
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SEARCHING IMAGES BY COLOR IN

MULTIMEDIA DATABASE SYSTEMS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

LEONARD BROWN

Norman, Oklahoma
2003

UMI Number: 3085710

UMI
UMI Microform 3085710

Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Copyright by LEONARD BROWN 2003

All Rights Reserved

SEARCHING IMAGES BY COLOR IN
MULTIMEDIA DATABASE SYSTEMS

A Dissertation APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

fnwald, Committee Chair

darshan K. Dhall

S. Laksmmvaraha;

Samuel Lee

j f . B U / i ^
K. Thulasirahan

ACKNOWLEDGMENTS

I would not have been able to complete this work without the help and support of

many people, and I would like to take this opportunity to thank them. First, I want to

thank my advisor. Dr. Gruenwald. She is the person who is the most responsible for the

successful completion of this work due to here infinite patience and guidance. I would

also like to thank my committee of Drs. Dhall, Lee, Thulasirahan, and Lakshmivarahan

as well as Dr. Speegle from Baylor University for their valuable time and their thoughtful

recommendations.

I also want to thank the members of the computer science community here at OU.

I thank the past and present members of the GUDB research group for their support and

friendship. I will always cherish the friends that I have made here at OU over the years

including Brian, Carlos, David, Diana, Gary, Hongping, Javed, Jianting, Jim, Khushru,

Lau, Leslie, Shankar, Sirirut, Sylvain, and Zahid.

I would also like to thank Wayne Steen and the Minority Engineering Program for

supporting me throughout my undergraduate and graduate work. I would also like to

thank Nicolas Pontier and Jeff Watkins for their contributions to the prototype.

Finally, I would also like to thank my family and friends who are more important

to me than any degree. They supported me in my decision to return to school and always

encouraged me not to give up my goals. I would not have completed this work without

the support of my sister Kara, my brother-in-law James, my mother Rose, my aunts and

uncles and their families, and my friends Michael and Ron. In addition, I want to thank

my three-year-old niece Rachel for serving as the inspiration to complete my degree.

IV

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION..1
1.1. M otivation... 1

1.1.1. Storing Images.. 1
1.1.2. Searching Images..6
1.1.3. Problem Statement...8

1.2. Organization o f the Dissertation...9

CHAPTER 2. SURVEY OF RELATED RESEARCH.. 10
2.1. Content-Based Image Retrieval Systems..10

2.1.1. Identifying Features... 10
2.1.2. Feature Extraction Techniques...12

2.1.2.1. Color Models.. 14
2.1.2.2. Quantization... 15

2.1.3. Feature Representation... 18
2.1.4. Defining Image Similarity..19
2.1.5. Access Methods... 19

2.2. Virtual Image Editing Operations..21
2.2.1. Defme(xi, yi, X2 , y2) ..22
2.2.2. Mutate (M n, M 12, M 13, M2 1 , M2 2 , M 2 3 , M 3 1 , M 32 , M 33).....................23
2.2.3. Modify (Redmin, Redmaxj Redrew, Green^in; Green^iax; Greenngw,

Bluemiri) BluOmax) BluOnew)..24
2.2.4. Combine (Cu, C12, C 13, C2 1 , C2 2 , C2 3 , C3 1 , C3 2 , C33).......................... 25
2.2.5. Merge (Target Image, Xp, y?)..26

2.3. Virtual Image Retrieval.. 27

CHAPTER 3. TECHNIQUES FOR PROCESSING COLOR-BASED RANGE
QUERIES..28

3.1. Properties of a Set o f Image Editing Operations...31
3.1.1. Ability to Transform Images.. 31
3.1.2. Minimizing the Set of Editing Operations... 33

3.2. Algorithm for Processing Range Queries... 36
3.3. Algorithm for Determining Bounds on Bin HB in a Virtual Image................39
3.4. Derivation o f Bounds... 43

3.4.1. Combine (Cu, C 1 2 , C 1 3 , C 2 1 , C 2 2 , C 2 3 , C 3 1 , C 3 2 , C 3 3) 45
3.4.2. Modify (Rmin, Rmax, Rnew, Gmin, Gmax, Gnew, Bmin, Bmax, B êw)............. 46
3.4.3. Mutate (M u, M 12, M 13, M21, M2 2 , M 2 3 , M3 1 , M3 2 , M 3 3).....................49
3.4.4. Merge (Target Image, xp, yp)... 51

3.5. Range Query Processing Example...57

CHAPTER 4. TECHNIQUES FOR PROCESSING NEAREST NEIGHBOR
QUERIES..64

4.1. Algorithm for Processing Nearest Neighbor Queries....................................... 64
4.2. Algorithm for Determining the Distances from Q to the Virtual Images 6 6

4.2.1. Algorithm Steps...69
4.3. Nearest Neighbor Query Processing Example... 71
4.4. Discussion of Example.. 76

CHAPTER 5. DATA STRUCTURE FOR SPEEDING UP RETRIEVAL
PROCESSING... 79

5.1. Properties o f Rules for Editing Operations.. 80
5.1.1. Bound Widening Rules.. 80
5.1.2. Techniques for Speeding up Retrieval Query Processing.................. 87

5.2. Proposed Data Structure.. 89
5.2.1. Creation of Proposed Data Structure...90

5.3. Range Query Processing Algorithm..93
5.3.1. Range Query Processing Algorithm Steps... 95

CHAPTER 6 . HISTOGRAM-BASED APPROACHES FOR SEARCHING BY
COLOR..98

6.1. Virtual Storage with Instantiation while Searching (VSIS) Approach..........98
6.2. Virtual Storage with Instantiation while Inserting (VSII) Approach.............100

CHAPTER 7. PERFORMANCE EVALUATION OF ALGORITHMS................... 104
7.1. Error Probabilities... 104

7.1.1. Probability of False Positives.. 105
7.1.2. Probability of False Negatives...108

7.2. Execution Time and Storage Space...110
7.2.1. Binary Storage with Histograms (BSH) Approach............................. 112

7.2.1.1. Permanent Storage Space for BSH Algorithms...................... 112
7.2.1.2. Average Insertion Time for BSH Algorithms......................... 112
7.2.1.3. Average BSH Range Query Processing Time.........................113
7.2.1.4. Average BSH Nearest Neighbor Query Processing Time.....114

7.2.2. Virtual Storage with Instantiation while Searching (VSIS)
Approach.. 116
7.2.2.1. Permanent Storage Space for VSIS Algorithms..................... 116
7.2.2.2. Average Insertion Time for VSIS Algorithms........................ 117
7.2.2.3. Average VSIS Range Query Processing Time....................... 118
7.2.2.4. Average VSIS Nearest Neighbor Query Processing Time..... 120

7.2.3. Virtual Storage with Instantiation while Inserting (VSII)
Approach... 123
7.2.3.1. Permanent Storage Space for VSII Algorithms.................... 123
1.23.2. Average Insertion Time for VSII Algorithms....................... 123

VI

7.2.3.3. Average Retrieval Query Processing Time for VSII
Algorithms.. 124

7.2.4. Rule-Based Approach.. 126
7.2.4.1. Permanent Storage Space for Rule-Based Algorithms...........126
7.2.4.2. Average Insertion Time for Rule-Based Algorithms............. 127
7.2.4.3. Average Rule-Based Range Query Processing Time............. 128
7.2.4.4. Average Rule-Based Nearest Neighbor Query Processing

Time...129
7.3. Comparison o f Approaches... 129

7.3.1. Comparison of Permanent Storage Space...130
7.3.2. Comparison of Average Insertion Time...131
7.3.3. Comparison of Average Times for Processing Range Queries........... 133
7.3.4. Comparison of Average Times for Processing Nearest Neighbor

Queries.. 135
7.3.5. Summary o f Comparisons.. 137

7.4. Analysis of Proposed Data Structure...137
7.4.1. Permanent Storage Space for Proposed Data Structure......................138
7.4.2. Average Insertion Time for Proposed Data Structure.........................139
7.4.3. Average Range Query Processing Time for Proposed Data

Structure 140

CHAPTER 8. A PROTOTYPE VIRTUAL IMAGE RETRIEVAL SYSTEM 144
8.1. Implementation.. 144

8.1.1. Prototype Structure..145
8.1.2. Queries and Images... 147
8.1.3. User Interface.. 148

8.2. Performance Parameters..152
8.3. Performance Evaluation Results.. 155

8.3.1. Permanent Storage Space..155
8.3.2. Retrieval Time... 158
8.3.3. Insertion Tim e... 169
8.3.4. Retrieval Accuracy..172

8.3.4.1. Accuracy of Rule-Based Nearest Neighbor Query
Processing Algorithms... 173

8.3.4.2. Accuracy of Rule-Based Range Query Processing
Algorithms...175

8.4. Performance Evaluation Summary.. 179

VI I

CHAPTER 9. CONCLUSION..183
9.1. Summary and Conclusions.. 183

9.1.1. Algorithms for Processing Range Queries..183
9.1.2. Algorithms for Processing Nearest Neighbor Queries........................ 185
9.1.3. Data Structure for Speeding up Query Processing185
9.1.4. Performance Evaluation..186

9.2. Directions for Future Research... 187

REFERENCES 189

VI I I

LIST OF TABLES

Table 2-1. Partitioning Methods of CBIR Systems that Use Color Histograms.......17
Table 3-1. Operations Used to Perform Steps o f Transformation Algorithm...........33
Table 3-2. Rules for How Editing Operations Affect Bounds on Histogram Bins 44
Table 3-3. Histograms for the Binary Images in the Example Database...................58
Table 3-4. Descriptions of Virtual Images in the Example Database........................ 58
Table 4-1. Histograms of the Binary Images in the Example Database.................... 72
Table 4-2. States o f NEAREST array as Nearest Neighbor Algorithm Proceeds 72
Table 5-1. Histograms of the Binary Images in the Example Database.................... 94
Table 7-1. Parameters Used in Performance Evaluation... 111
Table 7-2. Comparison of Total Space Used by Each Approach...............................130
Table 7-3. Comparison of Average Insertion Times for Each Approach 132
Table 7-4. Comparison of Average Times for Processing Range Queries 134
Table 7-5. Comparison of Average Times for Processing Nearest Neighbor

Queries.. 136
Table 7-6. Additional Variables Used in Evaluation of Data Structure 138
Table 8-1. Default Values of Parameters Used in Performance Evaluation 153
Table 8-2. Default Values of Data Structure Parameters Used in Performance

Evaluation... 154
Table 8-3. Dynamic Parameters Used in Performance Evaluation.............................154
Table 8-4a. Comparison of Alternative Approaches (Helmet)...................................182
Table 8-4b. Comparison of Alternative Approaches (Flag).. 182
Table 8-4c. Comparison of Alternative Approaches (Random).................................182

IX

LIST OF FIGURES

Figure 1-1. Description of a Virtual Image..3
Figure l-2a. Storage of Similar Flags with and without Virtual Images....................4
Figure l-2b. Storage o f Similar Photos with and without Virtual Images.................4
Figure 2-1. Example Histograms Extracted from a Set of Images.............................. 13
Figure 2-2. Quantization Function for Mapping Color Model Values to

Histogram Bins.. 16
Figure 2-3. Rectangle Corresponding to Defme(32, 96, 224, 288)............................22
Figure 2-4. Matrix Corresponding to Mutate(2, 0, 0, 0, 1, 0, 0, 0, 1)........................23
Figure 2-5. Effects after Applying Mutate(2, 0, 0, 0, 1, 0, 0, 0 ,1) 23
Figure 2-6. Effects after Applying Modify(0, 0 ,0 , 0, 0, 255, 255, 255, 0)...............25
Figure 2-7. Matrix o f Weights Corresponding to Combine(l, 2, 1, 2, 4, 2, 1, 2, 1)..26
Figure 2-8. Effects after Applying Combine(l, 2 ,1 , 2, 4, 2, 1, 2, 1).......................... 26
Figure 2-9. Effects after Applying Merge(image2, 100, 120)......................................27
Figure 3-1. Sample Histograms Extracted from Similar Images................................ 29
Figure 3-2. Algorithm for transforming image A into image B...................................31
Figure 3-3. Algorithm for Testing if a Set of Image Editing Operations is

Minimal... 34
Figure 3-4. Colors in a Virtual Image not Present in its Base Image......................... 37
Figure 3-5. Proposed Algorithm for Processing Range Queries in a Virtual

Image Retrieval System...38
Figure 3-6. Algorithm for Determining Bounds on Bin HB in a Virtual Image....... 40
Figure 3-7. Results after Application of a Mutate Operation that Translates

the DR..50
Figure 3-8. Defined Rectangles that have Varying Numbers of White Pixels...........53
Figure 3-9. Results o f a Merge Operation Larger than the Target Image..................55
Figure 3-10. Coordinates in an Image Resulting from Merge(Target, Xp, yp)............55
Figure 3-11. Other Possible Coordinates in an Image Resulting from

Merge(Target, X p, y p) ..56
Figure 4-1. Proposed Algorithm for Processing Nearest Neighbor Queries..............6 6

Figure 4-2. VIRTUAL NN Algorithm for Query Processing of Virtual Im ages 6 8

Figure 5-1. Insertion Algorithm for Proposed Data Structure..................................... 90
Figure 5-2. Example Data Structure as Images are Inserted into Database................92
Figure 5-3. Range Query Processing Algorithm Using Proposed Data Structure 94
Figure 6-1. VSIS Algorithm for Processing Range Queries.. 99
Figure 6-2. VSIS Algorithm for Processing Nearest Neighbor Queries..................... 100
Figure 6-3. VSII Algorithm for Processing Range Queries... 102
Figure 6-4. VSII Algorithm for Processing Nearest Neighbor Queries...................... 103
Figure 7-1. Types o f Image Retrieval Errors..105
Figure 7-2. Uniform Probability Distribution Function for Actual.............................106
Figure 7-3. Uniform Probability Distribution Function when Actual e Bounds.... 107
Figure 7-4. Uniform Probability Distribution Function when Actual g Bounds.... 110
Figure 7-5. BSH Algorithm for Inserting Images..113

Figure 7-6. BSH Algorithm for Processing Range Queries.. 114
Figure 7-7. BSH Algorithm for Processing Nearest Neighbor Queries..................... 115
Figure 7-8. VSIS Algorithm for Inserting Images..118
Figure 7-9. VSIS Algorithm for Processing Range Queries....................................... 118
Figure 7-10. VSIS Algorithm for Processing Nearest Neighbor Queries.................. 121
Figure 7-11. VSII Algorithm for Inserting Images...124
Figure 7-12. Rule-Based Algorithm for Inserting Images... 127
Figure 8-1. Components of the Virtual Image Retrieval System Prototype............... 146
Figure 8-2. User Interface for Submitting Range Queries to Prototype.............149
Figure 8-3. User Interface for Displaying Retrieved Images............................... 149
Figure 8-4. User Interface for Displaying an Instantiated Virtual Image...........150
Figure 8-5. User Interface for Displaying the Description of a Virtual Image.150
Figure 8 -6 . User Interface for Selecting a Data Set.. 151
Figure 8-7. User Interface for Browsing Images of a Data Set........................... 151
Figure 8 -8 . User Interface for Submitting Nearest Neighbor Queries................151
Figure 8-9a. Space Savings vs. Percentage of Images Stored Virtually

(Helmet Data Set)... 156
Figure 8-9b. Space Savings vs. Percentage of Images Stored Virtually

(Flag Data Set).. 156
Figure 8-9c. Space Savings vs. Percentage of Images Stored Virtually

(Random Data Set)... 157
Figure 8 -lOa. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Helmets)..159
Figure 8 -10b. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Flags)...159
Figure 8 -lOc. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Random)..160
Figure 8-1 la. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Helmets)... 161
Figure 8-1 lb. Searching Time for Range Query vs. Percentage o f Images Stored

Virtually (Flags)...161
Figure 8-1 Ic. Searching Time for Range Query vs. Percentage o f Images Stored

Virtually (Random)... 162
Figure 8-12a. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Helmets)..163
Figure 8 - 12b. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Flags)...164
Figure 8-12c. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Random)..164
Figure 8-13a. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Helmets)... 165
Figure 8-13b. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Flags)...166
Figure 8-13c. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Random)... 166
Figure 8-14a. Searching Time for Range Query vs. Percentage o f Images Stored

XI

Virtually (Helmets)... 168
Figure 8-14b. Searching Time for Range Query vs. Percentage o f Images Stored

Virtually (Flags)...168
Figure 8-14c. Searching Time for Range Query vs. Percentage o f Images Stored

Virtually (Random)... 169
Figure 8-15a. Insertion Time vs. Percentage of Images Stored Virtually

(Helmets)...170
Figure 8-15b. Insertion Time vs. Percentage of Images Stored Virtually

(Flags)..170
Figure 8-15c. Insertion Time vs. Percentage of Images Stored Virtually

(Random)...171
Figure 8-16a. Retrieval Accuracy vs. Number of Retrieved Images (Helmets) ,......174
Figure 8-16b. Retrieval Accuracy vs. Number of Retrieved Images (Flags)............174
Figure 8-16c. Retrieval Accuracy vs. Number of Retrieved Images (Random).......175
Figure 8-17a. Precision and Recall vs. Width of Query Range (Helmets)................176
Figure 8-17b. Precision and Recall vs. Width of Query Range (Flags).................... 176
Figure 8-17c. Precision and Recall vs. Width of Query Range (Random)................177

XI I

ABSTRACT

Previous research has demonstrated that instead of storing images in a Multimedia

DataBase Management System (MMDBMS) using a conventional binary format, space

can be saved by storing some of the images virtually, meaning that they are stored as

sequences of editing operations. Since the existing techniques for searching images by

color typically assume that the images are stored in conventional binary formats, new

techniques and strategies for processing the queries are needed when the images are

stored virtually. The goal of this dissertation is to develop techniques for performing

color-based searches of virtual images and determine their strengths and weaknesses.

This dissertation presents several tasks that have been completed in order to

achieve the above goal. First, this dissertation presents algorithms for processing color-

based queries based on the colors contained within an image. They process queries o f the

type '’̂ Identify all images that are between PCTmm and PCTmax percent o f color C q \

where PCTm,„ and PCT^zn ̂ represent percentages and C q represents a color in the RGB

(Red, Green, Blue) model.

Next, this dissertation proposes algorithms for measuring the similarity between

two images when one of them is stored virtually, where the similarity is based on the

colors contained within an image. This allows an MMDBMS to process color-based

searching queries of the type ''Identify the k images that most resemble Q based on

coloP', where k represents the desired number of images, and Q represents a query object

by providing a method to measure how similar each virtual image is to the query object.

xin

Third, this dissertation proposes a data structure for organizing virtual images

identifiers stored in the MMDBMS in order to reduce the amount o f time it takes to

process the above algorithm. By using the data structure, the system will be able to

identify some o f the virtual images that can satisfy a given query without analyzing their

sequences o f editing operations. The reduction in the query processing time occurs from

the reduction in the number of virtual images that have to be analyzed.

Finally, this dissertation constructs a prototype system to compare the above

algorithms to the conventional approach for processing color-based search queries that

use images stored as binary objects. The performance evaluation is based on permanent

storage space used, color-based search query processing time, insertion query processing

time, as well as accuracy. The comparison results show that unlike the alternative

approaches, the proposed algorithms are able to perform efficiently in both searching and

insertion time while still saving storage space through the use o f virtual images.

XIV

CHAPTER 1

INTRODUCTION

1.1. Motivation

One o f the most valuable assets today is information. Businesses and other

organizations can gain competitive advantages from simply having the ability to store and

retrieve large quantities of information quickly and efficiently. Consequently, there has

been a tremendous amount of research devoted to the development o f DataBase

Management Systems (DBMSs) that perform these functions [Kort, 1991]. In recent

years, however, organizations have had an increasing need to track images and other

types o f multimedia data.

Unfortunately, conventional DBMSs are not appropriate for storing and retrieving

images ([Blan 1997], [Gros, 1997]). The reason is that images have different

characteristics than the traditional alphanumeric data stored in conventional systems. The

work in this dissertation focuses on the differences that arise in the area of storing images

and retrieving them, which will be addressed in the following sections.

1.1.1. Storing Images

One characteristic that makes storing images more difficult than storing

traditional alphanumeric data is that images require more space. For example, a single

image object often requires several hundred kilobytes, while a very high resolution image

can use several megabytes [Klas, 1997]. Even with the falling cost of memory,

attempting to store thousands of these data objects can quickly exhaust a database’s

storage space.

