12,464 research outputs found

    Searching images by color in multimedia database systems.

    Get PDF
    This dissertation presents several tasks that have been completed in order to achieve the above goal. First, this dissertation presents algorithms for processing color-based queries based on the colors contained within an image. They process queries of the type "Identify all images that are between PCTmin and PCTmax percent of color CQ", where PCTmin and PCTmax represent percentages and C Q represents a color in the RGB (Red, Green, Blue) model.Third, this dissertation proposes a data structure for organizing virtual images identifiers stored in the MMDBMS in order to reduce the amount of time it takes to process the above algorithm. By using the data structure, the system will be able to identify some of the virtual images that can satisfy a given query without analyzing their sequences of editing operations. The reduction in the query processing time occurs from the reduction in the number of virtual images that have to be analyzed.Next, this dissertation proposes algorithms for measuring the similarity between two images when one of them is stored virtually, where the similarity is based on the colors contained within an image. This allows an MMDBMS to process color-based searching queries of the type "Identify the k images that most resemble Q based on color", where k represents the desired number of images, and Q represents a query object by providing a method to measure how similar each virtual image is to the query object.Previous research has demonstrated that instead of storing images in a Multimedia DataBase Management System (MMDBMS) using a conventional binary format, space can be saved by storing some of the images virtually, meaning that they are stored as sequences of editing operations. Since the existing techniques for searching images by color typically assume that the images are stored in conventional binary formats, new techniques and strategies for processing the queries are needed when the images are stored virtually. The goal of this dissertation is to develop techniques for performing color-based searches of virtual images and determine their strengths and weaknesses.Finally, this dissertation constructs a prototype system to compare the above algorithms to the conventional approach for processing color-based search queries that use images stored as binary objects. The performance evaluation is based on permanent storage space used, color-based search query processing time, insertion query processing time, as well as accuracy. The comparison results show that unlike the alternative approaches, the proposed algorithms are able to perform efficiently in both searching and insertion time while still saving storage space through the use of virtual images

    Sixth Annual Users' Conference

    Get PDF
    Conference papers and presentation outlines which address the use of the Transportable Applications Executive (TAE) and its various applications programs are compiled. Emphasis is given to the design of the user interface and image processing workstation in general. Alternate ports of TAE and TAE subsystems are also covered

    Knowledge Enhanced Notes (KEN)

    Get PDF
    To aid the creation and through-life support of large complex engineering products, organisations are placing a greater emphasis on constructing complete and accurate records of design activities. Current documentary approaches are not sufficient to capture activities and decisions in their entirety and can lead to organisations revisiting and in some cases reworking design decisions in order to understand previous design episodes. This paper presents an overview of the challenges in creating accurate, re-usable records of synchronous design activities, enhancing the through-life support of engineering products, followed by the development of an information capture software system to address these challenges. The main objectives for the development of the Knowledge Enhanced Notes system are described followed by the techniques chosen to address the objectives, and finally a description of a use-case for the system. Whilst the focus of the KEN System was to aid the creation and through-life support of large complex engineering products through constructing complete and accurate records of design activities, the system is entirely generic in its application to synchronous activities

