in the right panel of Fig. 2. One can show that large training sets facilitate
perfect generalization with
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βf

R

α = 1.5

βf

R

α = 1.8

βf

R

α = 2.2

Fig. 3. The quenched free energy βf as a function of the order parameter R in the
training scenario with Ising student and teacher perceptron, cf. Sect. 2.6. In the leftmost
panel the rescaled numbers of examples is α = 1.5 < αc, where R = 1 constitutes a
local minimum while a state with 0 < R < 1 is thermodynamically stable. In the center
panel with α = 1.8 > αc, here perfect generalization with R = 1 corresponds to the
global minimum. The rightmost panel displays βf for α = 2.2 > αd where R = 1
constitutes its only minimum.

R(α) ≈ 1 − π2

2α2
and εg(α) ≈ 1

α
for α → ∞. (22)

It is interesting to note that the basic asymptotic α-dependences are recov-
ered in the more sophisticated application of the annealed approximation or the
replica formalism [22]. Obviously, an explicit temperature dependence and the
correct prefactors cannot be obtained in the simplifying limit.

The Perceptron with Discrete Weights
As an interesting exercise we also revisit the model with discrete student weights
[22]. The term Ising perceptron has been coined for the model with weights
w ∈ {−1, 1}N [21,22]. Note that the assumed normalization w2 = N is trivially
satisfied. Moreover, the generalization error is also given by Eq. (8) since its
derivation does not depend on details of the weight space.

The corresponding entropy can be obtained by a simple counting argument:
In order to obtain an overlap

∑
j wjw

∗
j = NR, a number of N(R + 1)/2 com-

ponents must satisfy wj = w∗
j while for N(R − 1)/2 we have wj = −w∗

j . The
associated entropy of mixing is given by the familiar form

s(R) = −
(

1 + R

2

)
ln

(
1 + R

2

)
−

(
1 − R

2

)
ln

(
1 − R

2

)
. (23)

The resulting free energy (18) as a function of R is displayed in Fig. 3 for three
different values of α.

For all α > 0, βf displays a local minimum in R = 1 with f(R = 1) = 0. For
small α, however, a deeper minimum can be found with an overlap 0 < R < 1.
This is exemplified for α = 1.5 in the leftmost panel of Fig. 3. The global mininum
of βf determines the thermodynamically stable state of the system.
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R

α

εg

α

Fig. 4. Learning of the Ising perceptron with discrete weights in the student teacher sce-
nario, see Sect. 2.6. The left panel shows R(α), the right panel displays the correspond-
ing generalization error εg(α). States corresponding to local minima of βf are marked
by dashed lines, while solid lines mark the thermodynamically stable global minima.
Vertical dotted and solid lines correspond to the critical αc ≈ 1.69 and αd ≈ 2.08,
respectively.

For training sets with α larger than a critical value αc ≈ 1.69, the state with
R = 1 constitutes the global minimum. A competing configuration with R < 1
persists as a local minimum, but becomes unstable for α > αd ≈ 2.08, see the
center and rightmost panel of Fig. 3.

The learning curves R(α) and εg(α) reflect the specific α-dependence of βf
in terms of a discontinuous phase transition. In Fig. 4, the solid lines mark the
thermodynamically stable state in terms of R(α) (left panel) and εg(α) (right
panel). Dashed lines correspond to local minima of βf and the characteristic
values αc and αd are marked by the dotted and solid vertical lines, respectively.

The essential findings of the high temperature treatment do carry over to
the training at lower formal temperatures, qualitatively [21,22]. Most notably,
the system displays a freezing transition to perfect generalization. Furthermore,
the first order phase transition scenario will have non-trivial effects in practical
training. The existence of metastable, poorly generalizing states can delay the
success of training significantly. Related hysteresis effects with varying α have
been observed in Monte Carlo simulations of the training process, see [21] and
references therein.

3 Summary and Conclusion

This brief review merely discusses one goal of the statistical physics of learning:
the computation of typical learning curves in clear-cut model scenarios. This
type of results provide basic insight into relevant mechanisms and phenomena
which play a role in practical machine learning setups as well. The framework
provides a workshop in which to analyse, put forward and optimize training
algorithms. Moreover it offers the possibility to systematically compare different
adaptive systems, network architectures etc.

The classical examples discussed in this short tutorial concern merely the
simplest models, i.e. the learning of a linearly separable rule with a percetpron



140 M. Biehl

network. The presentation is furthermore restricted to the particularly simplify-
ing limit of training at high temperature.

In the literature, numerous studies of more complex adaptive systems, such
as layered neural networks or support vector machines can be found. Similarly,
models of unsupervised learning and related problems of data analysis and infer-
ence have been analysed. Among the many interesting extensions, we mention
only the study of symmetry breaking phase transitions in feedforward layered
neural networks.

The analysis of more realistic training at low formal temperatures requires
a much more involved mathematical treatment. A thorough discussion thereof
would be clearly beyond the scope of this brief introduction to the field. Indeed,
the theory of learning has had a very fruitful impact on the development and
understanding of sophisticated methods for the analysis of disordered systems
in general.

Apart from the equilibrium approach discussed here, statistical physics also
provides the tools to analyse non-equilibrium situations. This has helped to study
the dynamics of learning in a very similar fashion. The resulting insights directly
link to popular practical training prescriptions such as the popular stochastic
gradient descent.

Recently, the statistical physics of learning is being rediscovered and has
gained popularity again in the context of deep learning. A better theoretical
understanding of this successful machine learning framework is highly desirable.
Currently, many researchers revisit the statistical physics perspective to learning,
aiming a fundamental insights into design and performance of, for instance, deep
layered networks. A brief discussion of recent developments, challenges and open
questions, as well as further references can be found in [32].

The author is convinced that the revival of the area will contribute signif-
icantly to the further development of machine learning and data analysis in
general.
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