The necessity of a method that reduces the space used by storing such images

becomes evident by discussing some example applications. First, consider an application

that stores images obtained from orbiting telescopes or space stations. When the raw

images are received, they may be processed to create new versions that enhance certain

points of interest. For example, in order to provide a more detailed view of a storm

displayed in one o f the images, a new image may be created by cropping the storm, and

then enlarging it. The user, however, will want to save both the original image and the

enlarged picture o f the storm. Another application is one that allows an interior designer

to decorate a room by editing a picture of it. The designer may change the color of the

walls or carpet, add or remove furniture, and experiment with different lighting effects.

The above applications are examples where several similar images may be stored

in the database, which means that these images would contain a lot o f redundant data. As

in traditional databases, such redundant data should be eliminated. One method for

avoiding the storage problem described earlier is to eliminate the redundancy in these

types of applications by changing how the data objects are stored ([Grue, 1996], [Spee,

1995], [Spee, 1998]). The idea is that instead of storing two similar images in their

binary, space-intensive formats, only one, called the base image, is stored in that manner.

The other, called a derived image, is stored as a reference to the first (base) image along

with a set o f editing operations used to transform it into the second one, as displayed in

Figure 1-1. The derived image is therefore represented as a transformation of the base

image. Displaying an image stored in this format can be accomplished by accessing the

base image and sequentially performing the associated editing operations on it, which is a

process called instantiation [Grue, 1996]. An image stored in this format is called a

virtual image.

<Base Image>

<Operation l><Param eters>
<Operation 2> <Parameters>

<Operation n> <Parameters>

Figure 1-1. Description of a Virtual Image

As examples of this concept, consider Figures l-2a and l-2b. Both figures

illustrate the effect o f storing a pair of similar images in a system that uses virtual images.

In Figure l-2a, the base image is an image o f the French flag, and the derived image

depicts the Italian flag that was created by changing the blue pixels in the French flag to

green. In a system that uses virtual images, the French flag would be stored normally,

while the Italian Flag would be stored virtually, which includes a reference to the French

Flag and the sequence of operations “select entire image” and “change blue pixels to

green” that can be later used to instantiate the close-up. Alternatively, Figure l-2b

illustrates the difference in storing the storm photos described in the example application

presented earlier. Again, in a system that uses virtual images, the base image would be

stored normally, while the enlarged photo would be stored as a reference to the base

image and the sequence of operations “select center”, “crop selected region”, and

“enlarge selected region”.

French Flag
[Hag, 2003]

French Flag
[Flag, 2003]

French Fl%

Select Entire Image
Change Bhie Pixels to Green

Italian Flag
[Flag, 2003]

Conventional Storage

Italian Flag

Use o f Virtual Images

Figure l-2a. Storage o f Similar Flags with and without Virtual Images

Storm Photo
[NASA, 2003]

Stonn Photo
[NASA, 2003]

Storm Photo

Select Center
Crop Selected Region
Enlarge Selected R^ion

Enlarged Storm
[NASA, 2003]

Conventional Storage

Enlarged Storm

Use ofVirtuallmages

Figure l-2b. Storage o f Similar Photos with and without Virtual Images

In addition to using less space, using virtual images offers other advantages.

Unlike many compression methods such as JPEG [Wall, 1991], storing and instantiating

a virtual image is a lossless process. The derived object, then, can be retrieved endlessly

without any degradation. Another advantage o f virtual images is that they are not

dependent upon any particular compression or storage format, nor are they dependent

upon any particular computing platform. Thus, virtual images are portable.

1.1.2. Searching Images

Although virtual images address the storage requirements o f MMDBMSs, other

issues arise when considering image retrieval. One such requirement is that an

MMDBMS should facilitate searching images based on their content, but it is

insufficient, however, to represent that content using only textual descriptions such as

filenames or keywords. To illustrate, consider a query requesting all images in the

database that contain a picture of a dark blue sports car. A conventional DBMS would

require that the keywords “dark”, “blue”, “sports”, and “car” be attached to any image in

order to return it as a result of this query. Not only does this require that humans inspect

each image and attach keywords, but also it prohibits humans from using other phrases

such as “navy automobile” or to make common judgment errors such as “black corvette”.

Instead o f using keywords that are manually associated with an image, an image

ideally should be retrieved using automatically extracted features or attributes that

represent its content. Features that are commonly extracted from images include color,

texture, and shape. Systems that retrieve images using automatically extracted features

are called Content-Based Image Retrieval (CBIR) systems [Eaki, 1998]. Examples of

these systems include BIC [Steh, 2002], DISIMA ([Oria, 2001], [Oria, 2000]), MARS

[Orte, 1998], QBIC ([Palo, 1994, Flic, 1995, Hafh, 1995]), ARTISAN ([Eaki, 1998],

[Eaki, 1996]), FIBSSR [Mehr, 1995], and ImageRoadMap [Park, 1997].

CBIR systems typically use the following approach to retrieve images. As each

image is entered into the database, the values of the features that can be used for querying

are automatically identified. Each image, then, is represented by the set o f values of the

features extracted from it, called a feature vector. The result is that to search the set of

images in the database in response to a query, the CBIR system can search all of the

extracted feature vectors. To illustrate, consider a CBIR system that allows searching

based on the colors in images. In such a system, a histogram can be created for each

image where each bin contains the number of pixels of a particular color in that image.

When normalized, each bin represents the percentage o f pixels o f a particular color in the

image. So, as long as each image is represented by such a histogram, the users can query

the database requesting the images that have a specified percentage of pixels containing a

certain color. An example of such a query is ‘'Retrieve all images that are 25% blue.'’’

Similar histogram methods are used by numerous CBIR systems including ([Steh, 2000],

[Djer, 1997], [Gray, 1995], [Hafh, 1995], [Orte, 1998], [Park, 1999], [Scla, 1997]).

Some queries that are commonly presented to a CBIR system request the images

in the database that are most similar to an input query image. Queries of this type are

called nearest neighbor queries ([Bozk, 1999], [Palo, 1996]). To process them, a feature

vector is generated from the input query image, and is then compared to the feature

vectors representing the stored images in the database. The similarity between the query

image and an image in the database is determined by measuring the similarity between

their two representative feature vectors. So, in response to a nearest neighbor query, the

CBIR system returns the images corresponding to the feature vectors that are the most

similar to the feature vector of the input query image.

Once the images and feature vectors are in the database, locating the nearest

neighbors o f a goal or query object has the worst case requirement of computing the

distance between it and every other object in the database [Fagi, 1998].

Multidimensional indexes, such as the R-tree [Gutt, 1984] and its variants ([Brow,

1998a], [Gaed, 1998]) have been used to reduce the number of distance computations.

Because color is used so frequently in CBIR systems, this dissertation focuses on

searching images using color. It should be noted, however, that there are other properties

that are also used frequently. Many systems allow users to query images using feature

vectors based on texture ([Djer, 1997], [Kell, 1995], [Smit, 1995]) and shape ([Boue,

1999], [Djer, 1997], [Eaki, 1998], [Park, 1997]). As with color, these feature vectors are

extracted from the images in the database and are subsequently used to process nearest

neighbor queries.

1.1.3. Problem Statement

The preceding sections indicate that two requirements o f an MMDBMS are to

store images efficiently and facilitate searching images based on their content,

specifically color. A problem arises when using virtual images when considering

searching because the existing techniques for searching images by color are based on

images stored in a binary format. The goal o f this research is to develop algorithms for

performing color-based searching o f virtual images. Specifically, this dissertation will

propose algorithms for processing color-based range queries and performing similarity

searches of virtual images using color histograms to represent image content.

This research in this dissertation is most suitable for applications in which users

frequently create new images that are similar to each other, and all of the images in the

database are searched by color only. An example of this type o f application is an online

retail-clothing database, which permits users to search for images o f clothes that match

colors contained in their real-world apparel. An example query in this application would

be to ‘"Search fo r pants that match the colors contained in this tie'". This application

would benefit from storing photos of similar clothing designs virtually. The similarity

exists due to the fact that designers usually create multiple versions o f the same designs.

Considering only color for searching images, the applicability o f this research is

limited since most of the real-world applications require retrieving of images based on

other properties such as texture and shape in addition to color. However, since there is no

existing work that addresses content-based search for images that are stored virtually, this

research serves as a starting point for this area.

1.2. Organization of the Dissertation

Chapter 2 discusses the current research in performing CBIR in conventional

multimedia database management systems.

Chapters 3-5 present the proposed techniques for performing color-based

searching. Chapter 3 presents an algorithm for identifying the colors within a virtual

image. Chapter 4 presents the algorithm for processing nearest neighbor queries, and

Chapter 5 proposes a data structure that can he used for speeding up the query processing.

Chapter 6 proposes two additional approaches for searching images using color.

Both approaches convert the virtual images into a binary format so that they can be

searched using conventional techniques.

Chapter 7 presents an analysis of each proposed algorithm and compares it to the

conventional approach for processing retrieval queries that use conventional approaches.

The comparisons are based on expected permanent storage space, average insertion time,

average searching time, and retrieval accuracy. In addition. Chapter 8 presents a

prototype system used to verify the results from the performance evaluations. Finally,

Chapter 9 concludes the dissertation and provides areas for future work.

CHAPTER 2

SURVEY OF RELATED RESEARCH

This dissertation focuses on performing image retrieval in a Multimedia DataBase

Management System (MMDBMS) that uses virtual images. Consequently, it is related to

two main areas o f research. The first area concerns the existing techniques used to

perform Content-Based Image Retrieval (CBIR) using color histograms. The second area

contains the research that is related to the usage of editing operations in images. Both

areas are reviewed in this chapter.

2.1. Content-Based Image Retrieval Systems

There are numerous CBIR systems that exist in the literature, but the retrieval

techniques used by those systems are different than the query processing algorithms

proposed in this research. The reason is that the proposed algorithms use the editing

operations contained inside virtual images to improve retrieval efficiency. Still, there are

some aspects o f this research that are shared by those systems that retrieve only images

stored in a conventional binary format. These aspects are reviewed in this section.

2.1.1. Identifying Features

The first aspect addressed in CBIR systems is identifying the features used to

determine the content of an image. Three features that are used frequently are color

([Steh, 2002], [Anna, 2000], [Djer, 1997], [Hafh, 1995], [Orte, 1998], [Lin, 2001], [Scla,

1997]), texture ([Anna, 2000], [Djer, 1997], [Kell, 1995], [Mehr, 1995]), and shape

10

([Boue, 1999], [Djer, 1997], [Eaki, 1998], [Oria, 2000], [Park, 1997]) because they can

be extracted from most images ([Asia, 1999], Park, 1997]).

The features that should be extracted from images depend on the expected user

queries o f the applications. For example, in the application called ARTISAN (Automatic

Retrieval of Trademark Images by Shape ANalysis) [Eaki, 1998], users are expected to

pose queries that search for images of trademarks in the database that are similar to an

arbitrary input shape. Consequently, the features that the underlying MMDBMS must

extract are based on the shapes contained in its data objects. In addition, since the

trademarks stored in the database are typically black and white, the users are not expected

to pose queries that look for trademarks containing certain colors. Thus, it is not

important for ARTISAN’S underlying MMDBMS to extract features based on color out

of its trademarks. Similar issues arise in CBIR systems that retrieve features that are

more specific to a particular set of images. For example, in applications used to compare

pictures of people’s faces ([Bach, 1993], [Wu, 1994]), users will want to retrieve faces

from the database based on features such as eye color or nose length. Consequently,

these features are used to determine the content of each image instead of color, shape,

and texture.

This research developed query processing algorithms that use color for

representing the content in an image. As a result, the proposed algorithms are for

applications whose underlying databases contain images that are expected to be retrieved

using color.

11

2.1.2. Feature Extraction Techniques

The next aspect of performing CBIR consists o f the techniques used to extract the

features from images. When retrieving images using shape-based features, CBIR

systems typically extract and identify the boundary o f each shape using some

representation such as a Freeman or chain code [Gonz, 1993]. These codes use a numeric

value to represent each direction encountered as it traces the boundary o f a shape.

Alternatively, to retrieve images using texture-based features, a CBIR system may

compute one or more co-occurrence matrices for each image [Gonz, 1993], which count

the number of times pixels with different intensities are positioned near each other.

The focus o f this dissertation is on color-based features. For such features, one

common method o f searching images is to create a histogram for each image where each

bin contains the number of pixels of a particular color in its corresponding image. For

example, if a system stored only black and white images, it would need histograms with

two bins, one representing black and the other representing white. Given an image with

10 total pixels, 7 o f which were black, its corresponding histogram would have a value of

7 in the bin representing the black color and a value of 3 in the bin representing the white

color.

Often images in a system are of different sizes, where the size o f an image is its

total number o f pixels. In order to compare images, systems usually normalize their

histograms, meaning that the total number of pixels in each bin is divided by the total

number of pixels in the entire image. Each bin, then, represents the percentage of pixels

in the image that contain its corresponding representative color. So, for the example

black and white image used earlier, a normalized histogram would have a value of .7 in

12

the bin representing the black color and .3 in the other bin. Thus, a histogram can be

computed counting the number o f pixels that occur for each color defined by a system,

then normalizing these values by dividing each o f them by the total number o f pixels in

the image ([Swai, 1991], [Smit, 1995]).

When each image is represented by a histogram, the users can query the database

requesting the images that have a specified percentage o f pixels containing a certain

color, such as ^Retrieve all images that are at least 25% blue”. Similar histogram

methods are used by numerous CBIR systems including ([Djer, 1997, [Gray, 1995],

[Hafii, 1995], [Orte, 1998], [Park, 1999], [Scla, 1997]). An example o f using the

histogram method to retrieve images is displayed in Figure 2-1. In the figure, there are

several images o f flags stored along with example histograms extracted from them. In

response to the query “'Retrieve all images that are a t least 25% blue”, the system can

directly access the percentage o f pixels in each flag that is blue. As a result, the system

would return the first and third flags.

11
Bud

Black Blue Yellow Red White

0.0 0.33 0.0 0.33 0.33

0.0 0.0 0.0 0.25 0.75

0.0 0.30 0.0 0.33 0.34

0.33 0.0 0.33 0.33 0.0

Figure 2-1. Example Histograms Extracted fi'om a Set o f Images [Flag, 2003]

13

Note from the above example that the number o f bins in a histogram is directly

related to the number of different colors recognized by the system. How the colors are

identified varies from system to system. The different categories of variations [Smit,

1995] o f identifying the colors used in histogram bins are reviewed in the remainder of

this section.

2.1.2.1. Color Models

The first type of variation concerns the model used to represent the colors in an

image. There are several models that express each color as a set o f three or four values.

Each of these expressed colors should correspond to one histogram bin. One o f the most

common models is the RGB (Red, Green, Blue) model, which represents each color as a

combination o f red, green, and blue wavelengths of light [Gree, 1995]. For example,

combining red light and green light produces the color yellow, combining all

wavelengths together produces the color white, and the absence o f all wavelengths

produces the color black. Typically, each wavelength can have a value between 0 and

255 [Gree, 1995], so the RGB color model can express a total of (2*) ̂different colors.

Another common model is the CMYK model, which is an acronym for Cyan,

Magenta, Yellow, and blacK [Gree, 1995]. Each color in this model is expressed as a

combination of these four colors. The results of these combinations mimic the results

that occur when combining ink [Gree, 1995]. Thus, the color black is obtained by adding

high values of each of the four colors of the model, while white is represented as zero

values for each of them.

14

Other color models were designed to separate the values that specify the tint of a

color from the values that specify how light or dark it is [Gonz, 1993]. One example of

such a model is the Hue, Saturation, Value (HSV) model ([Park, 1999], [Orte, 1998]).

The first value. Hue, is represented as a value from 0 to 359, which indicates the tint of

the color. For example, the color red is represented as a value o f 0, and the color blue is

represented as 240. The Saturation axis represents the amount o f gray in the color. The

last component. Value, represents how light or dark the color is. Another such model is

the Luv color model developed by the Commission Internationale de F Eclairage (CIE)

[Park, 1999]. The first value, L, represents how light or dark the color is. The remaining

two values, u and v, are combined to represent the tint o f the color.

2.1.2.2. Quantization

The second variation to identifying the colors used in the CBIR system is the

method used to quantize the color space represented by the selected model. As stated

earlier, the RGB model expresses a total of (2*) ̂ different colors. The result is that a

histogram that tracks the number of pixels that contain each of these expressed colors will

have 16M bins. To reduce the number of bins in the histogram, several colors can be

grouped together. For example, the colors with the RGB values o f (0, 0, 0) and (0, 0 ,1)

can be grouped together in the same bin since humans cannot perceive the difference

between them. An important issue, then, is how to quantize the color space in order to

group similar colors together since many distinct values in the various color models are

perceptually similar.

15

A /

+

y V

y.d. +

Figure 2-2. Quantization Function for Mapping Color Model Values to Histogram Bins

A common method of quantizing the color space is to evenly divide each axis

using some system-defined number of partitions, called uniform quantization [Park,

1999]. A formula for quantizing values of a 3-axis color model such as RGB or HSV is

displayed in Figure 2-2. The method used in the formula is to divide each axis in the

model into equal-sized partitions, and then assign a group number for an intensity value

based on the set o f partitions that contain it. In the formula, each d, represents the

number o f partitions used for the i*̂ axis, so the number of partitions in the first axis is di,

the number o f partitions for the second axis is d2 , and the number of partitions in the third

axis is d3 . Note that the total number of different combinations of partitions are D =

dixd2 xd3 . Since each combination of partitions maps to a single histogram bin, there will

be D number of bins in the resulting histogram.

Let CMi represent the number of different values that can be used for the i‘'̂ axis

o f the color model of the system. For example, in the HSV model, the first axis, H, can

have a value from 0 to 359. So, it can have 360 different colors. Each of the last two

axes, S and V, can have values from 0 to 100, which means they can each have 101

different colors. So, if the system uses the HSV model, CMi equals 360, CM2 equals

101, and CM3 equals 101.

Given the above variables, the formula displayed in Figure 2-2 maps an intensity

value in a 3-axis model to a single bin number. Let the intensity value be (I,, I 2 , 1 3) where

16

each Ij represents the value for the axis in the model. To illustrate the use of the

formula, let the system use the HSV color model where, as indicated before, (CM], CM2 ,

CM3) - (360, 101, 101). Now, assume the system wants to divide the color space of the

color model into 15 divisions along the H axis, 9 divisions along the S axis, and 9

divisions along the V axis as in [Park, 1999]. This means that (di, dz, d]) = (15, 9, 9).

With these values, applying an HSV color (I], I2 , 1 3) - (240, 0, 50) to the formula yields a

value of floor(240/360/15)x81 + floor(0/101/9)x9 + floor(50/101/9) = 819.

System, Reference Color Space Color Space Partitioning
RGB R - 4 G - 4 B - 4

MARS
(/Orte, 7P96;/, fPPT/j HSV H - 8 S - 4 V - 0

VisualSEEK,
([Smit, 1996], [Smit, 1996]) HSV I I - 18 S - 3 V - 3

[Pass, 1996] RGB R - 4 G - 4 B - 4
CIE-Luv L - 8 u - 8 V - 8

(/Tfq/%1, 7PPJ/, /ff&c, ypitf/; RGB, HVC R - 1 6 G - 1 6 B - 1 6

[Gong, 1994] HVC H - 8 V - 8 C - 8

Table 2-1. Partitioning Methods of CBIR Systems that Use Color Histograms

Table 2-1 provides a list of partitioning methods utilized by systems that use color

histograms to retrieve images. The first column contains the names o f the image retrieval

systems and their associated references. The second column describes the reported color

space used to retrieve images. The third column describes the reported number o f times

each axis in the color space was divided during testing or implementation. An entry R -

4, G - 8 , B - 6 means that the Red axis in the RGB model was divided into 4 sections, the

Green axis was divided into 8 sections, and the Blue axis was divided into 6 sections,

which would create a histogram with (4 x 8 x 6) = 192 bins.

17

2.1.3. Feature Representation

Once the desired features have been extracted from each image, the next aspect to

address is how to represent the features in the CBIR system. Many systems compute a

set of descriptors, which are properties of the features extracted from each image.