    Image Retrieval within Augmented Reality

    Get PDF
    Die vorliegende Arbeit untersucht das Potenzial von Augmented Reality zur Verbesserung von Image Retrieval Prozessen. Herausforderungen in Design und Gebrauchstauglichkeit wurden fĂŒr beide Forschungsbereiche dargelegt und genutzt, um Designziele fĂŒr Konzepte zu entwerfen. Eine Taxonomie fĂŒr Image Retrieval in Augmented Reality wurde basierend auf der Forschungsarbeit entworfen und eingesetzt, um verwandte Arbeiten und generelle Ideen fĂŒr Interaktionsmöglichkeiten zu strukturieren. Basierend auf der Taxonomie wurden Anwendungsszenarien als weitere Anforderungen fĂŒr Konzepte formuliert. Mit Hilfe der generellen Ideen und Anforderungen wurden zwei umfassende Konzepte fĂŒr Image Retrieval in Augmented Reality ausgearbeitet. Eins der Konzepte wurde auf einer Microsoft HoloLens umgesetzt und in einer Nutzerstudie evaluiert. Die Studie zeigt, dass das Konzept grundsĂ€tzlich positiv aufgenommen wurde und bietet Erkenntnisse ĂŒber unterschiedliches Verhalten im Raum und verschiedene Suchstrategien bei der DurchfĂŒhrung von Image Retrieval in der erweiterten RealitĂ€t.:1 Introduction 1.1 Motivation and Problem Statement 1.1.1 Augmented Reality and Head-Mounted Displays 1.1.2 Image Retrieval 1.1.3 Image Retrieval within Augmented Reality 1.2 Thesis Structure 2 Foundations of Image Retrieval and Augmented Reality 2.1 Foundations of Image Retrieval 2.1.1 DeïŹnition of Image Retrieval 2.1.2 ClassiïŹcation of Image Retrieval Systems 2.1.3 Design and Usability in Image Retrieval 2.2 Foundations of Augmented Reality 2.2.1 DeïŹnition of Augmented Reality 2.2.2 Augmented Reality Design and Usability 2.3 Taxonomy for Image Retrieval within Augmented Reality 2.3.1 Session Parameters 2.3.2 Interaction Process 2.3.3 Summary of the Taxonomy 3 Concepts for Image Retrieval within Augmented Reality 3.1 Related Work 3.1.1 Natural Query SpeciïŹcation 3.1.2 Situated Result Visualization 3.1.3 3D Result Interaction 3.1.4 Summary of Related Work 3.2 Basic Interaction Concepts for Image Retrieval in Augmented Reality 3.2.1 Natural Query SpeciïŹcation 3.2.2 Situated Result Visualization 3.2.3 3D Result Interaction 3.3 Requirements for Comprehensive Concepts 3.3.1 Design Goals 3.3.2 Application Scenarios 3.4 Comprehensive Concepts 3.4.1 Tangible Query Workbench 3.4.2 Situated Photograph Queries 3.4.3 Conformance of Concept Requirements 4 Prototypic Implementation of Situated Photograph Queries 4.1 Implementation Design 4.1.1 Implementation Process 4.1.2 Structure of the Implementation 4.2 Developer and User Manual 4.2.1 Setup of the Prototype 4.2.2 Usage of the Prototype 4.3 Discussion of the Prototype 5 Evaluation of Prototype and Concept by User Study 5.1 Design of the User Study 5.1.1 Usability Testing 5.1.2 Questionnaire 5.2 Results 5.2.1 Logging of User Behavior 5.2.2 Rating through Likert Scales 5.2.3 Free Text Answers and Remarks during the Study 5.2.4 Observations during the Study 5.2.5 Discussion of Results 6 Conclusion 6.1 Summary of the Present Work 6.2 Outlook on Further WorkThe present work investigates the potential of augmented reality for improving the image retrieval process. Design and usability challenges were identiïŹed for both ïŹelds of research in order to formulate design goals for the development of concepts. A taxonomy for image retrieval within augmented reality was elaborated based on research work and used to structure related work and basic ideas for interaction. Based on the taxonomy, application scenarios were formulated as further requirements for concepts. Using the basic interaction ideas and the requirements, two comprehensive concepts for image retrieval within augmented reality were elaborated. One of the concepts was implemented using a Microsoft HoloLens and evaluated in a user study. The study showed that the concept was rated generally positive by the users and provided insight in different spatial behavior and search strategies when practicing image retrieval in augmented reality.:1 Introduction 1.1 Motivation and Problem Statement 1.1.1 Augmented Reality and Head-Mounted Displays 1.1.2 Image Retrieval 1.1.3 Image Retrieval within Augmented Reality 1.2 Thesis Structure 2 Foundations of Image Retrieval and Augmented Reality 2.1 Foundations of Image Retrieval 2.1.1 DeïŹnition of Image Retrieval 2.1.2 ClassiïŹcation of Image Retrieval Systems 2.1.3 Design and Usability in Image Retrieval 2.2 Foundations of Augmented Reality 2.2.1 DeïŹnition of Augmented Reality 2.2.2 Augmented Reality Design and Usability 2.3 Taxonomy for Image Retrieval within Augmented Reality 2.3.1 Session Parameters 2.3.2 Interaction Process 2.3.3 Summary of the Taxonomy 3 Concepts for Image Retrieval within Augmented Reality 3.1 Related Work 3.1.1 Natural Query SpeciïŹcation 3.1.2 Situated Result Visualization 3.1.3 3D Result Interaction 3.1.4 Summary of Related Work 3.2 Basic Interaction Concepts for Image Retrieval in Augmented Reality 3.2.1 Natural Query SpeciïŹcation 3.2.2 Situated Result Visualization 3.2.3 3D Result Interaction 3.3 Requirements for Comprehensive Concepts 3.3.1 Design Goals 3.3.2 Application Scenarios 3.4 Comprehensive Concepts 3.4.1 Tangible Query Workbench 3.4.2 Situated Photograph Queries 3.4.3 Conformance of Concept Requirements 4 Prototypic Implementation of Situated Photograph Queries 4.1 Implementation Design 4.1.1 Implementation Process 4.1.2 Structure of the Implementation 4.2 Developer and User Manual 4.2.1 Setup of the Prototype 4.2.2 Usage of the Prototype 4.3 Discussion of the Prototype 5 Evaluation of Prototype and Concept by User Study 5.1 Design of the User Study 5.1.1 Usability Testing 5.1.2 Questionnaire 5.2 Results 5.2.1 Logging of User Behavior 5.2.2 Rating through Likert Scales 5.2.3 Free Text Answers and Remarks during the Study 5.2.4 Observations during the Study 5.2.5 Discussion of Results 6 Conclusion 6.1 Summary of the Present Work 6.2 Outlook on Further Wor