Determining the similarity of features, then, can be performed by comparing their

corresponding sets of descriptors. To illustrate, consider the QBIC (Query By Image

Content) system developed by IBM ([Falo, 1994], [Flic, 1995], [Hafh, 1995]). After the

system identifies the shape of an object in an image, QBIC computes an 18-dimensional

set o f descriptors of the shape that includes such properties as the number of pixels

contained in the entire shape called the area, and the number o f pixels contained in the

shape’s boundary called the perimeter. Alternatively, for texture, QBIC computes a 3-

dimensional set o f descriptors, which represent the coarseness, contrast, and

directionality o f the texture within an image [Falo, 1994]. Other descriptors computed

from a co-occurrence matrix representing the texture of an image include the maximum

value in the matrix, called the maximum probability, and the sums of the squares o f the

matrix values, called the uniformity [Gonz, 1993].

For color, some systems compute and store a representative set of values based on

the color histograms extracted from an image. For example, [Gong, 1994] only stores the

20 histogram bins with the most pixels. In VisualSEEK ([Smit, 1995], [Smit, 1996]),

instead o f storing a histogram, the system stores the set of colors that appear most

frequently in a given image, which is referred to as a Color Set. The system in [Pass,

1996] uses Color Coherence Vectors (CCVs), which are histograms where each bin

contains two values instead of one. The first value represents the number of pixels in the

18

bin that are a part o f an object in the image, and the second value represents the number

of pixels that are not.

2.1.4. Defining Image Similarity

The next aspect of performing CBIR is to define some criteria for satisfying a

similarity search, which means that there must be some method of defining how similar

one image is to another one. In systems that represent features using a vector of values,

such as a color histogram, each image’s vector represents a single point in some

multidimensional space ([Cheu, 1998], [Falo, 1996], [Gros, 1997]). A common approach

for those systems is to use a metric axiom based function [Sant, 1999] that computes the

distances between two such multidimensional points as a basis to measure similarity. For

two normalized n-dimensional vectors, x = (xi, ..., Xn) and y = (yi, ..., yn), typical

examples of metric functions include the Lp Distances, - y.) [Jaga, 1997], and
1 = 1

the Histogram Intersection, ^m in (x ,.,y,-) [Swai, 1991]. Another category of similarity
1=1

measurements called set-theoretic functions computes the similarity as a function of the

numbers of features that are identical in both images, different in both images, and

contained in one image but not in the other [Sant, 1999].

2.1.5. Access Methods

Another important, but often overlooked, aspect o f performing content-based

image retrieval is the access method used to speed-up query processing. When

performing CBIR using color histograms, it should be possible to retrieve the images

19

based on any of the bins in the histogram. Traditional indexes for relational DBMSs like

the B-tree and its variants [Come, 1979] are insufficient because they use a single value

to represent a data record. Consequently, multiple indices would have to be created and

maintained by the system in order to search images using different histogram bins. It is

also not desirable to create a single key to represent each histogram by concatenating the

values in its bins. The reason is that it would be difficult to search for images based on

the bins listed last in the concatenated keys [Kuma, 1994].

Due to the above problems in using a B-tree for multidimensional data, much of

the existing research for indexing CBIR systems surrounds developing multidimensional

access methods. One of the more popular categories of such data structures contains

variations of the R-tree [Gutt, 1984] where each node corresponds to a section of a

multidimensional data space. The idea is that multidimensional vectors that are similar to

each other should be near one another in the data space. These indices divide the data

space into several regions and provide algorithms to let the query processing module

quickly identify the regions that contain vectors that satisfy a given retrieval query. The

technique used to identify the regions is to correlate them to nodes in a tree where a node

and its descendants correspond to a region and its subregions.

Many variations of the R-tree are listed in ([Brow, 1998a], [Falo, 1996], [Gaed,

1998]). These variants can be categorized based on how they partition the data space.

One category divides the entire multidimensional space into a grid. Examples include the

K-D-B-tree [Robi, 1981], hB-tree [Lome, 1990], G-tree [Kuma, 1994], BV-tree [Free,

1995], and MB^-tree, [Dao, 1996]. These trees differ from each other by the methods

they use to divide the data space along each of its dimensions. Another category clusters

20

the data together using Minimum Bounding Regions [MBRs], which includes the R^-tree

[Sell, 1987], R*-tree [Beck, 1990], P-tree [Jaga, 1990], TV-tree [Lin, 1994], X-tree

[Berc, 1996], SS-tree [Whit, 1996], and SR-tree [Rata, 1997]. This category o f trees

differ from the previous one in that by computing the MBR of the vectors stored in each

node, its trees only partition the portion of the multidimensional space where data

elements exist. This allows them to eliminate large portions o f unused space quickly.

Their common disadvantage is that MBRs must be computed and maintained for each of

their internal nodes. The third category of multidimensional indexes differs from the first

two in that its trees cluster the vectors based only on how similar they are to each other.

This category includes the VP-tree [Yian, 1992], GNAT [Brin, 1995], M-tree [Ciac,

1997], and MVP-tree ([Bozk, 1999], [Bozk, 1997]).

A database management system that uses virtual images will contain images

stored conventionally as well. Thus, the system must contain techniques for retrieving

conventional images as well as virtual images, which means that it must address each of

the above aspects.

2.2. Virtual Image Editing Operations

This dissertation proposes a method of using the semantic information contained

within the editing operations o f virtual images to enhance CBIR. One task necessary to

implement this research is to define the set of editing operations that may be used in the

virtual images. This research adopts the set of editing operations that have been

suggested to handle virtual images in database management systems ([Grue, 1996],

[Spee, 1995], [Spee, 1998]). The set of operations are based on an algebra [Ritt, 1996]

21

for images similar in function to the relational algebra for conventional data. The set

consists o f five editing operations called Define, Modify, Combine, Mutate, and Merge.

The description and implementation o f these operations as according to [Hu, 1999]

follow in the subsequent paragraphs.

2 ^ 1 . Defme (ii, yi, 3̂ , yz)

The Define operation does not change an image by itself, however it is used to

identify regions in an image that will then be edited by subsequent operations. For

example, to edit a particular region o f an image, the Define operation first identifies the

region, and then the following operations perform the actual changes. In this research,

the implementation o f the Define operation restricts it so that only rectangular regions

may be identified.

Defined Rectangle Specified by Parameters

,1 ,i 1 1 li
UnLMMOlllM

Figure 2-3. Rectangle Corresponding to Define(32, 96, 224, 288) [Flag, 2003]

The parameters o f the Define operation identify the upper left (xi, yi) and lower

right (x2 , yz) coordinates o f the rectangular region, which is called the Defined Rectangle

22

(DR). For example, Define (60, 100, 200, 250) specifies a rectangle ranging fi'om the

coordinates (60, 100) to (200, 250). An example o f the rectangle created by the Define

operation is displayed in Figure 2-3 where the dotted rectangle indicates the DR.

2.2.2. M utate (M u, M n , M 1 3 , M 2 1 , M 2 2 , M 2 3 » M 3 1 , M 3 2 , M 3 3)

The Mutate operation changes the positions o f the pixels within an image. The 2-

D coordinates (x, y) o f each pixel are mapped into a 3-D vector (x, y, 1)*. This vector is

then multiplied by a 3x3 mutation matrix, which is specified in the parameter o f the

Mutate operation. This produces a new set o f coordinates (x’, y ’, 1)* for the pixel, which

translate to the image position (x% y’).

M ,2 "2 . 0 0.0 0 .0 "

M 2, = 0 . 0 1 . 0 0.0

Mg, M 32 M 33 0.0 0.0 1 . 0

Figure 2-4. Matrix Corresponding to Mutate (2 ,0 , 0, 0, 1, 0, 0, 0, 1)

Derived Image

Figure 2-5. Effects after Applying Mutate(2, 0, 0, 0, 1, 0, 0, 0, 1) [Flag, 2003]

23

The Mutate operation can be used to perform combinations of rotations, scaling,

and translation operations [Gonz, 1993]. To provide a specific example of the

implementation o f the Mutate operation. Mutate (2.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)

multiplies the (x, y, 1)‘ vector of the coordinates o f each pixel in the current DR by the

matrix displayed in Figure 2-4. This matrix scales the DR by a factor o f 2 in the x-

direction. Figure 2-5 illustrates the results of applying this operation on a DR enclosing

the star in the upper left comer of the base image.

2.2.3. IVIodify (Redmin? R^d^ax? Redrew? Greeiimins GreeUmax? Grcenn^w?

RlUCmax? R lu ^ n e w)

The Modify operation changes the colors of the pixels in a defined region as

illustrated in Figure 2-6 which changes all blue pixels in the DR to green. It changes only

those pixels in the defined region whose intensity values are within a specified range.

Consequently, the parameters of the Modify operation describe the range of intensity

values and the new color. Assuming that the intensity value o f each pixel has a Red,

Green, and Blue component, the parameters specify a new color and a range of values for

each of the three components. So, there are 9 parameters to the Modify operation called

Rmin; Rmax) Rnew; Gmin, Gmaxj Gnew? Bmin, Bmax) and B̂ ew; where the operation changes the

color of only those pixels whose red intensity component is between Rmin and Rmax, green

intensity component is between Gmin and Gmax, and blue intensity component is between

Bmin and Bmax- The new color of the pixels after applying the operation will be (Rnew,

Gnew, Bnew)- As an example in the RGB color model. Modify ((0, 50, 200), (75, 125,

100), (200, 255, 25)) changes all pixels in the current Defined Rectangle that have a Red

24

axis component between 0 and 50, a Green axis component between 75 and 125, and a

Blue axis component between 200 and 255 to (200, 100, 25).

I I Cl
Base Image Derived Image

Figure 2-6. Effects after Applying Modrfy(0, 0, 0, 0, 0, 255, 255, 255, 0) [Flag, 2003]

In order to allow the tinting of an image, the implementation o f the Modify

operation allows one or more o f the color axes to remain unchanged. For example, one

method o f tinting an image red is to change the Red intensity component to 255 and

leaving the blue and green intensities unchanged. To specify that an intensity component

should not be changed, the parameters set the minimum value o f the range greater than

the maximum value. As another example in the RGB color model. Modify ((0, 255,

255), (1, 0, 0), (1, 0, 0)) changes all pixels in the current DR that have a Red axis

component between 0 and 255, which will be all pixels. After applying this example, a

pixel with the color (Rx, G%, B%) will be changed to have the color (255, Gx, Bg).

2.2.4. Com bine (C u , C 12, C 13 , C21, C 2 2» C2 3 , C3 i, C3 2 , C 33)

The Combine operation can be used to blur images as displayed in Figure 2-7.

Similarly, to the Modify operation, the Combine operation changes the intensity values o f

25

the pixel in the DR. Unlike Modify, however, it computes the pixel’s new value to be the

weighted average o f its intensity and the intensities o f its 8 -neighbors. The weights are

supplied as the parameters. Figure 2-8 shows an example o f applying Combine (1, 2, 1 ,

2, 4, 2, 1, 2, 1) that computes the new intensity value of each pixel in the DR as the

average o f its neighbors using the matrix o f weights displayed in Figure 2-7.

r*̂13 1 2 r

C21 ^ 2 2 c'-'23 = 2 4 .2

Q , ^32 c'-'33 _ 1 2 1

Figure 2-7. Matrix o f Weights Corresponding to Combine (1, 2, 1, 2, 4, 2, 1, 2, 1)

Base Image

Figure 2-8. Effects after Applying Combine(l, 2, 1, 2, 4, 2, 1, 2, 1) [Flag, 2003]

2.2.5. M erge (Target Image, xp, yp)

Unlike the previous operations. Merge is a binary operation. It is used to combine

two images as illustrated in Figure 2-9. The contents o f the current Defined Rectangle

are copied onto a target image starting at a given coordinate position (x?, yp). The

coordinate position and the name o f the target image are the parameters o f the Merge

26

operation. An example is Merge (image!, 100, 120), which copies the current DR onto

image! beginning at the point (100, 120). The crop operation can be implemented using

this operation by specifying an empty target image. This has the effect o f copying the

current DR onto an empty image.

m + LI t lBase
Image Target Image Derived Image

Figure 2-9. Effects after Applying Merge(image2, 100, 120) [Flag, 2003]

2.3. V irtual Im age Retrieval

The work in [Aars, 1999] determines whether a virtual image satisfies a retrieval

query by identifying the features o f the image at the time that it is inserted into the

database. Those features are then used to process the subsequent retrieval queries. In

addition, the technique attaches a score to each feature representing the amount o f it that

it is contained in the image. This allows the technique to determine when features are

present in an image even after another image is pasted on top o f it as a result o f the

Merge operation. The score ranges fi'om 0 to 100 where a higher score indicates that

more o f the feature is contained in the image.

2 7

CHAPTER 3

TECHNIQUES FOR PROCESSING COLOR-BASED RANGE QUERIES

This chapter proposes an algorithm that can be used to process color-based range

queries in a MMDBMS that uses virtual images. The specific type of range query that

the algorithm addresses is ''Retrieve all images that are between PCTmin and PCTmax

percent o f color Cq \ where PCTmin and PCTmax represent percentages and C q represents

a color in the RGB model. This type of query is useful for searching databases that

contain images o f objects that users want to aecess by color. Examples of these databases

inelude clothing apparel, where users may pose the query “Retrieve all images o f ties that

contain no red” or “Retrieve all images of accessories that are dark brown”, and

automobiles where users may pose the query “Retrieve all images o f cars that are at least

50% white”.

As deseribed in Chapter 2, one method of processing the query used in many

existing systems ([Djer, 1997, [Gray, 1995], [Hafh, 1995], [Orte, 1998], [Park, 1999],

[Scla, 1997]) is to extract the color histogram from each image and store it in the

underlying database management system. The extraeted histograms are then searehed in

response to a retrieval query, allowing the system to return the images that correspond to

the selected histograms. Note that this means the system should have the ability to

identify the image that corresponds to a given histogram, which can be accomplished by

storing an image id in each histogram.

This approach uses the above color histogram technique to handle images stored

conventionally, but proposes an alternative technique for retrieving virtual images. This

28

is because extracting histograms from virtual images can be inefficient for two reasons.

First, the existing feature extraction techniques typically operate on images stored in a

binary format, so the virtual images must be instantiated before their features can be

extracted. This can be inefficient since the instantiation process is slow. Second,

extracting and storing the features o f virtual objects along with the features o f their bases

may result in storing redundant data.

Image A

El
Color Histogram

Black Blue Red Yellow White
0.0 0.33 0.33 0.0 0.33

Image A Rotated 90° Color Histogram

Black Blue Red Yellow White
0.0 0.33 0 33 0.0 0.33

Figure 3-1. Sample Histograms Extracted from Similar Images [Flag, 2003]

To illustrate the second reason, consider Figure 3-1, which contains two similar

images with the second image being created by rotating the first. Rotating an image only

changes the locations o f its pixels, meaning that it does not change the intensity values o f

the pixels. Consequently, both similar images should contain the same distribution of

colors, which implies that the color histograms extracted from both should be the same.

Since the histograms are the same, it would be redundant to store both o f them. I f the

29

second image were stored virtually, then the rotation operation that was used to create it

would be contained within its description. By being able to identify that an image is a

rotated version of another image, the underlying database management system can infer

during the processing of a retrieval query that the color histogram of the rotated image is

identical to the histogram of the first image. This would allow the system to save space

by storing only the color histogram of the first image.

The previous example illustrates the overall strategy used in this approach for

processing range queries in virtual image retrieval systems. To be able to save storage

space by using virtual images and at the same time avoid performance degradation due to

image instantiation, this approach proposes to search images based on color using the

semantic information in the description o f virtual images instead of using the

conventional approach of feature extraction. Since this semantic information is

composed o f a reference to a base image and a sequence of editing operations along with

their parameters, the proposed searching algorithm is dependent upon a specific set of

image editing operations. Because of this, it is important to identify desirable properties

of such a set, which is performed in the next section. The remainder of the chapter is

organized as follows: Section 3.2 describes the algorithm for processing range queries

which requires the query processor to identify the colors o f a virtual image, which is

described in more detail in Section 3.3. Section 3.4 describes the rules used to develop

the algorithm in Section 3.3, and Section 3.5 provides an example of the entire algorithm.

30

3.1. Properties of a Set of Image Editing Operations

The work in this research uses the set of five operations called Define, Modify,

Mutate, Merge, and Combine ([Grue, 1996], [Spee, 1998], [Spee, 2000]) presented in

Chapter 2. The following subsections describe algorithms for identifying and testing for

desirable properties for such a set of image editing operations.

3.1.1. Ability to Transform Images

Since the sequence of editing operations used in a virtual image are for

transforming a base image into another one, the one property of a set of image editing

operations involves its ability to perform this transformation. Specifically, the set of

operations should be able to transform any given image into another [Brow, 1997]. The

proposed method to test for this property is based on reducing the definition of an image

to a set of pixels where a pixel is defined as an entity with a 2 -dimensional (x, y) location

and an intensity value in the 3-dimensional RGB color model. Given this definition o f an

image, it is possible to convert one image. A, to another, B, by applying the image

transformation algorithm displayed in Figure 3-2.

Step 1. Let |A| represent the number of pixels in image A
Step 2. Let |B| represent the number of pixels in image B
Step 3. i f |A|>|B|
Step 4. remove |A| - |B| pixels from image A
Step 5. else
Step 6 . add |B| - |A| pixels to image A
Step 7. For each pixel in A
Step 8 . Set location of pixel in A to match corresponding pixel in B
Step 9._____ Set intensity of pixel in A to match corresponding pixel in B

Figure 3-2. Algorithm for transforming image A into image B

31

The transformation algorithm of changing image A into image B is decomposed

in the above figure into steps that can be performed by common image editing operations,

and it consists o f two major tasks. The first task is to alter the number of pixels in image

A so that it has the same number of pixels in image B, which is accomplished in steps 1

through 6 . This allows each pixel in A to have a corresponding pixel in B. The second

task is to modify each pixel in A so that it has the same intensity value and location of its

corresponding pixel in B, which is accomplished in steps 7 through 9.

By demonstrating that a set of editing operations can be used to perform the

image transformation algorithm, the set is shown to have the ability to transform a given

image into any other image. There are three major steps that alter an image in the

algorithm, which are adding a pixel, removing a pixel, and modifying a pixel. The ability

to modify a pixel consists of two steps itself, changing its location and changing its

intensity value. So, one method of demonstrating that the set o f editing operations can

perform any transformation from one image to another is to demonstrate that it can be

used to perform all 4 major steps, adding an image, removing an image, changing a

pixel’s location, and changing a pixel’s intensity.

Consider applying the above test to the set o f editing operations Combine, Mutate,

Merge, and Modify. Pixels can be removed using the Merge operation by merging a DR

that consists o f all o f the pixels in the image except the ones to be removed onto an empty

image. Pixels can also be removed using the Mutate operation by moving the pixels in

the DR onto other pixels in the image. The same operations can be used to add pixels to

an image as well. The Merge operation accomplishes this by pasting an image onto

another image in a position that causes the second image to extend its borders.

32

Alternatively, the Mutate operation adds pixels by enlarging the DR. Changing the

location of a pixel can be performed by the Mutate operation, which moves pixels from

one (x, y) location to another. In addition, changing the intensity value of a pixel can be

performed by either the Modify operation or the Combine operation as described in

Chapter 2.

The above information, summarized in Table 3-1, implies that the set Combine,

Mutate, Merge, and Modify can perform each o f the four major tasks o f the image

transformation algorithm, which means that they can be used to transform an image into

any other image. Note that the Define operation was not tested since it only specifies

pixels within an image and does not actually alter it.

Image Transformation Algorithm Steps Corresponding Image Editing Operations
Add a pixel to an image
Remove a pixel from an image
Change location o f a pixel
Change intensity o f a pixel

Merge or Mutate
Merge or Mutate
Mutate
Modify or Combine

Table 3-1. Operations Used to Perform Steps of Image Transformation Algorithm

3.1.2. Minimizing the Set of Editing Operations

Since, as demonstrated in the last section, the set of editing operations. Combine,

Mutate, Merge, and Modify can be used to transform an image into any other image, the

algorithms proposed in this research retrieve virtual images composed of only those

operations. Another potentially desirable property of such a set is that all of the elements

in the set are needed for it to perform all possible image transformations. A set that has

this property is called minimal. Thus, for a set of image editing operations to be minimal,

no subset of it can be used to perform all possible image transformations. As with the

33

previous property, this research has developed a test to determine if a set of editing

operations is minimal [Brow, 1998]. Here, a set of editing operations is defined to be

minimal if the set can perform each of the steps in the image transformation algorithm

and no proper subset of the set has this property.

Step 1: Let S be a set { O i , O 2 , . . . , O n } , where each O j is an image editing operation.
Step 2: Show S can perform every step in the transformation algorithm
Step 3: For i = 1 to N
Step 4:_______Let S’ = S - { O j } .

Step 5: Show S’ cannot perform all steps in the image transformation algorithm
Figure 3-3. Algorithm for Testing if a Set of Editing Operations is Minimal

From the previous observation, a method of testing if a set o f editing operations is

minimal is to first demonstrate that it can perform all o f the steps in the image

transformation algorithm. The next task is to remove a single operation from the set and

test to see if the remaining set of operations can perform all of the steps of the algorithm.

If it can, then the original set is not minimal. This task must be repeated for each of the

editing operations in the image set. This algorithm is presented in Figure 3-3.

Consider testing whether the set of editing operations. Combine, Mutate, Merge,

and Modify is minimal. Since the set can perform each of the steps in the image

transformation algorithm, the remaining task is to remove each operation individually and

test the remaining set of operations against the transformation algorithm. When the

Combine operation is removed from the set, the subset of the three remaining editing

operations. Merge, Mutate, and Modify can perform each of the four tasks required by

the image transformation algorithm as illustrated in Table 3-1. Thus, the original set of

five editing operations is not minimal.

34

Alternatively, consider a set of operations consisting o f only Mutate and Modify.

To apply the testing algorithm of Figure 3-3 to the set, it is necessary to first demonstrate

that the set can be used to perform all image transformations. From Table 3-1, the

Mutate operation can add a pixel, remove a pixel, and change a pixel’s location while the

Modify operation can change a pixel’s intensity value. So, Mutate and Modify can

perform all image transformations.

The next step of the testing algorithm is to determine if any subset of Mutate and

Modify can perform all image transformations. When Mutate is eliminated, only the

Modify operation remains. That operation cannot add a pixel to an image, so it cannot

perform all possible image transformations. When Modify is eliminated from the testing

set, only the Mutate operation remains. This operation cannot change the intensity value

o f a pixel, which means that it also cannot perform all possible image transformations.

Thus, no subset of Mutate and Modify can perform all image transformations, which

means that the set is minimal.

When developing a query processing algorithm for virtual images, there are

potential advantages for using a minimal set of editing operations such as simplifying the

query processor and optimizer by reducing the number o f possible operations. This

research developed a query processing algorithm for the original set of operations Define,

Combine, Mutate, Merge, and Modify, however. The reason is that the number o f editing

operations within each virtual image may become too large if the set of recognized

operations is restricted.

To illustrate the above reason, consider blurring an image through the use o f the

Combine operation. Each pixel in the DR is changed to a new value that is computed

35

using the intensities of its neighbors. Thus, several pixels with identical intensity values

may be changed to different intensity values in a single Combine operation.

Alternatively, the Modify operation can only change pixels with identical intensity values

to the same new value, so it would take several different Modify operations to duplicate

the blurring effect.

3.2. Algorithm for Processing Range Queries

The proposed algorithm is based on defining rules for determining how editing

operations affect the colors contained in a virtual image if it is instantiated. Specifically,

the algorithm determines how many pixels of the query color may be added to or

removed from the base image after applying each o f the associated editing operations to

it. One of the benefits of this approach is that the proposed algorithm can be used to

identify colors in a virtual image that are not present in its base image.

As a real-world example, consider Figure 3-4 in which the flag of Italy is stored

as a transformation o f the flag of France. The description o f the Italian flag changes all

o f the blue pixels in the French flag to green. The result is that the image stored virtually

will have green pixels in it, while its base image will only have red, white, and blue

pixels. The proposed algorithm can identify that there are green pixels in the virtual

image by examining the parameters of the Modify operation.

36

Base Image

Define (0 0 256 128)
Modi^ (0 255 0 0 255 255 0 255 0)

Virtual Image

Base Image

Black Blue Green Red White
0.0 033 0.0 033 033

instantiated Virtual Image

Black Blue Green Red White
0.0 0.0 0.33 0.33 0.33

Color Histogram of Base Image Color Histogram o f Virtual Image

Figure 3-4. Colors in a Virtual Image not Present in its Base Image [Flag, 2003]

Figure 3-5 displays the proposed algorithm for processing range queries, which

consists o f three main tasks. The first task is to identify the desired histogram bin from

the given query. This is accomplished in the first three steps o f the algorithm, which are

the same in both the proposed algorithm and the conventional approach since both need

to determine the desired histogram bin. The second task is to determine Eg, the set o f

binary images that satisfy the query. This can be accomplished using existing query

processing techniques such as color histograms ([Hafii, 1995], [Orte, 1998], [Park,

1999]), which are suitable for handling images stored in a binary format. The third task

in the algorithm is to determine Vs, the set o f virtual images that satisfy the query when

they are instantiated. This is accomplished by examining the description o f each virtual

image and determining the effects that its sequence o f editing operations may have on the

histogram o f its base. Although it may be impossible to identify the exact value

contained in a histogram bin, the rules allow the image retrieval system to establish

37

maximum and minimum bounds. To summarize, the proposed algorithm of processing

range queries includes techniques to identify minimum and maximum bounds on the

values o f the histograms bins for virtual images.

/* Initialize the parameters o f the given query */
1. Initialize the Results set to 0 .
2 . Analyze the given query in order to identify the desired query range [P C T m i n ,

P C T m a x] and query color Cq.
3. Use the quantization function (Figure 2-2) on the query color to determine the

desired Histogram Bin HB.

/* Use histograms to identify the binary images that satisfy the given query */
4. For each histogram tuple extracted from a binary image,

4.1. If the value in bin HB is within the query range [P C T m i n , P C T m a x] ,

4.1.1. Add the image ID in the histogram tuple to the Results set.

/* Use the proposed rules to identify the virtual images that satisfy the given query*/
5. For each virtual image in the database,

5.1. Execute the Bounds() function to obtain the minimum and maximum bounds
(B O U N D m i n , B O U N D m a x) on the percentage o f pixels that can be in bin H B .

5.2. If the range formed by the estimated bounds intersects the query range,
5.2.1. Add the ID of the virtual image to the Results set.

/* Retrieve the identified images to the user. Any virtual images must first be
instantiated. */
6 . Display the images corresponding to the IDs contained in the Results set.

Figure 3-5. Proposed Algorithm for Processing Range Queries in a Virtual Image
Retrieval System

If the range formed by these minimum and maximum bounds intersects the range

[P C T m i n , P C T m a x] spccificd in the query, the proposed algorithm considers that the virtual

image satisfies the query. This strategy may lead to retrieving images that do not satisfy

the query since it is possible for the query range to intersect the minimum and maximum

bounds, but not to completely overlap it. Since the purpose is to retrieve all images that

38

satisfy the query to the user, this research adopts the policy that it is preferable to falsely

retrieve an image as opposed to incorrectly omitting one.

The key step in the proposed retrieval algorithm displayed in Figure 3-5 is Step

5.1. The BOUNDS procedure determines if a virtual image satisfies a given query using

a set of rules that indicate how an image editing operation affects the minimum and

maximum bounds on the percentage of pixels that may be o f color Cq in an image. The

rules are defined for the set of editing operations Define, Combine, Modify, Mutate, and

Merge that were described in Chapter 2. The BOUNDS algorithm is presented in the

next section.

3.3. Algorithm for Determining Bounds on Bin HB in a Virtual Image

The algorithm for determining the bounds on bin HB in a virtual image Vi is

displayed in Figure 3-6. The goal of the algorithm is to compute the maximum and

minimum bounds on the percentage of pixels that may be of color Cq. The range formed

by the maximum and minimum bounds can then be compared to the range requested by

the query, which will indicate if V\ satisfies the query. For example, if the algorithm

determines that no more than 50% of the virtual image is in the bin corresponding to

white (RGB color [255, 255, 255]), the system knows that Vj cannot satisfy the query

‘̂ Retrieve all images that are between 50% and 100% color [255, 255, 255]".

39

BOUNDS
/* Use the base image of Vi to initialize the [BOUND„i„, BOUND^aJ range, which is the
number o f pixels that can be in bin HB, and imageSize, which is the total number of pixels in
y; */
1. Let Bi represent the base image of Vj
2. Let Hi represent the histogram corresponding to base image Bi
3. Initialize ImageSize as the number of pixels in base image Bi
4. Initialize BOUNDmax as ImageSize x the value in bin HB of histogram Hi
5 . Initialize B O U N D m i n to the same value as B O U N D m a x

/* Sequentially access each operation in the virtual image V
6 . For each operation O P in V i

/* The Define Operation does not change an image, so it does not alter the [BOUND„i„,
BOUNDniaJ range or imageSize. Instead, the algorithm must compute and track the
number o f pixels in the DR. */
6.1. If O P is Define(xi, yi, Xi, Jt)

6.1.1. Let DR Size = (|xi - x?]) x (|y, - y2|), which is the number of pixels in the
Defined Rectangle.

6.1.2. Execute the NEW LIMIT algorithm to compute limits on the number of
pixels that may change before the next Define operation.

/* Update the [BOUNDmin, BOUNDmaJ range and imageSize variables for each
operation other than Define. */
6.2. Else

6 .2 .1 . Compute B O U N D m a x using the proposed rules for operation O P

6 .2 .2 . Compute B O U N D m i n using the proposed rules for operation O P

6.2.3. Compute ImageSize using the proposed rules for operation O P

/* Check if operation OP can change more pixels than the limits computed
previously. */
6.2.4. If New Limit column for O P is "Yes"

6.2.4.1. Execute NEW LIMIT to compute new limits on the number of pixels
that may change before the next Define operation

/* Convert the boundary range on the number o f pixels in bin HB to the percentage o f pixels
in bin HB. V
7. BOUNDmax = BOUNDmax / ImagcSizc
8 . BOUNDmin = BOUNDmin / ImageSize

NEW LIMIT
/* Some operations only affect the DR. Two such operations in succession will still only
affect the DR. The purpose of this method is to compute limits on the number o f pixels that
may change after applying the above operations in succession. Note: The variables Tempmin
and Tempmax are used within the proposed rules. V
1. Temprnin = M A X (B O U N D m i n - DR_Size, 0)

2 . Temprnax = M I N (B O U N D m a x + D R Size, ImageSize)_____________________________
Figure 3-6. Algorithm for Determining Bounds on bin HB in a Virtual Image

40

The BOUNDS algorithm computes the bounds on the percentage of pixels in bin

HB by examining each operation in the description o f the current virtual image. So, it

iteratively computes new values for the bounds for each operation in the description. The

algorithm performs this computation using rules that will be presented in the next section.

The remainder o f this section describes the purpose of each step in the BOUNDS

algorithm in more detail.

Step 1 o f the algorithm is to identify the base B, of the virtual image. To identify

Bi, the system must read the description of Vi and access the referenced base image that is

contained in the first line of the description. If this base image is itself a virtual image,

then the system must recursively read its description to obtain its base image. This

process is repeated until a binary base image is identified. The identification of the base

image leads directly to Step 2, which identifies the histogram of the base image.

Steps 3, 4, and 5 initialize the variables that will continually be updated by the

proposed rules during the execution of the B O U N D S algorithm. Specifically, Step 3 of

the algorithm computes imageSize to be the size of the base image Bi, where the size of

an image is defined as the number of pixels it contains. The proposed algorithm, then,

requires that the sizes of the binary images are stored in the database. Steps 4 and 5

initialize B O U N D m i n and B O U N D m a x to the number of pixels that are in bin H B in the

base image. This bound is computed by accessing the histogram corresponding to B , and

multiplying the value in the bin H B by imageSize. Although they are initialized to the

same value, B O U N D m i n and B O U N D m a x may spread apart as the algorithm proceeds.

With the bounds initialized. Step 6 of the algorithm contains a loop that accesses

the editing operations in the description of the virtual image in order. When a Define

41

operation is encountered, the system knows that the subsequent operations will act on the

rectangle specified in the parameters of the operation. The Modify and Combine

operations only affect pixels inside the Defined Rectangle (DR), which means that

successive applications of these operations can only change those pixels. Consequently,

the algorithm computes the number of pixels contained in the DR and uses it to compute

minimum and maximum limits on the numbers of pixels that may change until the next

Define operation in the virtual image description is encountered. Thus, the maximum

number o f pixels that can change after successive Modify and Combine operations is

equal to DR Size. Consequently, the algorithm computes the limit on the minimum

bound after the application of successive Modify and Combine operations as BOUNDmin

- DR Size, and stores this value in the variable Tempmin- Similarly, the algorithm

computes the limit on the maximum bound as B O U N D m a x + DR Size and stores this

value in the variable Tempmax- These computations are performed in the N E W LIMIT

procedure.

With the exception of the Define operation, the editing operations in ([Grue,

1996], [Spee, 1998], [Spee, 2000]) make changes to the pixels in a virtual image. So,

when an operation other than Define is encountered in the BOUNDS algorithm, the

algorithm adjusts the maximum and minimum bounds on the number of pixels in bin HB

in Steps 6.2.1 and 6.2.2 as well as the variable imageSize in Step 6.2.3. The adjustments

are made based on the rules defined for each operation that will be presented in the next

section. In addition, the BOUNDS algorithm checks each operation in Step 6.2.4. to

determine if it can affect pixels outside the current DR. If so, it executes the procedure

NEW LIMIT to update the limit variables Tempmin and Tempmax-

42

After the algorithm has accessed all of the editing operations in Vj, it has its final

minimum and maximum bounds on the number of pixels that are in bin HB. Steps 7 and

8 convert these values to percentages by dividing them by the total number o f pixels in

the image, which is in imageSize. The BOUNDS algorithm returns these values back to

the algorithm in Figure 3-5, so that it can utilize these percentages to determine if the

resulting virtual image could satisfy the given range query.

3.4. Derivation of Bounds

As described in the previous section, the proposed algorithm continually adjusts

the image size and the maximum and minimum bounds on the number of pixels that are

in bin HB based on the editing operations listed in the description of the virtual image.

These adjustments are listed in Table 3-2. The bounds for the editing operations are

dependent on their associated parameters, so the “Parameters Conditions” column in the

table describes the conditions that the parameters must meet to apply the corresponding

bounds. The “Update Limit” column of the table is used to indicate which operations can

affect the pixels outside of the Defined Rectangle and will therefore need to update the

limit variables Tempmin and Tempmax- The following sections explain how each of the

bounds is derived.

43

Editing

Operation
Parameters Conditions Minimum Bound Maximum Bound Image Size

New

Limit

Combine All BOUNDmin BOUNDmax ImageSize No

Modify

HB g Quantize (Knew,

Onews l^new)
AND

HB i Quantize
(Rmin-Rmax)

Bmin Bmax)

BOUNDmin BOUNDmax ImageSize No

HB g Quantize (Rnew,

Onewj Rnew)
AND

HB e Quantize
(Rm in-Rm axî Oj^in-Gmax?

Rmin-Rmax)

MAX[Temprnin, a]
where

a=MAX(0,

BOUNDmin—
DR_Slze)

BOUNDmax ImageSize No

HB e Quantize (Rnew,

Gnew, Rnew)
AND

HB e Quantize
(Rm in-Rm ax, Gnnn-Gmax,

Rmin-Rmax)

BOUNDmin

MIN[Tempmax, a]
where

a=M IN(lm ageS ize,

BOUNDmin+
DR_Size)

ImageSize No

HB e Quantize (Rnew,

Gnew, Rnew)
AND

HB g Quantize
(R m in’Rmax, Gmin-Gmax,

Rmin-Rmax)

BOUNDmin

MIN[Temprnax, a]
where

a=M IN(lm ageS ize,

BOUNDmin"^
DR_Size)

ImageSize No

Mutate ImageSize == DR_Size
BOUNDminx|MllX

M22I

BOUNDmaxx|Mllx

M22I

ImageSize

x|MiixM22|
Yes

Rigid Body

MAX[Tempmin, a]
where

a=MAX(0,

BOUNDmin—
DR_Size)

MIN[Tempmax, a]
where

a=M IN(lm ageS ize,

BOUNDmax
DR_Size)

ImageSize No

Otherwise BOUNDmin BOUNDmax ImageSize No

Merge Target is NULL
MAX[0, DR_Size
- (ImageSize -

BOUNDmin)!

MIN[BOUNDmax,
DR_Size]

DR_Size Yes

Target is Not NULL

MAX[0, DR_Size

- (ImageSize -

BOUNDmin)]
■r

MAX(0, TargetHB
- DR_Size)

MIN(BOUNDmax,
DR_Size)

- I -

MIN(TargetHB,

MAX(0, TargetSize
-D R _ S ize))

[MAX((xp+X2-
x i), height) -

M IN(Xp,0)+1]x

[MAX((vp+y2-
y i), width) -

MIN(yp,0)+1]

Yes

Table 3-2 - Rules For How Editing Operations Affect Bounds on Histogram Bins

44

3 . 4 . 1 . C o m b i n e (C n , C 1 2 , C 1 3 , C 2 1 , C 2 2 , C 2 3 , C 3 1 , C 3 2 , C 3 3)

The Combine operation changes the intensity values o f only the pixels in the

Defined Rectangle using the weighted average o f the intensity values of the pixels'

neighbors. Since the operation only affects the pixels in the DR, the BOUNDS algorithm

does not need to update the temporary limit variables Tempmin and Tempmax- The

parameters to the Combine operation are the weights used in computing the weighted

average. This definition of the Combine operation leads to the following observations:

1. The Combine operation does not add or remove pixels from an image.

2. If a pixel has the same intensity value as all of its neighbors, it will not be

changed as a result of the Combine operation.

To derive the rule governing how the Combine operation affects the size of an

image, meaning the number of pixels it contains, consider observation 1. Since no new

pixels are added or removed from an image, the number o f pixels must stay the same.

Consequently, one rule for the effect of the Combine operation is that the image size

remains the same.

To derive the maximum and minimum bounds on the value in bin HB, consider

observation 2. This observation implies that if there is a homogenous region inside an

image, only the pixels on the boundary of the region can change color. Because of this

operation, the algorithm assumes that the number of pixels in bin HB will remain the

same after the application of the Combine operation. Consequently, two more rules for

the effect of the Combine operation are that the minimum and maximum bounds on the

value in bin HB remain the same.

4 5

To summarize, let the number of pixels in an image be imageSize, the minimum

bound on the value in bin HB be BOUNDmin, and the maximum bound on the value in

bin HB be BOUNDmax- The expressions for these values after applying a Combine

operation according to the proposed rules are:

• Size o f image: imageSize

• Minimum Bound on HB: BOUNDmin

• Maximum Bound on HB: BOUNDmax

3 .4.2. M o d ify (R m ln , R m ax, R new ; G m in; G m ax; G new , Rm in; Bm ax; Rnew)

Like the Combine operation, the Modify operation changes the intensity values of

some of the pixels in the Defined Rectangle. Also like the Combine operation, the

BOUNDS algorithm does not need to update the temporary limit variables Tempmin and

Temprnax since the operation can only affect the pixels in the DR. The parameters of the

operation specify which pixels get changed and what their new intensity values will

become. This leads to the following observations:

3. The Modify operation does not add or remove pixels from an image.

4. The pixels that will change colors as a result o f the operation are specified in the

parameters.

5. Since only the pixels that are in the Defined Rectangle can change, the maximum

number o f pixels that can change as a result of this operation is equal to the size

of the Defined Rectangle. This value is stored in DR Size.

Observation 3 is similar to Observation 1. So, one rule for the Modify Operation

is very similar to a rule for the Combine operation. Specifically, since no new pixels are

46

added or removed as a result of the Modify operation, one of its rules specifies that the

image size remains the same.

To derive the rules for how the Modify operation affects the bounds on the

number o f pixels within bin HB, it is necessary to consider Observations 4 and 5.

Observation 5 indicates that the bound on the number of pixels that can change color is

equal to DR Size. This means that if there are x pixels in bin HB before the application

o f the Modify operation, then there will be at most x + DR Size pixels and no fewer than

X - DR Size pixels in the bin after its application.