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Designing a training tool for imaging mental models

    Get PDF
    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network

    FĂ­schlĂĄr-DiamondTouch: collaborative video searching on a table

    Get PDF
    In this paper we present the system we have developed for our participation in the annual TRECVid benchmarking activity, specically the system we have developed, FĂ­schlĂĄr-DT, for participation in the interactive search task of TRECVid 2005. Our back-end search engine uses a combination of a text search which operates over the automatic speech recognised text, and an image search which uses low-level image features matched against video keyframes. The two novel aspects of our work are the fact that we are evaluating collaborative, team-based search among groups of users working together, and that we are using a novel touch-sensitive tabletop interface and interaction device known as the DiamondTouch to support this collaborative search. The paper summarises the backend search systems as well as presenting the interface we have developed, in detail

    Collaborative searching for video using the FĂ­schlĂĄr system and a DiamondTouch table

    Get PDF
    Fischlar DT is one of a family of systems which support interactive searching and browsing through an archive of digital video information. Previous Fischlar systems have used a conventional screen, keyboard and mouse interface, but Fischlar-DT operates with using a horizontal, multiuser, touch sensitive tabletop known as a DiamondTouch. We present the Fischlar-DT system partly from a systems perspective, but mostly in terms of how its design and functionality supports collaborative searching. The contribution of the paper is thus the introduction of Fischlar-DT and a description of how design concerns for supporting collaborative search can be realised on a tabletop interface

    An Appearance-Based Framework for 3D Hand Shape Classification and Camera Viewpoint Estimation

    Full text link
    An appearance-based framework for 3D hand shape classification and simultaneous camera viewpoint estimation is presented. Given an input image of a segmented hand, the most similar matches from a large database of synthetic hand images are retrieved. The ground truth labels of those matches, containing hand shape and camera viewpoint information, are returned by the system as estimates for the input image. Database retrieval is done hierarchically, by first quickly rejecting the vast majority of all database views, and then ranking the remaining candidates in order of similarity to the input. Four different similarity measures are employed, based on edge location, edge orientation, finger location and geometric moments.National Science Foundation (IIS-9912573, EIA-9809340
    • 

    corecore