Observation 4 indicates that these bounds may be improved by examining the

parameters of the operation. In the operation Modify (Rmin, Rmax, Rnew, Gmin, Gmax, Gnew,

Bmin, Bmax, Bpew), the Only plxels that change are ones with Red values in the range [Rmin,

Rmax], Green values in the range [Gmin, Gmax], and Blue values in the range [Bmin, Bmax]-

These pixels are changed to the color (Rnew, Gnew, Bnew)- So, the rules for determining the

effects of the Modify operation should examine the parameters to identify the colors of

the pixels in the D R that change and the new color that the pixels will become. Note that

since the query is based on the number of pixels in histogram bins that represent

quantized colors, the colors in the parameters of the Modify operation must be quantized.

Consider when no colors with a Red intensity value within [Rmin, Rmax], a Green

intensity value within [Gmin, Gmax], and a Blue intensity value within [Bmin, Bmax] quantize

to bin HB. This means that no pixels which map to bin HB will change in the image, so

the value in bin HB will not decrease. Based on this information, one rule is that if

Quantize(Rx, G%, Bx) HB for all {Rx, Gx, Bx | RxS [Rmin,-Rmax], GxS [Gmin, Gmax],

Bxe[Bmin, Bmax]}, then the minimum bound on HB stays the same.

47

Now consider when Quantize(Rnew, Gnew, Bnew) equals HB. This means that the

pixels within the Defined Rectangle may he changed to a color that quantizes to bin HB.

Since there are DR Size pixels in the Defined Rectangle, the maximum hound on HB

may increase hy DR Size. Note that this also implies that the minimum hound on HB

should stay the same.

Next, consider when Quantize(Rnew, Gnew, Bnew) does not equal HB. This means

no pixels in the Defined Rectangle will he changed to a color that quantizes to bin HB.

So, the maximum bound on HB should stay the same. However, pixels whose colors do

quantize to bin HB may change their colors if their Red intensity values are in the range

[Rmin,:Rmax], Green intensity values are in the range [Gmin, Gmax], and Blue intensity

values are in the range [Bmin, Bmax]- hi such a case, the minimum bound on HB should

decrease hy DR Size.

To summarize, the rules for the Modify operation are dependent on its parameters.

As with the Combine operation, let the number of pixels in an image he imageSize, the

minimum bound on the value in bin HB he BOUNDmin, and the maximum hound on the

value in bin HB he BOUNDmax- The expressions for these values after applying a

Modify operation according to the proposed rules are:

If (Quantize(Rnew, Gnew, Bnew) == HB), then

• Size o f image: imageSize

• M inimum Bound on HB: BOUNDmin

• Maximum Bound on HB: BOUNDmax + DR_Size

If (Q uan tize(R new , Gnew, Bnew) # HB) a n d

(Quantize(Rx, Gx, Bx) ^ HB for all {Rx, Gx, Bx | Rx E [Rmin, : Rmax), GxE[Gmin, Gmax], BxE[Bmln, Bmax]}), then
• Size o f image: imageSize

• Minimum Bound on HB: BOUNDmin

• Maximum Bound on HB: BOUNDmax

48

If (Quantiz6(Rnew, Gnew, Bnew) ^ HB) and

3 {Rx, Gx, Bx I Rx E [Rmin, ! Rmax], GxE[Gmin, Gmax], BxE [Bmin, Bmax] and {Quanti2©(Rx, Gx, Bx) - - HB)}, th©n

• Size o f Image; imageSize

• M inimum Bound on HB: BOUNDmin - DR_Size

• Maximum Bound on HB: BOUNDmax

3 , 4 . 3 . M u t a t e (M u , M n , M 1 3 , M 2 1 , M 2 2 , M 2 3 , M 3 1 , M 3 2 , M 3 3)

The Mutate operation changes the location o f the pixels in the Defined Rectangle.

By moving a pixel from one area in an image to another area, the Mutate operation has

the ability to overwrite pixels in other areas of the image. In addition, it can move the

pixels to new locations outside the current image. This information leads to the

following observations:

6. Since the Mutate Operation can overwrite pixels in various areas o f an image, it

can change pixels outside of the Defined Rectangle.

7. Since the Mutate Operation can move pixels to new locations, it has the capability

to enlarge or shrink an image. Thus, it can alter the number of pixels that are

contained within an image.

Because pixels outside the DR can change as indicated in Observation 6, it is

difficult defining rules for the Mutate operation. Observation 7 indicates that the effects

of the operation can vary based on its parameters. Thus, the algorithm assumes that the

effects of most Mutate operations are unknown and consequently, does not update the

bound variables.

The rules that are defined in the BOUNDS algorithm for the Mutate operation are

for specific conditions of its associated parameters. One such rule occurs when the

Defined Rectangle contains the entire image. Since all of the pixels are affected in this

49

situation, the distribution o f colors in the image should remain constant, except for

extreme cases such as shrinking an image down to one pixel. A rule then is that when the

entire image is in the Defined Rectangle, the minimum bound for HB, maximum bound

for HB, and image size should be changed by the scaling factors o f the mutation matrix

(Mil and M 22)- In addition, the temporary limit variables Tempmin and Tempmax should

be updated since pixels outside the DR have been changed.

Another rule occurs when the mutation matrix is a rigid body transformation,

meaning that it consists o f only translations and rotations. In this situation, the

transformation moves one section o f an image to another area in the image. Although

possible, it is assumed the image size stays constant. The original location o f the pixels

will be changed to some default color, currently RGB value (0, 0, 0), as displayed in

Figure 3-7.

Oklahoma Flag with Flag after Application of
Defined Rectangle Mutate (1 ,0 ,0 ,0 ,1 , -8 0 ,0 ,0 ,0 , 1)

Figure 3-7. Results after Apphcation o f a Mutate Operation that Translates the DR

To develop a rule for the above situation, consider a pixel in the Defined

Rectangle. The pixel retains its intensity value when it is moved to another location in

the image. The pixel at the new location is lost, while a pixel with the color (0, 0, 0) is

50

added. So, the effect of the operation is that the histogram bin corresponding to (0, 0, 0)

may gain pixels while all the other histogram bins may lose pixels. The maximum

number o f pixels that are replaced is equal to the number of pixels in the Defined

Rectangle. So, the rule for this situation is that both the minimum and maximum bounds

may be altered by the value in DR Size, and the total number o f pixels in the image will

not change. Also, since the maximum number of pixels that are replaced is equal to the

number o f pixels in the DR, the temporary limit variables Tempmin and Tempmax do not

have to be updated.

To summarize, the algorithm assumes that the effects o f the Mutate operation are

unknown and therefore, does not update the bounds and image size. The rules that are

defined for the Mutate operation are dependent on its parameters like the Modify

operation. Given the same variable definitions as in the previous operations, the new

values o f the bounds and image size are:

If (DR contains entire image), then

• Size o f image: imageSize x (M u x M22)

• M inimum Bound on HB: BOUNDmin x (M u x M22)

• Maximum Bound on HB: BOUNDmax x (M u x M22)

If the transformation is a rigid body transformation, then

• Size o f image: imageSize

• Minimum Bound on HB: BOUNDmin - DR_Size

• Maximum Bound on HB: BOUNDmax + DR_Size

3.4.4. Merge (Target Image, Xp, y?)

The Merge operation combines the Defined Rectangle o f the base image and the

Target Image. If the Target Image is NULL, then the Merge operation simply crops the

Defined Rectangle out of the current image. Thus, the Merge operation affects all of the

51

pixels outside o f the Defined Rectangle. Since pixels outside the DR can be affected, the

BOUNDS algorithm must update the values of Tempmin and Tempmax-

Since the Merge operation combines two images, the following observations can

be made;

8. To identify the minimum number of pixels possible in bin HB after applying the

Merge operation, it is necessary to identify the minimum number of pixels that

could possibly be in the DR and in the Target Image.

9. To identify the maximum number of pixels possible in bin HB after applying the

Merge operation, it is necessary to identify the maximum number of pixels that

could possibly be in the DR and in the Target Image.

10. The size o f the resulting image will be equal to the size of the Target Image,

unless the DR is copied onto a position that causes the image to grow.

11. If the Target Image is NULL, the size of the resulting image will be equal to the

size of the DR.

Observations 8 and 9 indicate that is necessary to identify the minimum and

maximum possible number of pixels in bin HB contained within the DR and Target

Image in order to identify the new bounds on that value. Observation 10 indicates that is

necessary to identify where a DR is pasted in a Target Image to determine its size.

Finally, Observation 11 indicates that it is necessary to check if the Target Image is

NULL when developing the rules.

Depending on where the DR is located in the image, the number of pixels in it

that are in bin HB can fluctuate. For example, consider that the amount of white pixels in

52

a DR specified in an image is half red and half white as in Figure 3-8. If the DR is small,

as in Figures 3-8A and 3-8B, it is possible that it may contain all white pixels or no white

pixels. So, the number of white pixels in it could be anywhere from DR SIZE to zero.

Alternatively, if the DR is large, it would be impossible for it to contain only white pixels

as in Figure 3-8C, and it would be impossible for it to contain no white pixels as in

Figure 3-8D.

A □ B □
DR Containing

Only White Pixels
DR Containing No

White Pixels

C D

DR Containing as
Many White Pixels as

Possible

DR Containing as
Few White Pixels as

Possible

Figure 3-8. Defined Rectangles that have Varying Numbers o f White Pixels

The formulae for determining the minimum and maximum number o f pixels in

bin HB within a Defined Rectangle, then, are dependent upon the size of the DR and the

number of pixels in bin HB within the base image. The minimum number of pixels is

equal to the number of pixels in the DR minus the number of pixels in the image that are

not in bin HB. Using the above variables, this value is computed as DR Size -

(ImageSize - BOUNDmin)- The maximum number o f pixels in bin HB within a DR is

equal to the minimum of the number of pixels in the DR and the number of pixels in bin

53

HB in the entire image. Using the above variables, this value is MIN(BOUNDmax,

DR_Size).

Similar reasoning can be used to compute the formulae for the minimum and

maximum numbers of pixels in bin HB within the Target Image. The difference is that

the formulae must compute how many of the pixels in bin HB within the target are

covered by the DR. Again, this will be dependent upon the size of the DR and the

number of pixels in bin HB within the Target Image. Let TargetSize represent the

number of pixels in the Target Image and TargetHB represent the number of pixels in bin

HB within the Target Image. The minimum number of pixels in bin HB within the

Target Image after the application of the Merge operation is equal to the number o f pixels

in the DR subtracted from the number of pixels in bin HB in the Target Image before the

operation. Using the above variables, this expression is TargetHB - DR Size. The

maximum number of pixels in bin HB in the Target Image after a Merge operation is

equal to the minimum of the number of pixels in the Target Image before the operation

and the number o f pixels in the Target Image not covered by the Defined Rectangle. This

value can be expressed as MIN(TargetHB, TargetSize - DR Size). Since each of the

above expressions represents the number of pixels that are mapped to bin HB, the value

cannot be negative. Thus, each of the expressions should be bounded below by zero.

In a Merge operation, the DR is copied into the Target Image, so the size of the

resulting image will be equal to the size of the Targetlmage. The only exceptions occur

when the DR is copied into a position that will make the resulting image larger than the

target. One such example is illustrated in Figure 3-9 where the DR is pasted in the lower

right comer o f the Target Image. Figure 3-9A displays a Target Image. Figure 3-9B

54

displays a DR being copied onto the lower right comer o f the Target Image. Figure 3-9C

displays that the resulting image must add pixels in order for the resulting image to be

rectangular.

Figure 3-9. Results of a Merge Operation Larger than the Target Image

(0, w idth)

(height, 0

Figure 3-10. Coordinates in an Image Resulting from Merge (Target, Xp, yp)

Let height represent the number of rows in the Target Image and width represent

the number of columns. This information will have to be stored in the database. The

position that the DR will be copied into the Target Image is given in the parameters o f the

55

Merge operation. To find the size of the resulting image, it is necessary to find the

coordinates o f the resulting image as in Figure 3-10.

If the image grows as in Figure 3-10, the new lower right coordinates would be

(Xp + the height o f the DR, yp the width o f the DR). The height and width of the DR

can be computed from the parameters of the Define operation, which should still be in

memory from Step 6.1 of the BOUNDS algorithm. The height is (x : - x ,) , and the width

is (y2 - yi). So, the new lower right coordinates of the image would be (Xp+X] - xi, yp+yz

- yi). Alternatively, if the image grows as in Figure 3-11, the new upper left coordinates

o f the image would simply be (Xp, yp).

(Xp.yp)

w idth)

(height, 0) (height, w idth)

Figure 3-11. Other Possible Coordinates Resulting from Merge (Target, Xp, yp)

Using the above information, the size of the resulting image would be the product

of the height and width of the resulting virtual image. Using the above parameters of the

Merge operation, these values are expressed as:

Height: MAX((Xp + X2 - X]) , height of target) - MIN(xp, 0) + 1.
Width: MAX((yp + y2 - yi), width of target) - MlN(yp, 0) + 1.

56

To summarize, the rules for the Merge operation are dependent on its parameters.

Given the same variable definitions as in the previous operations, the new values o f the

bounds and image size are:

If target is NULL, then

• Size o f image: DR_Size

• Min Bound on HB: MAX(DR_Size - (ImageSize - BOUNDmin), 0)

• Max Bound on HB: MIN(BOUNDmax, DR_Size)

If target is not NULL, then

• Size o f image: (MAX((xp + % - x i), height o f target) - MIN(xp, 0) + 1) x (MAX((yp + y2 - y i), width o f target) -

MIN(yp, 0) + 1)

• Min Bound on HB: (MAX(DR_Size - (ImageSize - BOUNDmin), 0)) + (MAX(TargetHB - DR_Size, 0))

• Max Bound on HB: (MIN(BOUNDmax, DR_Slze)) + MIN(TargetHB, MAX((TargetSize - DR_Slze), 0))

3.5. Range Query Processing Example

This section provides a specific example of using the algorithm in Figure 3-6 on a

set of virtual images. For example, consider a system that uses the RGB color model,

and uniformly divides each axis in half when quantizing the color space. So, in the

quantization function presented in Chapter 2, (di, dz, d]) = (2, 2, 2) and (C M i , CMa, C M 3)

= (256, 256, 256). This also means that each color histogram extracted from a binary

image will have a total of 2 ̂= 8 bins.

The underlying database contains 4 binary images called B I, B2, B3, and B4, and

4 edited images, called V5, V6, V7, and V8, meaning that the database has 8 total

images. Based on this quantization scheme. Table 3-3 contains the four histograms

extracted from the binary images in the example database along with the identifiers to

their associated images. Table 3-4 contains the descriptions o f the 4 virtual images. In

addition, the database stores that each binary image contains 100 pixels arranged as 10

rows and 10 columns.

57

The specific range query used has values of 50 for PCTmin, 100 for PCTmax, and

(255, 255, 255) for color C q , which is the color white. This means that the example

range query is equivalent to “'Retrieve all images that are at least 50% white”. Using the

parameters o f the quantization function described earlier, color C q maps to histogram bin

7, so HB equals 7.

Histogram ID Image ID BIno Blni Bln2 Bins Bln4 Bins Bine Bln?
H1 B1 0 0 0 0 0 0 0.6 0.4
H2 B2 0.5 0.5 0 0 0 0 0 0
H3 B3 0.8 0 0 0 0 0 0 0.2
H4 B4 0 0 0 0 0 0 0.4 0.6

Table 3-3. Histograms for the Binary Images in the Example Database

V5: B2
Define (0 ,0 ,9 ,4)
Merge (NULL, 0,0)

V6: B3
Define (0 ,0 ,4 ,3)
Modify (0,100, 255,0,100, 255,0,100, 255)
Combine (1 ,2 ,1 ,2 ,4 , 2 ,1 ,2 ,1)

V7: B4
Define (0 ,0 ,9 ,0)
Mutate (1,0, 0, 0 ,4 ,0 ,0 ,0 ,1)

V8: B4
Define (0 ,0 ,9 , 2)
Modify (0, 255,255, 0, 255, 255, 0, 255,255)

Table 3-4. Descriptions of Virtual Images in the Example Database

#2
Define (0, 0, 9, 4)
Merge (NULL, 0, 0)

When the BOUNDS algorithm is applied to V5, the first two steps of the

algorithm identify B 2 as the base image and H 2 as its histogram. The next three steps

identify imageSize, B O U N D m a x , and B O U N D m i n - The imageSize variable is set to 100,

since there are 100 pixels in B 2 . Both B O U N D m a x and B O U N D m i n are set to the product

58

of the value in bin 7 in the histogram of B2 and imageSize. Since bin 7 has a value of 0,

this product is also 0.

Step 6 processes the editing operations in V5. Since the first operation is Define

(0, 0, 9, 4), the variable DR Size is set to the number o f pixels in the DR, which is (|0 -

9| + 1) X (10 - 4| + 1) = 50. In addition, Tempmin is set to 0, and Tempmax is set to 50.

The algorithm then applies the rules in Table 3-2 for the second operation Merge

(NULL, 0, 0). This operation crops 50 pixels from the base image. Applying the rules in

Table 3-2 for this operation, the algorithm sets B O U N D m i n to MAX[0, 50 - (100-0)],

which equals 0, and sets B O U N D m a x to MIN[0, 50], which also equals 0. Next, the

algorithm sets the imageSize variable equal to D R Size, which is 50. Finally, the Merge

operation does affect pixels outside the D R , so the algorithm updates the temporary

minimum tempmax to MAX(0 - 50, 0) = 0 and the temporary maximum tempmax to MIN

(0 + 50, 50) = 50.

The last two steps convert B O U N D m i n and B O U N D m a x to percentages by dividing

them by imageSize. So, B O U N D m i n equals 0 / 50 = 0, and B O U N D m a x equals 0 / 5 0 - 0 .

The result of the B O U N D S algorithm, then, is that the percentage of pixels that are white

in V5 will be in the range [0, 0], which means that it will not have any white pixels. This

is to be expected since the description of V5 implies that it is created by cropping 50 of

the pixels in image B2, and B2 does not have any white pixels. Since the range [0, 0]

does not intersect the query range [.5, 1], V5 would not be returned to the user.

59

Define (0, 0, 4, 3)

Combine (1, 2, 1, 2, 4, 2, 1, 2, 1)

When the B O U N D S algorithm is applied to V6 for the same query, the first two

steps of the algorithm identify B3 as the base image and H3 as its histogram. The

imageSize variable is set to 100, since there are 100 pixels in B3. The next two steps set

B O U N D m a x and B O U N D m i n to the product of bin 7 in the histogram of B2 and

imageSize. Since bin 7 in Histogram H3 has a value of 0.2, the initial values of both

B O U N D m i n and B O U N D m a x are 20.

Step 6 processes the editing operations in V6. Since the first operation is Define

(0, 0, 4, 3), the variable DR Size is set to the number of pixels in the DR, which is (|0 -

4] + 1) X ([0 - 3| + 1) = 20. Since the subsequent editing operations until the next Define

operation may only alter these 20 pixels, the limit Tempmin is set to (BOUNDmin - 20),

which is 0, and Tempmax is set to (BOUNDmax + 20), which is 40.

Next, the algorithm applies the rules in Table 3-2 for the second operation Modify

(0, 100, 255, 0, 100, 255, 0, 100, 255). This operation converts the pixels with intensify

values in between 0 and 100 in all three color axes to white, the query color. So, this

operation may create new white pixels. As a result, the rules in Table 3-2 do not change

the values o f B O U N D m i n and imageSize, so they remain equal to 20 and 100,

respectively. The rules do compute a new value for B O U N D m a x , which is equal to

MIN[40, MIN(100, 20 + 20)] = 40. The Modify operation does not change pixels outside

the D R , so T e m p m i n and T e m p m a x are not updated.

60

For the third operation, Combine (1, 2, 1, 2, 4, 2, 1, 2, 1), the rules in Table 3-2 do

not change the values of BOUNDmin, BOUNDmin, or imageSize. Consequently, they

remain equal to 20, 40, and 100, respectively. As before, the Combine operation does not

change pixels outside the DR, so Tempmin and Tempmax are not changed.

When the algorithm finishes processing all of the operations, the last two steps

convert BOUNDmin and BOUNDmax to percentages of imageSize. So, BOUNDmin equals

20 / 100 = 0.2, and BOUNDmax equals 40 / 100 = 0.4. The result of the BOUNDS

algorithm, then, is that the percentage o f pixels that are white in V6 will be in the range

[.2, .4]. Since this range does not intersect the query range [.5, 1], V6 would not be

returned to the user.

F7.' R'/
De/zne 0. 9, Q)
M utate (1, 0, 0, 0, 4, 0, 0, 0, 1)

When the B O U N D S algorithm is applied to V7 for the same query, the first two

steps o f the algorithm identify B 4 as the base image and H4 as its histogram. The

imageSize variable is set to 100, since there are 100 pixels in B 4 . The next two steps set

B O U N D m a x and B O U N D m i n to the product of bin 7 in the histogram of B 4 and

imageSize. Since bin 7 in Histogram H4 has a value of 0.6, both B O U N D m i n and

B O U N D m a x are set to 60.

Since the first operation is V7 is Define (0, 0, 9, 0), the variable DR Size is set to

the number o f pixels in the DR, which is (|0 - 9| + 1) x (|0 - 0| + 1) = 10. So, the next set

of operations until the next Define operation will alter these 10 pixels. Consequently, the

61

limit Tempmin is set to (BOUNDmin - 10), which is 50, and Tempmax is set to (BOUNDmax

+ 10), which is 70.

Next, the algorithm applies the rules in Table 3-2 for the second operation Mutate

(1, 0, 0, 0, 4, 0, 0, 0, 1). This operation enlarges the DR by a factor of 4 in the y-

direction. The system does not have enough information to know which pixels are

increased, so the rules in Table 3-2 do not change the values o f BOUNDmin, BOUNDmax,

or imageSize. Thus, they remain 60, 60, and 100, respectively. Since the effect of the

Mutate operation is unknown, the algorithm does not change Tempmin and Tempmax-

The last two steps o f the algorithm convert BOUNDmin and BOUNDmax to

percentages o f imageSize. So, both bounds are set equal to 6 0 / 100 = 0.6. The result of

the BOUNDS algorithm, then, is that the percentage of pixels that are white in V6 will be

in the range [.6, .6]. Since this range does intersect the query range [.5, 1], V7 is returned

to the user

Define (0, 0, 9, 2)

Since V8 has the same base image as V7, the first five steps o f the algorithm will

produce the same values. So, as in V7, imageSize, BOUNDmax, and BOUNDmin will

equal 100, 60, and 60, respectively.

Since the first operation is V7 is Define (0, 0, 9, 2), the variable DR Size is set to

the number o f pixels in the DR, which is (|0 - 9| + 1) x (|0 - 2| + 1) = 30. In addition.

62

Ternpmin is set to (BOUNDmin - 30), which is 30, and Tenipmax is set to (BOUNDmax +

30), which is 90.

Next, the algorithm applies the rules in Table 3-2 for the second operation Modify

(0, 255, 255, 0, 255, 255, 0, 255, 255). This operation changes all of the pixels in the DR

to white. As a result, the rules in Table 3-2 do not change the values o f BOUNDmin and

imageSize, so they remain equal to 60 and 100, respectively. The rules do compute a

new value for BOUNDmax, which is equal to MIN[90, MIN(100, 60 + 30)] = 90. Finally,

the Modify operation does not change the pixels in the DR, so Tempmin and Tempmax do

not change.

The last two_ steps of the algorithm convert BOUNDmin and BOUNDmax to

percentages of imageSize. So, BOUNDmin is set equal to 60 / 100 = 0.6, and BOUNDmax

is set equal to 90 / 100 = 0.9. The result of the BO UN DS algorithm, then, is that the

percentage of pixels that are white in V8 will be in the range [.6, .9]. Since this range

does intersect the query range [.5, 1], V8 is returned to the user.

To summarize, the proposed algorithm for processing range queries in a virtual

image retrieval system will return three images in response to the query ''Retrieve all

images that are at least 50% white"' for the sample database. Image B4 will be returned

using conventional histogram techniques. Images V7 and V8 will be returned as a result

of the values generated from the BOUNDS algorithm.

63

CHAPTER 4

TECHNIQUES FOR PROCESSING NEAREST NEIGHBOR QUERIES

This section proposes an algorithm for processing nearest neighbor queries in an

image retrieval system that uses virtual images. The specific type of query that the

algorithm addresses is ''"Retrieve the k images that are nearest to image Q \ where k is a

whole number, and Q is the query image. The goal of this approach is to process the

nearest neighbor queries utilizing the rules presented in the previous chapter. By meeting

this goal, this approach avoids having to instantiate the virtual images since instantiation

takes a long time.

4.1. Algorithm for Processing Nearest Neighbor Queries

As described in Chapter 2, conventional systems typically extract and store

features of the images in the database as they are inserted. The distance between one of

these stored images and the query image Q is based on the comparison of the features

extracted from them. This implies that one of the first steps o f the retrieval algorithm is

to identify and extract the features of Q. This is also the first step in the proposed

retrieval algorithm for virtual images.

The proposed approach is similar to the algorithm for processing range queries in

that it consists of two other main tasks. The first is to use conventional methods to

identify the k binary images that are the closest to the query image based on comparing

their respective histograms. The second step is to examine the description of each virtual

image and infer if any of them are closer to the query image than the binary images.

Again, this means that the system will have to infer the values in the histogram bins for a

64

virtual image, which it does by repeatedly performing range queries on the bins.

Consequently, the proposed method of processing nearest neighbor queries utilizes the

rules presented for the range queries in the last chapter in order to determine the distance

between a virtual image and the query image.

As both the conventional and proposed algorithms for finding the nearest k

images to a query image proceed, they need to store the k closest known images at each

step. This is accomplished through the maintenance o f an array called NEAREST in

which the i‘*’ element of the array contains two values, the identifier of the i*’’ closest

image to Q and its distance to Q. These values are referred to as NEAREST[i].image and

NEAREST[i].distance, respectively. So, to determine if an image is one of the k closest

neighbors to Q, it can he checked to see if it is smaller than NEAREST[k].distance. This

value, then, is always stored in another variable called smallest.

The algorithm for processing nearest neighbor queries is shown in Figure 4-1.

The first two steps extract the color histogram from the query image, and the next two

steps initialize the NEAREST array and the variable smallest to infinity. The next step

processes each binary image in the database by comparing their histograms to the one

extracted from Q. So, at the completion of Step 4, the NEAREST array will contain the k

closest binary images to Q.

The key step in the algorithm is the next step. Step 6, which identifies the virtual

images whose distance from the query image is less than the smallest known distances.

This step executes the procedure called VTRTUAL NN, which updates the NEAREST

array based on the computed distances of the virtual images. So, when the procedure

finishes, the NEAREST array will contain the k closest images to the query image

65

irrespective of how they are stored, and that allows the subsequent step to simply display

the images in NEAREST. The VIRTUAL NN procedure is described in the next

section.

/* Binary images are compared using histograms, so extract the histogram from the
query image. */
1. Identify parameters (k, Q) from given query
2. Extract the color histogram from image Q and represent it by variable HQ

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The i"' element o f the array
contains the identifier o f the f ’’ known closest image and its distance to Q. The following
code initializes the array. */
3. For i = 1 to k

3.1. Set the image field of the i* element in NEAREST to null
3.2. Set the distance field of the i* element in NEAREST to infinity

4. Set smallest equal to the distance field of the k* element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. V
5. For each histogram tuple, H, stored in the database

5.1. Compute d, the distance between H and HQ.
5.2. if d < smallest

5.2.1. Obtain the object id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains

sorted based on the distance fields.
5.2.3. Set smallest equal to the distance field of the k* element in NEAREST

/* Identify virtual images that may be among the k closest V
6. Call VIRTUAL_NN to find the virtual images that should be in NEAREST

/* Retrieve the identified images to the user. Any virtual images must first be
instantiated. */
7. Display the images contained in the first k image fields of the NEAREST array.

Figure 4-1. Proposed Algorithm for Processing Nearest Neighbor Queries

4.2. Algorithm for Determining the Distances from Q to the Virtual Images

This section describes the algorithm for computing the distances the query image

Q and all of the virtual image in the database. The goal o f the algorithm is to compute

6 6

these distances without having to instantiate any of the virtual images. To accomplish

this goal, the algorithm utilizes the rules presented in the last chapter by executing

multiple range queries. These range queries provide values that are used to compute the

distances from Q to the set of virtual images.

The idea for the proposed nearest neighbor query processing algorithm is based

upon submitting a query to the image retrieval system that requests the images that are

the most similar to an all black query image, QB. If an image I in the database is 70%

black, then the Histogram Intersection of the query image and I is HI(QB, I) = .7. So, the

number o f black pixels in an image directly relates to the value of the Histogram

Intersection between that image and QB. Another way, then, of satisfying the given

nearest neighbor query is to find images that are mostly black, which is very similar to

the type o f range queries processed in the preceding chapter.

The above example indicates that it may be possible to process some nearest

neighbor queries by processing various range queries. So, the technique used by the

proposed algorithm displayed in Figure 4-2 is to identify and execute such range queries

in response to a submitted nearest neighbor query. The algorithm works by repeatedly

identifying the bins with the largest values in the histogram of the query image and then

performing range queries on those bins.

67

V IR T U A L _ N N
/* In itialize the variab les used to f in d the distance betw een the Q uery im age Q an d the virtual im ages
pctR em ain in g represen ts the percen tage o f the histogram o f Q that has not been tested

R em aining contains the se t o f v irtual im ages that m ay be am ong the k-nearest neighbors
TotalSum [V] represents the com puted H istogram Intersection o f V an d Q
num berBins represents the to ta l num ber o f colors within Q
queryB ins represents the bin numbers o f the co lors con tained within Q
index represen ts the bin num ber o f the current co lo r being p ro cessed * /

1. pctRemaining = 1.00
2. Remaining = Set o f Virtual Images in database
3. For each virtual image V in Remaining

3.1. TotalSum[V] = 0
4. Let queryBins represent the nonzero bins of HQ in sorted order
5. Let numberBins represent the number of nonzero bins in HQ
6. index = 0

7. While (index < numberBins) AND (Remaining # 0)
/* Identify the param eters o f the range query using the next co lo r in queryBins, ca lled
currentBin. The query should return those virtual im ages whose p ercen ta g e o f p ixels are c lose to
the value in currentBin. */
7.1. Let currentBin = the next bin in queryBins
7.2. Let match = the value of the currentBin bin in the histogram o f the query image
7.3. Reduce pctRemaining by match since we are using that portion o f the histogram
7.4. PCTmin = MAX(0, match - smallest), which is the minimum percentage of pixels in

currentBin that a virtual image can have and be a k-nearest neighbor.
7.5. PCTmax = MIN(1, match + smallest), which is the maximum percentage o f pixels in

currentBin that a virtual image can have and be a k-nearest neighbor.

/* A pply the ru les to each virtual im age that has not y e t been elim inated. */
7.6. For each virtual image V left in Remaining

7.6.1. Apply the BOUNDS algorithm on V for the above range query parameters.

/* I f the virtual im age can satisfy the above query, its known d istan ce to the query im age
sh ou ld be m odified with this new information. Those im ages th a t cannot satisfy the above
range qu ery cannot be c loser than the known nearest neighbors. */
7.6.2. if V satisfies the above range query

7.6.2.1. increase TotalSum[V] by MIN (match, F(BOUNDmin, BOUNDmax))
7.6.3. else

7.6.3.1. Remove V from Remaining

/* E lim inate the virtual im age i f there is not enough percen tages left to match. */
7.6.4. if TotalSum[V] + pctRemaining < 1-smallest

7.6.4.1. Remove V from Remaining

/* Use the values com puted in the TotalSum array as the H istogram In tersection betw een the query
im age and virtua l im ages not elim inated. Com pute the distances using these H istogram Intersection
values and update the NEAREST array. */
8. For each virtual image V in Remaining

8.1. Use TotalSum[V] as the histogram intersection o f Q and V
8.2. Compute the distance from Q to V as 1 - the histogram intersection o f Q and V
8.3. If the distance from Q to V < smallest

8.3.1. insert (distance, V) into NEAREST so that the array remains sorted based on the
distance fields.

________ 8.3.2. Set smallest equal to the distance field of the k* element in NEAREST __________
Figure 4-2. VIRTUAL_NN Algorithm for Query Processing of Virtual Images

6 8

4.2.1. Algorithm Steps

Steps 1-6 initialize the variables used in the algorithm. The variables

pctRemaining, Remaining, TotalSum[V], queryBins, numberBins, and index respectively

represent the unused percentage of the query histogram, the set o f virtual image IDs not

yet eliminated, the histogram intersection of the virtual image V and the query image, the

IDs o f the nonzero bins of the query histogram in sorted order, the number of IDs in

queryBins, and the current element of queryBins.

Step 7 is the main loop of the algorithm. It repeatedly generates range queries

based on the values in queryBins. Each iteration o f the main loop represents one range

query performed by the algorithm. When a set o f bounds are computed for a virtual

image V using the rules presented in the previous chapter, the minimum bound is added

to TotalSum[V]. For example, if the BOUNDS algorithm in the last chapter computes

that the value o f the current histogram bin for a virtual image will be in the range [.2, .5],

0.2 is added to TotalSum[V]. Again, this sum represents the histogram intersection

between Q and V. The virtual images that cannot be one o f the k nearest neighbors to Q

will be eliminated from consideration by removing their IDs from the variable

Remaining. The values in the TotalSum array are used along with the pctRemaining

variable to determine which virtual images cannot be one of the nearest neighbors to Q.

Steps 7.1 and 7.2 identify the value o f the query histogram at the current bin

number in queryBins. Step 7.3 indicates that part o f the query histogram is being used by

reducing pctRemaining, which represents the unused portion of that histogram. Steps 7.4

and 7.5 compute the boundaries of the range query for this iteration. If a virtual image

matched the query image exactly, then the percentage of pixels in currentBin would be

69

equal to the variable match. So, the generated range query should look for images that

have that match pixels in currentBin. Now, consider if the match is 60%, and the k'*’

smallest known distance is 20%. If the percentage o f pixels o f the virtual image in

currentBin is known to be less than 40% or more than 80%, then the image is more than

20% different from the query image. This means that the virtual image cannot be one of

the k nearest neighbors. Consequently, the algorithm should search for virtual images

that have a value in currentBin between 40% and 80% in that situation. Thus, PCTmin

and PCTmax should be defined to be match - smallest and match + smallest, respectively.

Step 7.6 contains a loop that applies the rules for the range query for each virtual

image in remaining. Step 7.6.1 applies the query range with the parameters [PCTmin,

PCTmax] as computed earlier. The variable currentBin represents the quantized query

color.

Steps 7.6.2 and 7.6.3 perform actions based on whether the current virtual image

V satisfies the query. As indicated before, if V cannot satisfy the query, then it cannot be

one of the k nearest neighbors of Q. Consequently, it is removed from the list of virtual

images in Remaining. If V can satisfy the query, then the algorithm increases the value in

TotalSum[V]. The reason is that the computation of the Histogram Intersection between

two images is accomplished by adding the sums of the minimum values in each of their

respective bins. Since the algorithm computed that there is some value, x, in bin

currentBin for V that is between BOUNDmin and BOUNDmax, TotalSum[V] should be

increased by the minimum of x and match, which is the percentage of pixels in bin

currentBin for Q.

70

Since the BOUNDS algorithm only produces bounds on the value x, the algorithm

in Figure 4-2 needs a method of producing an exact value for x. If the range computed by

the BOUNDS algorithm is large, then it is unknown whether MIN(x, match) reflects the

actual value added for bin currentBin when computing the Histogram Intersection of Q

and V. Alternatively, if the computed range is small, then MIN(x, match) should be very

close to the actual value added for bin currentBin. So, to produce an exact value for %,

the algorithm in Figure 4-2 uses a function on the computed bounds that increases as the

difference between BOUNDmax and BOUNDmin decreases. Specifically, it computes x as

BOUNDmax X (1 - (BOUNDmax - BOUNDmin))-

Step 7.6.4 checks the total in TotalSum for the virtual image. Since the algorithm

only adds the minimum bounds computed by the range query rules, the Histogram

Intersection total may be so small that the image will not be closer than smallest. In this

case, the virtual image should be removed from Remaining.

Step 8 is the final step of the algorithm. The algorithm updates the NEAREST

array according to the values for in TotalSum for each virtual image left in Remaining.

So, when this step completes, NEAREST will contain the k closest images to Q.

4.3. Nearest Neighbor Query Processing Example

This section illustrates the use of the algorithm in Figure 4-1 by processing an

example query ‘‘‘'Retrieve the 3 images that are the most similar to B V \ The query will be

processed using the database of 4 binary and 4 virtual images presented in the previous

chapter for range queries. Table 4-1 presents the histograms o f the binary images along

with their distances to Q using the formula DIST(Q, X) = 1 - HI(Q, X).

71

Histogram
ID

Image
ID BIno Blni Binz Bina Bin4 Bins Bine Bin?

Distance
to B1

H1 B1 0 0 0 0 0 0 0.6 0.4 0
H2 B2 0.5 0.5 0 0 0 0 0 0 1
H3 B3 0.8 0 0 0 0 0 0 0.2 .8
H4 B4 0 0 0 0 0 0 0.4 0.6 .2

Tab e 4-1. 'distograms of the Binary Images in the Example Database

The first four steps of the algorithm compute the parameters of the nearest

neighbor query and initialize the NEAREST array and smallest to infinity. Using the

example query defined earlier, k equals 3, and Q equals B l. The NEAREST array would

appear as in Row 1 of Table 4-2, where each distance field is infinity and each image

field is NULL.

Row
NEAREST 1

"■ distance '
U ilE A R E ^L :
: image

NEAREST!
distance

NEAREST 2.
image

NEAREST 3, _
distance

NEAREST 3.
Image

1 CO 0 00 0 00 0
2 0 B1 00 0 00 0
3 0 B1 1 B2 00 0
4 0 B1 .8 B3 1 B2
5 0 B1 .2 B4 .8 B3
6 0 B1 .2 B4 .2 V7

Table 4-2. States of NEAREST Array as Nearest Neighbor Algorithm Proceeds

Step 5 o f the algorithm in Figure 4-1 contains a loop that processes each of the

binary images stored in the database. It uses conventional techniques to identify the k

closest binary images meaning that it compares the previously extracted histograms o f the

images to the histogram of Q.

Table 4-1 indicates that the distance from the query image to B l is 0, which is

because the query image is BL So, the variable d is set to 0 in Step 4.1, and is compared

to the variable smallest in Step 4.2. Since 0 is less than smallest, the value 0 and image

B l are added to the NEAREST array in sorted order based on distance. So, after

72

processing the histogram for B l, the NEAREST array would appear as in Row 2 of Table

4-2. Note that smallest is set equal to NEAREST[3].distance, so it still equals infinity.

The next pass through the loop in Step 5 processes image B2. The distance from

Q to B2 is 1, and this is less than smallest. So, the value 1 and image B2 are added to the

NEAREST array. The result is after processing the histogram for B2, the NEAREST

array would appear as in Row 3 of Table 4-2.

The third pass through the loop in Step 5 processes B3, which is a distance of 0.8

from Q. Again, this is less than smallest, so 0.8 and B3 are added to NEAREST. The

result is that the NEAREST array would appear as in Row 4 o f Table 4-2. Note that

when smallest is set equal to NEARET[3].distance in Step 4.2.3, it becomes equal to 1.

The algorithm now processes the last binary image, B4. The distance from it to Q

is 0.2, and this is less than smallest. So, as with the previous images, the value 0.2 and

B4 are added to the NEAREST array in sorted order. Since the NEAREST array only

needs to track the k closest images, this removes B2 from it leaving the array to appear as

it does in Row 5 of Table 4-2.

So, at the conclusion of Step 5, the NEAREST array contains the 3 closest images

to Q, B l, B4, and B3. The variable smallest is set to the third closest distance, which is

0.8. So, Step 6 will execute the VIRTUAL NN algorithm to identify the virtual images

whose distances to Q are smaller than 0.8. That algorithm begins by initializing

pctRemaining to 1, Remaining to {V5, V6, V7, V8}, and TotalSum[Vj] to 0 for i = 5 to 8.

For Step 4, the histogram of Q is <0, 0, 0, 0, 0, 0, 0.6, 0.4>. The nonzero bins of

Q, then, are bins 6 and 7. The variable queryBins contains the ordered list of nonzero

bins in Q, so queryBins is {6, 7}. The variable numberBins represents the number of

73

bins in queryBins, so numberBins is set to 2 in Step 5. Finally, index is initialized to 0 in

Step 6.

The main portion of the VIRTU A L N N algorithm is the loop in Step 7. Since

index is less than numberBins, and Remaining is not empty, the loop executes. Step 7.1

sets currentBin to queryBins[0], which is 6, and Step 7.2, sets the variable match to the

current bin in the query histogram, which is 0.6. Next, Step 7.3 subtracts that total from

pctRemaining, causing pctRemaining to now equal 1 - 0.6 = 0.4. This initial processing

allows the algorithm to compute PCTmin and PCTmax- The former is equal to the

maximum of 0 and match - smallest. The latter is equal to the minimum of 1 and match

+ smallest. Since the variable smallest is comparatively large for a percentage, PCTmin

and PCTmax are 0 and 1, respectively.

Step 7.6 performs the range query for the range [0, 1] and bin number 6. After

applying the rules for V5, the resulting bounds are [0, 0]. Since this range is in the query

range [0, 1], V5 satisfies the query. Consequently, TotalSum[V5] is increased by MIN(0,

0) = 0 in Step 7.6.2.1. Step 7.6.4 tests the value of TotalSum[V5] + pctRemaining, which

is 0 + 0.4, and compares it to 1 - smallest, which is 0.2. Since the former value is greater,

V5 is not removed from the Remaining set.

After applying the rules for V6, the resulting bounds are [0, 0] as they are for V5.

The rest of the loop of Step 7 has the same values, then, which means that V6 is also kept

in the Remaining set. When applying the rules for V7, however, the resulting bounds are

[.4, .4]. Now, TotalSum[V7] is increased by M1N(0.4, 0.6), which equals 0.4. Since

TotalSum[V7] + pctRemaining equals 1, it is greater than smallest, which means that V7

is also kept in Remaining.

74

Finally, when applying the rules for V8, the resulting bounds are [.1, .4].

TotalSum[V8] is increased by MIN(0.1, 0.6), which is 0.1. TotalSum[V8] +

pctRemaining is 0.5, which is greater than 1 - smallest. So, V8 is kept in Remaining.

After the first iteration of the loop in Step 7, TotalSum only changed for the

virtual images V7 and V8. So, the algorithm has currently computed the histogram

intersections for V7 and V8 to he 0.4 and 0.1, respectively. The histogram intersections

for V5 and V6 are still 0.

At this point, the algorithm processes the loop of Step 7 for the next bin listed in

queryBins. So, for the second and final iteration of the loop, currentBin becomes bin 7.

The value of bin 7 in the query histogram is 0.4, and match is set to this value in Step 7.2.

Since all of the query histogram is now being used, pctRemaining reduces to 0 in Step

7.3. Finally, Steps 7.4 and 7.5 set the range query parameters to [0, 1]. Again, the

parameters are high because the percentage in the variable smallest is 0.8.

Now the algorithm processes range queries for bin 7 using the query range [0, 1].

The rules for V5 generate a bound of [0, 0], which means that TotalSum[V5] is again

increased by 0. Now, when Step 7.4 tests the value of TotalSum[V5] + pctRemaining, it

is 0 which means that it is less than 1 - smallest. Consequently, V5 is removed from

Remaining in Step 7.6.4.1.

The range query rules for V6 generate a bound of [0.2, 0.2]. Now, TotalSum[V6]

is increased by 0.2, which sets it at 0.2. When Step 7.4 tests the value of TotalSum[V6] +

pctRemaining, it gets 0.2 + 0 = 0.2. Since this value is not greater than 1 - smallest, V6

is also removed from Remaining.

75

The rules for V7 generate a bound of [0.6, 0.6]. TotaISum[V7] is increased by

MIN(0.6, 0.4) = 0.4. So, TotalSum[V7] is now 0.8. Step 7.6.4 compares the sum of this

value and pctRemaining to 1 - smallest. Since the former is greater, V7 is kept in

Remaining.

The rules for V8 generate a bound o f [0,6, 0.9]. This means that TotalSum[V8] is

increased by MIN(0.6, 0.4) = 0.4, which brings its total to 0.5. Like V7, this value added

to pctRemaining is greater than 1 - smallest, so V8 is kept in the Remaining set.

So, when Step 7 terminates, there are only two images left in the set Remaining,

V7 and V8. The algorithm now moves to Step 8, whose purpose is to adjust the

NEAREST array with the known distances. The values in TotalSum are used as the

Histogram Intersection between the virtual image and the query image, so HI(V7, Q) is

0.8, and HI(V8, Q) is 0.5. This means that Dist(V7, Q) is 0.2 and Dist(V8, Q) is 0.5. So,

after inserting these values in the NEAREST array, the result would appear as in Row 6

o f Table 4-2. This means that the proposed algorithm returns B l, B4, and V7 as the 3

closest neighbors to Q.

4.4. Discussion of Example

Note that from the example in the previous section, the final values o f TotalSum

for V5, V6, V7, and V8 were 0, 0.2, 0.8, and 0.5, respectively. These values represent

the computed Histogram Intersection between the images and the query image, B l. The

purpose of this section is to present the reasons for these totals using the descriptions of

the example virtual images presented in Chapter 3.

76

From the histogram of the query image, 60% of its pixels are mapped to bin 6,

and 40% of its pixels are mapped to bin 7. Recall from the previous chapter that the

color (255, 255, 255) also mapped to bin 7 in the example virtual image retrieval system.

So, the algorithm should return those virtual images whose descriptions indicate that they

have pixels whose intensities are mapped mostly to bins 6 and 7.

Virtual image V5 is created by cropping 50 pixels from its base image B2.

According to the histogram displayed in Table 4-1, this image does not have any pixels in

bins 6 or 7, so V5 does not have any pixels in those bins, either. As a result, the

histogram intersection between V5 and B l should be 0, which is the value generated by

the proposed algorithm.

According to the description of virtual image V6, it is created as a transformation

o f its base image B3. This image has 20% of its pixels in bin 7, but no pixels in bin 6.

The description o f V6 indicates that it may change up to 20% of the pixels in B3 to the

color (255, 255, 255), so it may have even more pixels in bin 7. Consequently, the

proposed algorithm computes the histogram intersection of Q and V6 to be higher than

the histogram intersection of Q and V5, which implies that V6 is more similar to Q than

V5.

Virtual images V7 and V8 are created as transformations of base image B4, which

is only a distance o f 0.2 from the query image. By reviewing the histograms in Table 4-

1, it can be seen that for image B4 to match image B l, it needs to increase the number of

pixels in bin 6 and decrease the number of pixels in bin 7. Image V8 is created by

changing a portion of B4 to the color (255, 255, 255), which maps to bin 7. As a result, it

77

can only increase the number of pixels in bin 7, which means that it cannot be any closer

to Bl than B4.

Alternatively, the description of V7 implies that it increases a portion of B4.

Since the proposed algorithm cannot determine the effects of this operation, it assumes

that the resulting image will have the same histogram as the base image. The result is

that V7 is computed to be only a distance of 0.2 from the query image. So, V7 is

assumed to be the closest image to Q out of all of the virtual images.

78

CHAPTER 5

D A T A S T R U C T U R E F O R S P E E D I N G U P R E T R I E V A L P R O C E S S I N G

As described in Chapter 2, systems that use conventional approaches such as

histograms to retrieve images are able to process submitted retrieval queries without

having to access each image in the underlying database. This is frequently accomplished

by using an index such as an R-tree [Gutt, 1984] or other type of access method that

clusters the data elements into sections of the multidimensional data space of the

histograms. Searching is then performed by accessing nodes in the data structure that

represent those sections. By quickly identifying sections of the multidimensional space

that cannot contain any histograms of images that satisfy the given query, the query

processing algorithm can avoid accessing the data elements contained in those sections.

In contrast to the histogram-based approaches, the rule-based algorithms for

processing retrieval queries contain steps for determining if each virtual image satisfies

the given query and should therefore be retrieved from the database. The steps involve

accessing a set of rules for each image editing operation stored in the description of a

virtual image in order to determine bounds on the percentage o f pixels whose intensities

quantize to a given bin. So, the proposed algorithms must access every virtual image in a

database as well as every editing operation within a virtual image description to process

the given queries. As an alternative, the following sections propose an approach for

processing retrieval queries that does not have to access every editing operation contained

in the database yet still produces the same results as the algorithms proposed in the

previous chapters.

79

5.1. Properties of Rules for Editing Operations

To present the proposed technique for reducing the number o f editing operations

that have to be accessed in order to process range queries, it is first necessary to consider

the characteristics o f the rules that are applied for each operation. Each rule produces

new maximum and minimum bounds on the percentage of pixels that may be in a given

histogram bin for a virtual image. The virtual image is retrieved if these computed

bounds intersect the desired range specified by the query. The algorithm produces these

bounds by computing three values, the maximum number o f pixels that are in the

histogram bin, the minimum number of pixels that are in the histogram bin, and the total

number of pixels in the virtual image. So, some characteristics of the proposed rules can

be determined by finding characteristics in these three values.

Several o f the proposed rules only increase the maximum bound and decrease the

minimum bound on the percentage o f pixels contained in the desired histogram bin for a

virtual image. These rules accomplish this by only increasing the maximum bound,

BOUNDmax, and decreasing the minimum bound, BOUNDmin, on the number of pixels in

the bin, while keeping the total number of pixels, imageSize, in the virtual image

constant. The result is that these rules will only widen the range specified by the

minimum bound and maximum bounds. Rules that exhibit this characteristic are called

bound-widening rules, and they are presented in the following section.

5.1.1. Bound-Widening Rules

In the proposed range query processing algorithm, there are rules presented for

the four editing operations Combine, Modify, Mutate, and Merge. The following

8 0

theorems will review the rules for each of the operations and determine if they are bound-

widening. In each section, the variables beforCmin and beforcmax will respectively

represent the values o f the percentages BOUNDmin/imageSize and BOUNDmax/imageSize

before applying the rule for the particular editing operation. Similarly, the variables

aftermin and aftermax will respectively represent the values o f the percentages after

applying the rule. Therefore, to demonstrate that a rule is bound-widening, it is necessary

to prove that beforCmin ^ aftermin, and beforCmax ^ aftermax-

Theorem 5.1. The rule fo r the Combine operation is a bound-widening rule.

Proof: Let the values of beforCmin and beforCmax equal BOUNDmin/imageSize and

BOUNDmax/imageSize, respectively. The only rule for the Combine operation does not

change the values for the BOUNDmin, BOUNDmax, and imageSize variables. So, after

applying the rule, the values of aftermin and aftermax will also equal BOUNDmin/imageSize

and BOUNDrnax/imageSize. Thus, beforCmin ^ aftermin, and beforCmax ^ aftermax-

Theorem 5.2. The rules fo r the M odify operation are bound-widening rules.

Proof: There are several rules proposed for the Modify operation depending on the

values in its parameters. None of the rules changes the value o f imageSize. So, it is

possible to define the value of aftermin to be neWmin/imageSize where neWmin represents

the new value o f the variable BOUNDmin after the application of the rules for Modify.

Since beforCmin equals BOUNDmin/imageSize, beforCmin ^ aftermin can be proven by

showing BOUNDmin ^ newmin-

81

Only one o f the proposed rules changes the value o f BOUNDmin, and it sets it

equal to MAX[ternpmin, MAX(0, BOUNDmin-DR_Size)]. This expression has three

terms, tempmin, 0, and BOUNDmin-DR_Size. So, after applying the rule for the Modify

operation, neWmin may have one of four possible values, BOUNDmin, tempmin, 0, or

BOUNDmin-DR_Size. BOUNDmin represents the number o f pixels with intensities that

quantize to bin HB, so it will always be greater than or equal to 0. In addition, DR Size

represents the number of pixels in the Defined Rectangle, so it can never be negative.

This means that BOUNDmin is always greater than or equal to BOUNDmin-DR Size.

Thus, it can quickly be shown that newmin will be less than or equal to BOUNDmin if

newmin equals BOUNDmin, 0, or BOUNDmin-DR Size.

Now consider if neWmin equals tempmin, which represents a limit on how far the

value of BOUNDmin may decrease. The BOUNDS algorithm always maintains that

temprnin is less than or equal to BOUNDmin by computing it as BOUNDmin-DR Size

every time BOUNDmin could be set to a value lower than it. So, if newmin is equal to

tempmin, then neWmin will be less than or equal to BOUNDmin. The result is that every

possible value for neWmin is less than or equal to BOUNDmin, which means beforemin ^

aftermin •

Let newmax equal the new value of the variable BOUNDmax after the application of

the rules for Modify. As with the minimum bounds, beforemax ^ aftermax can be proven

by showing BOUNDmax ^ neWmax- The rules for the Modify operation change the

BOUNDmax variable to the expression MIN[tempmax, MIN(imageSize,

BOUNDmax+DR_Size)], which means that the only possible values for neWmax are

BOUNDmax, BOUNDmax+DR Size, imageSize, and tempmax-

82

If neWmax is BOUNDmax, then it will be greater than or equal to BOUNDmax-

Since, D R S iz e is never negative, the same is true if newmax equals

BOUNDmax+DR_Size. Since BOUNDmax represents the number o f pixels in a virtual

image that quantize to bin HB, it can never be greater than the total number o f pixels in

that virtual image. So, BOUNDmax will always be less than or equal to imageSize.

Finally, as with tempmin for BOUNDmin, tempmax represents a limit on how much

BOUNDmax may increase, which implies that the BOUNDS algorithm always keeps

tempmax greater than or equal to BOUNDmax-

Since every possible value for neWmax is always greater than or equal to

BOUNDmax, beforCmax ^ aftermax- Thus, the value of BOUNDmin/imageSize never

increases, and the value of BOUNDmax/imageSize never decreases, which means that all

o f the rules for the Modify operation are bound-widening.

Theorem 5.3. The rules fo r the Mutate operation are bound-widening rules.

Proof: Consider the rule for the Mutate operation when the imageSize variable is equal

to the DR Size. The proposed rule changes the values in the BOUNDmin, BOUNDmax,

and imageSize variables by multiplying them by the same constant. So, both of the

values BOUNDmin/imageSize and BOUNDmax/imageSize remain the same after the

application of the rule. As a result, beforCmin equals aftermin, and beforCmax equals

aftermax, which means that the rule for the Mutate operation when imageSize equals

DR Size is bound-widening.

When a rigid body transformation is specified in the parameters of the Mutate

operation, the rule keeps the imageSize variable constant. In addition, it changes

83

BOUNDmin to MAX[ternpmin, MAX(0, BOUNDmin-DR_Size)] and BOUNDmax to

MIN[temprnax, MIN(imageSize, BOUNDmax+DR Size)], which means that it never

increases BOUNDmin and never decreases BOUNDmax as explained in the theorem for the

Modify operation. Since imageSize remains constant, the value of BOUNDmin/imageSize

never increases, and the value of BOUNDmax/imageSize never decreases, which means

that the rule for a rigid body transformation is bound-widening.

Finally, the remaining rule for the Mutate operation keeps BOUNDmin,

BOUNDmax, and imageSize constant. Therefore, the value o f BOUNDmin/imageSize

never increases, and the value of BOUNDmax/imageSize never decreases, which again

means that this rule is hound-widening. Thus, all three proposed rules for the Mutate

operation are bound-widening.

Theorem 5.4. The rule fo r the M erge operation when the target param eter is NULL is
bound-widening.

Proof: When the target parameter of the Merge operation is NULL, the rule changes the

value of imageSize, BOUNDmax, and BOUNDmin- Let the values of beforCmin and

heforcmax equal BOUNDmin/imageSize and BOUNDmax/imageSize, respectively. The

values of imageSize, BOUNDmax, and BOUNDmin after the rule for the Merge operation

is applied must be determined in order to determine aftermin and aftermax-

When the parameters of the Merge operation specify a NULL target image, the

variable imageSize changes to DR Size. The new value o f BOUNDmin is MAX[0,

DR Size - (imageSize - BOUNDmin)], which contains two possible terms, 0 and

DR Size - (imageSize - BOUNDmin)- So, the value o f aftermin may either be 0/DR_Size,

which is 0, or (DR Size - (imageSize - BOUNDmin))/imageSize.

84

Consider the first case when aftermin is 0. Since 0 is the smallest possible value

for the value in bin HB, beforCmin ^ 0. Thus, if aftermin is 0, beforCmin ^ aftermin-

Alternatively, consider when aftermin is (D RSize - (imageSize -

BOUNDmin))/iniageSize, and compare it to beforCmin, BOUNDmin/imageSize.

Multiplying both expressions by DR Size gives beforCmin a value of (BOUNDmin x

DR_Size)/imageSize and aftermin a value of DR Size - (imageSize - BOUNDmin)- Next,

subtracting DR Size from both expressions gives a total of (BOUNDmin x

DR_Size)/imageSize - DR Size for beforCmin and a total o f BOUNDmin - imageSize for

aftermin-

The variable beforCmin is now equivalent to (BOUNDmin x DR_Size)/imageSize -

(imageSize x DR_Size)/imageSize, which equals ((BOUNDmin x DR Size) - (imageSize

X DR_Size))/imageSize. By factoring DR Size in the numerator, beforCmin can be

expressed as DR Size/imageSize x (BOUNDmin - imageSize).

The only difference between the two variables is that beforCmin is multiplied by

DR Size/imageSize. A Defined Rectangle is always created by cropping a portion of the

image, so the number of pixels in the Defined Rectangle will always be less than or equal

to the number of pixels in the image, which means DR Size < imageSize. So,

(DR Size/imageSize) < 1. Similarly, BOUNDmin will always be less than or equal to the

number of pixels in the image, so (BOUNDmin - imageSize) < 0. The result is that

multiplying (BOUNDmin - imageSize) by (DR Size/imageSize) gives a value that is

greater than or equal to (BOUNDmin - imageSize). Thus, beforCmin ^ aftermin-

The above paragraphs indicate that beforcmin ^ aftermin irrespective of whether

BOUNDmin becomes 0 or D R Size - (imageSize - BOUNDmin)- Now, consider the

85

maximum bound specified by the rule, which sets BOUNDmax to the minimum of

B O U N D m a x and D R Size. The result is that aftermax will equal either

B O U N D m a x / D R _ S i z e or D R S i z e / D R S i z e .

For the first case, since DR Size < imageSize, BOUNDmax/DR Size >

BOUNDmax/imageSize. So, if aftermax equals BOUNDmax/DR Size, beforemax ^ aftermax-

Alternatively, if the second case is true, then aftermax equals DR Size/DR Size, which

means it equals 1. Since this value represents a bound on the percentage of pixels whose

intensities quantize to bin HB, its maximum possible value is 1. Thus, beforemax must be

less than or equal to 1, which means beforemax ^ aftermax-

So, irrespective of whether aftermax equals BOUNDmax/DRSize or

DR Size/DR Size, beforemax ^ aftermax- hi addition, beforOmin ^ aftermin as described

earlier, so the rule for the Merge operation when the target parameter is NULL is bound-

widening.

Theorem 5.5. The rule fo r the M erge operation when the target param eter is not NULL
is not bound-widening.

Proof: When the target parameter of the Merge operation is not NULL, the associated

rule may update the value of imageSize, BOUNDmax, and BOUNDmin- Let the values of

beforemiti and beforemax equal BOUNDmin/imageSize and BOUNDmax/imageSize,

respectively. The values of imageSize, BOUNDmax, and BOUNDmin after the rule for the

Merge operation is applied must be determined in order to determine aftermin and aftermax-

It is possible that this rule for the Merge operation does not change the value of

imageSize when the base image and the target image are the same size. The rule for the

8 6

BOUNDmax variable changes its value to the sum of MIN(TargetHB, MAX(0, TargetSize

- DR Size)) and the minimum of BOUNDmax and DR Size. The first term could equal 0

if TargetHB is 0. This would mean that the new value o f BOUNDmax would be

MIN(BOUNDmax, DR Size). So, when DR Size < BOUNDmax, the value of aftermax

would be DR Size/imageSize. Since DR Size < BOUNDmax, DR Size/imageSize <

BOUNDmax/imageSize, which means that aftermax < beforemax- Thus, the rule for the

Merge operation when the target parameter is not null is not bound-widening.

5.1.2. Technique for Speeding up Retrieval Query Processing

To illustrate the importance of bound-widening rules, consider applying the

proposed range query processing algorithm to a virtual image V where all of the rules for

the editing operations in its description are bound-widening. When the BOUNDS

algorithm completes, the BOUNDmin and BOUNDmax values are divided by imageSize to

obtain the minimum and maximum percentages. If the range [BOUNDmin/imageSize,

BOUNDmax/imageSize] intersects the desired query range [PCTmin, PCTmax], then the

virtual image is returned by the query processing algorithm.

The BO U N D S algorithm begins by initializing both BOUNDmin and BOUNDmax

to the value in histogram bin HB corresponding to the base image of V and initializing

imageSize to be the total number pixels in the base image of B. So, if the percentage of

pixels in bin HB in the base image of V is basePercentage, and the total number o f pixels

in the base is baseSize, then the initial values of BOUNDmin, BOUNDmax, and imageSize

are basePercentage x baseSize, basePercentage x baseSize, and baseSize, respectively.

87

This means that the initial maximum and minimum percentages generated by the

BOUNDS algorithm are equal to (basePercentagexbaseSize)/baseSize = basePercentage.

Now, consider if the base image of V satisfies the given query. This means that

basePercentage, which is the value in bin HB, is within the desired query range [PCTmin,

PCTmax]- Let Finalmin and Finalmax represent the values o f BOUNDmin/imageSize and

BOUNDmax/imageSize after the application of the BOUNDS algorithm. Since all o f the

rules for the editing operations in the description of V are bound-widening rules, the

value Finalmin will be less than or equal to the initial value of BOUNDmin/imageSize, and

the value Finalmax will be greater than or equal to the initial value of

BOUNDmax/imageSize. Both initial values were basePercentage, so the range [Finalmin,

Finalmax] contains basePercentage. Since this value is also within [PCTmin, PCTmax], the

ranges [Finalmin, Finalmax] and [PCTmin, PCTmax] must intersect. Thus, V would be

retrieved by the proposed range query processing algorithm.

The above information implies that if a virtual image has a base image that

satisfies the given query and has only editing operations that correspond to bound-

widening rules, then the proposed algorithm will retrieve the virtual image. This

determination can be made without the BOUNDS algorithm being executed, meaning

that the rules for the editing operations do not have to be applied. Therefore, with the

above information, it is possible to develop an algorithm that will produce the same

results as the proposed range query processing algorithm without applying the rules to

each editing operation in the descriptions of the virtual images in the database.

8 8

5.2. Proposed Data Structure

To avoid applying some of the rules in the description o f a virtual image V, a data

structure is needed that stores whether the base image of V satisfies a given query and

whether the editing operations in the description o f V have bound-widening rules.

Consequently, this section proposes a data structure that will store this information. The

proposed data structure consists of two different components called the Main Component

and the Unclassified Component.

The Main Component contains a list of the virtual images whose descriptions

contain editing operations that have only bound-widening rules proposed for it. These

virtual images are clustered together based upon the base images that are listed in the first

lines of their respective descriptions, meaning that two virtual images are clustered

together if and only if they have the same hase image. Each cluster contains the

histogram identifier corresponding to its associated base image. Therefore, each element

of the Main Component is composed of a tuple <H_id, V_list> where

H_id - Histogram identifier
VJist - List of identifiers of virtual images that are derived from the base image
corresponding to H id

Using the Main Component, the system can identify images that satisfy a given

range query by accessing each stored histogram identifier and checking if the associated

binary image has a value in the desired bin that is within the query range. If so, the

system can immediately return the identifier of the binary image as well as the identifiers

in Vlis t .

Some o f the virtual images may have descriptions that contain at least one editing

operation whose corresponding rule is not bound-widening. The identifiers of such

89

virtual images are stored in the Unclassified Component. To process these identifiers, the

system must apply each of the rules to determine the minimum and maximum bounds on

the number o f pixels whose intensities quantize to the desired bin o f the range query. So,

the system will execute the BOUNDS algorithm for each virtual image identifier in the

Unclassified Component.

5.2.1. Creation of Proposed Data Structure

The proposed data structure can be constructed as images are inserted into the

database. Each time a binary image is inserted, the identifier for its corresponding

histogram should be added to the Main Component. The list of histogram identifiers

should be kept sorted to make it easier to search for a specific histogram.

/* Identify the histogram o f the base image o f the input virtual image V */
1. Identify the base image using the tirst line o f the syntax o f virtual image V
2. Access the histogram corresponding to the base image

/* Analyze all o f the operations in V to determine if they are all bound-widening. */
3. While ((V has more ops) and (hist ^ UNCLASSIFIED))

3.1. Access the rule for the next operation in V
3.2. If the rule is not bound-widening

3.2.1. Mark the virtual image V as unclassified

/* I f all operations in V are bound-widening, add V to the Main Component, otherwise,
add it to Unclassified. */
4. If V has been marked as unclassified

4.1. Append the identifier o f V to the Unclassified Component
5. else

5.1. Find location in Main Component referring to the base image
5.2. Append the identifier o f V to the list o f virtual images at the above location

Figure 5-1. Insertion Algorithm for Proposed Data Structure

Each time a virtual image is inserted into the database, the system needs to

determine whether it should be added to the Main Component or the Unclassified

90

Component. To make this determination, the description o f the virtual image must be

analyzed in order to identify if it contains any rules that are not bound-widening. If so,

then the identifier of the virtual image is added to the Unclassified Component. If all of

the rules are bound-widening, then the identifier is added to the cluster in the Main

Component corresponding to the base image contained in its description. An algorithm

for performing this insertion is displayed in Figure 5-1.

Figure 5-2 displays the states of the proposed data structure as each element of the

example database is inserted into the system. Figures 5-2a-d display the data structure as

the binary images B l, B2, B3, and B4 are inserted into the underlying database, and

Figures 5-2e-h display the data structure as the virtual images V5, V6, V7, and V8 are

inserted. So, after binary image B l is inserted into the database in Figure 5-2a, its

histogram ID is added to the Main Component with a NULL V list. After binary image

B2 is inserted in Figure 5-2b, the Main Component has two histogram identifiers HI and

H2 with both of their corresponding V list entries set to NULL. This pattern continues

through Figure 5-2d, which displays the Main Component having the four histogram

identifiers corresponding to the four binary images in the database.

Figure 5-2e displays the data structure after V5 is inserted into the database. The

only editing operation in the description of V5 is the Merge Operation with a NULL

target parameters, so all of its rules are bound-widening. Thus, the image ID of V5

should be added to the Main Component. It is added into the cluster of the V list

corresponding to H2 since H2 is the histogram ID corresponding to the base image o f V5.

Figure 5-2f displays the data structure after V6 is inserted into the database. Again, all of

its editing operations correspond to rules that are bound-widening, so it is added to the

91

Main Component to the cluster corresponding to its base image. This pattern continues

through Figure 5-2h in which virtual image ID V8 is added to the cluster o f H4 since the

base image o f V8 is B4. If any of the virtual images contained an editing operation that

was bound-widening, its ID would have been added to the Unclassified Component

instead of the Main Component.

Main Unclassified
Component Component

Main Unclassified
Component Component

HI NULL

Figure 5-2a

HI NULL

H2 NULL

Figure 5-2b

HI NULL
4

H2 NULL
i

H3 NULL

Figure 5-2c

HI NULL

H2 NULL

H3 NULL

H4 NULL
Figure S-2d

Main Unclassified Main Unclassified
Component Component Component Component

HI NULL
— T — HI NULL

H2 V5 H2 V5

H3 NULL H3 V6

H4 NULL Figure 5-2e H4 NULL Figure 5-2f

HI NULL — HI NULL —

H2 V5 H2 V5

H3 V6 H3 V6

H4 V7 Figure 5-2g H4 V7 V8 Figure 5-2h

Figure 5-2. Example Data Structure as Images are Inserted into Database

92

5.3. Range Query Processing Algorithm

The proposed data structure arranges the virtual images based on whether all of

their rules are bound-widening. This section presents an algorithm in Figure 5-3 that uses

the proposed data structure to avoid applying some of the rules for the editing operations

stored within the descriptions of the virtual images in the database. The first three steps

of the algorithm are used to identify the desired histogram bin from the query, and they

are the same as the steps for the range query processing algorithm proposed in Chapter 3

that does not use the data structure.

The fourth step in the algorithm sequentially accesses each cluster in the Main

Component and checks to see if its corresponding histogram satisfies the given query. If

so, the binary image identifier in the histogram as well as the virtual image identifiers in

the associated list are all added to the satisfying set, which is performed in Steps 4.2.1-

4.2.3. Note that the virtual images in the associated list are retrieved without having to

execute the BOUNDS algorithm, which means that the rules do not have to be applied for

the editing operations in their descriptions. Alternatively, if the histogram does not

satisfy the query, then the BOUNDS algorithm must be performed on each element in the

associated virtual image list in order to determine if it should be retrieved by the

algorithm.

The fifth step sequentially access every virtual image whose identifier is in the

Unclassified Component and executes the BOUNDS algorithm in order to determine

whether each satisfies the given query. If so, then the identifier is added to the set of

retrieved images, results. When this step ends, the results set will contain all of the

images that satisfy the given query, so the final step of the algorithm is to display them.

93

/* Initialize the parameters o f the given query */
1. Set results = 0
2. Compute parameters (PCTmin, PCTmax, Cq) from query syntax
3. Compute Histogram Bin (HB) from query color Cq using quantization formula

/* Identify virtual images in Main Component that satisfy the query */
4. For each element <H_id, V_list> in the Main Component

/* Determine i f the binary image o f each element satisfies the given query. */
4.1. pixels = the value in bin HB o f histogram H id

/* I f the binary image does satisfy the query, all elements o f VJist satisfy the
query as well V
4.2. If ((pixels > PCTmin) and (pixels < PCTmax))

4.2.1. B = image ID corresponding to H id
4.2.2. Add B to results
4.2.3. Add the elements in V list to results

/* I f the binary image does not satisfy the query, the BOUNDS algorithm
must be applied to each virtual image referenced in V Jist to determine i f it
satisfies the query.. */
4.3. else

4.3.1. For each V in V list
4.3.1.1. Execute the BOUNDS algorithm for V
4.3.1.2. If bounds overlap [PCTmin, PCTmax]

4.3.1.2.1. Add V to set results

/* The BOUNDS algorithm must be applied to each virtual image in the
Unclassified Component to determine i f it satisfies the query. */
5. For each element V in the Unclassified Component

5.1. Execute the BOUNDS algorithm for V
5.2. If bounds overlap [PCTmin, PCTmax]

5.2.1. Add V to results

/* D isplay the retrieved images by rendering the binary images and instantiating
the virtual images. */
6. Display images in results set

Figure 5-3. Range Query Processing Algorithm Using Proposed Data Structure

Histogram ID Image ID BIno Bltii BInz Bins Bln4 Bins Bine Bln?
HI B1 0 0 0 0 0 0 0.6 0.4
H2 B2 0.5 0.5 0 0 0 0 0 0
H3 B3 0.8 0 0 0 0 0 0 0.2
H4 B4 0 0 0 0 0 0 0.4 0.6

Table 5-1. Tistograms of the Binary Images in the Example Database

94

5.3.1. Range Query Processing Algorithm Steps

The following example illustrates using the proposed data structure to process the

example range query "Retrieve all images that are at least 50% white". The query is

applied to the example database used in Chapter 3. The histograms of the binary images

in the database are displayed in Table 5-1.

As indicated earlier, the first three steps o f the range query processing algorithm

that uses the proposed data structure are the same as the algorithm proposed in Chapter 3.

The first step initializes the satisfying set SQ to be empty. The next step identifies the

parameters o f the example query, which produces PCTmin equal to 0.5, PCTmax equal to

1.0, and C q equal to (255, 255, 255). Finally, the last step quantizes color C q to bin

number 7.

Step 4 processes the images contained in the Main Component by executing a

loop for each existing <H_id, V_list> tuple. The first tuple is <H1, NULL>, which

means that H id equals HI and V list is NULL. Step 4.1 accesses bin 7 of histogram HI

and sets pixels equal to its value, which is 0.4. Since this value is not within the query

range [0.5, 1], the else condition in Step 4.3 executes. Step 4.3.1 executes a loop for each

element in V list, but since it is NULL, there are no elements. So, the loop does not

execute.

The second tuple in the Main Component is <H2, V5>. Since H id is H2, Step

4.1 sets pixels to the value in bin 7 of histogram H2, which is 0. As before, this value is

not within the query range [0.5, 1], so the else condition o f Step 4.3 executes. Since set

V list contains V5, Step 4.3.1 executes for it. Step 4.3.1.1 executes the BOUNDS

95

algorithm for V5 yielding a range of [0, 0] as it did in Chapter 3. This range does not

overlap the query range, so V5 is not added to set SQ.

The third tuple in the Main Component is <H3, V6>. The variable H id is now

H3, so 4tep 5.1 sets pixels to the value in bin 7 of that histogram, which is 0.2. As in the

previous tuples, this value is not in the query range [0.5, 1], so Step 4.3.1 executes for

each element in the variable V list. The variable contains V6, so the BOUNDS

algorithm executes for the associated virtual image in Step 4.3.1.1. As indicated in

Chapter 3, the result of applying the algorithm is the range [0.2, 0.4]. Since this range

does not intersect the query range, V6 is not added to set SQ.

The last tuple in the Main Component is <H4, V7 V8>. The variable H id is now

H4, so Step 4.1 sets pixels to the value in bin 7 o f that histogram, which is 0.6. Unlike

the previous tuples, this value is within the query range [0.5, 1], so Step 4.2.1 executes.

This step obtains the identifier B4 from the current H id, and then Step 4.2.2 adds it to

set SQ. Finally, Step 4.2.3 adds all of the elements in V list to the satisfying set, so V7

and V8 are added to set SQ.

The fifth step in the algorithm processes the virtual images that are contained in

the Unclassified Component. The algorithm executes the BOUNDS algorithm for each

virtual image identifier contained within the Unclassified Component. Figure 5-2h

displays the contents o f the proposed data structure using the example database. In the

figure, the Unclassified Component is NULL, which means that it does not contain any

virtual image identifiers. Consequently, the loop in Step 4 does not execute.

When Step 5 terminates, set SQ contains B4, V7, and V8, which are the images

that satisfy the given query. Again, these are the same results as produced by the

96

algorithm proposed in Chapter 3. This algorithm concludes by displaying the images in

set SQ for the user.

To summarize, when using the proposed data structure to process the range query

"Retrieve all images that are at least 50% white" on the example database, the BOUNDS

algorithm only has to be executed for V5 and V6. This is in contrast to the proposed

range query processing algorithm in Chapter 3, which must execute the BOUNDS

algorithm for all o f the virtual images, V5, V6, V7, and V8.

97

CHAPTER 6

HISTOGRAM-BASED APPROACHES FOR SEARCHING BY COLOR

The approach presented in the previous chapters presents an approach for

processing content-based searches using rules based on the description o f virtual images.

As with the rule-based approach, each of the approaches in this chapter extract and store

histograms from the binary images in the database. These approaches, however, differ in

how they process images stored virtually.

6.1. Virtual Storage with Instantiation while Searching (VSIS) Approach

The first approach for searching virtual images based on color is called the Virtual

Storage with Instantiation while Searching (VSIS) approach, and its strategy is to convert

virtual images into a binary format during searching. Once the images are instantiated,

the query processor can extract histograms from them as in the conventional approach.

The VSIS algorithm for processing range queries is displayed in Figure 6-1, and its first

four steps are the same as in the rule-based algorithms for processing range queries since

they process binary images in the same manner. Step 5 of the VSIS algorithm for

processing range queries is a loop that executes once for each virtual image. In the loop,

the virtual image is instantiated, and then its histogram is extracted so that it can be

checked to determine if it is within the desired query range. The instantiated versions of

those that do satisfy the query are saved so that they can be retrieved in the final step.

98

/* Identify the desired histogram bin from the parameters o f the range query V
1. Initialize Results to 0
2. Compute parameters (PCTmin, PCTmax, C q) from given query
3. Compute Histogram Bin (HB) from query color C q

/* Search stored histogram bins */
4. For each histogram tuple stored in the database

4.1 If bin HB is within query range [PCTmin, PCTmax]
4.1.1 Add image ID stored in histogram tuple to Results

/* Determine the virtual images that satisfy the query by instantiating them and
extracting their histograms. Then, process the histograms in the same manner as for the
binary images. */
5. For each Virtual Image

5.1 Instantiate Virtual Image
5.2 Extract Histogram from Instantiated Image
5.3 If bin HB is within query range [PCTmin, PCTmax]

5.3.1 Add image ID stored in histogram tuple to Results
5.3.2 Save Instantiated Image for Step 6

/* Render all retrieved images since any retrieved virtual image was converted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure 6-1. VSIS Algorithm for Processing Range Queries

The VSIS algorithm for processing nearest neighbor queries is displayed in Figure

6-2, and the first five steps are similar to the rule-based approach since it again processes

binary images in the same manner. Step 6 of the VSIS algorithm is a loop that executes

once for each virtual image in the database. During each iteration, the algorithm

instantiates the virtual image, extracts a histogram from it, and computes the distance

between that histogram and the one extracted from the query image. The final step o f the

above algorithm displays the k nearest images. As with the range query processing

algorithm, since the virtual images have already been instantiated, the VSIS algorithm

can simply load and display each instantiated virtual image that satisfies the query.

99

/* Identify the parameters o f the nearest neighbor query. */
1. Identify the parameters k and Q from given query
2. Let HQ be Histogram Extracted from the Query Image Q

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The element o f the array
contains the identifier of the known closest image and its distance to Q. The following
code initializes the array. */
3. For i = 1 to k

3.1. Set the image field o f the i* element in NEAREST to null
3.2. Set the distance field o f the i* element in NEAREST to infinity

4. Set smallest equal to the distance field o f the k* element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. */
5. For each histogram tuple, H, stored in the database

5.1. Compute d, the distance between H and HQ.
5.2. i f d < smallest

5.2.1. Obtain the object id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains

sorted based on the distance fields.
5.2.3. Set smallest equal to the distance field o f the k* element in NEAREST

/* Determine the virtual images that satisfy the query by instantiating them and
extracting their histograms. Then, process the histograms in the same manner as for the
binary images. */
6. For each Virtual Image

6.1. Instantiate Virtual Image
6.2. Extract Histogram H from Instantiated Image
6.3. Compute d, the distance between H and HQ.
6.4. if d < smallest

6.4.1. Obtain the object id associated with H and call it image
6.4.2. Insert d and image into the NEAREST array so that the array remains

sorted based on the distance fields.
6.4.3. Set smallest equal to the distance field o f the k“’ element in NEAREST

6.5. Save Instantiated Image for Step 7

/* Render all retrieved images since any retrieved virtual image was converted to a
binary format in Step 6. V
7. Display first k images contained in NEAREST array______________________________

Figure 6-2. VSIS Algorithm for Processing Nearest Neighbor Queries

6 . 2 . V i r t u a l S t o r a g e w i t h I n s t a n t i a t i o n d u r i n g I n s e r t i o n (V S I I) A p p r o a c h

The second approach in this chapter is the Virtual Storage with Instantiation

during Insertion (VSII) approach, which again saves space by storing edited images

100

virtually. This approach differs from VSIS in that it instantiates the virtual images and

extracts histograms from them when they are inserted into the database. This is

performed at insertion time so that the extracted histograms can be stored. After

extraction, the instantiated images are discarded leaving only the virtual images and their

associated histograms.

Since histograms are extracted from every image stored in the database in both

approaches, the VSII algorithms for processing retrieval queries are the same as the

conventional algorithms. The only difference is that the VSII algorithms may retrieve

images stored virtually, which means that they must be instantiated before they can be

displayed.

The VSII algorithm for processing range queries is displayed in Figure 6-3. The

first three steps are used to initialize the variables and identify the parameters used by the

query, and they are the same as in the VSIS and rule-based algorithms. The fourth step

starts a loop that will execute once for each image in the database irrespective o f how it is

stored. Each iteration of the loop retrieves the current image identifier and determines if

the value in the desired bin of its corresponding histogram is within the query range. The

final step is to display the retrieved images which requires instantiating any virtual

images that were identified in the previous step.

101

/* Identify the desired histogram bin from the parameters o f the range query V
1. Initialize Results = 0
2 . Compute parameters (PCTmin, PCTmax, C q) from query
3 . Compute Histogram Bin (HB) from query color Cq

/* Search stored histogram bins V
4. For each histogram stored in the database

4.1. If bin HB is within query range [P C T m in , P C T m a x]

4.1.1. Add image ED stored in tuple to Results Set

/* Render all retrieved images */
5. Display images contained in Results set

Figure 6-3. VSII Algorithm for Processing Range Queries

The VSII algorithm for processing nearest neighbor queries is displayed in Figure

6-4. These first four steps are the same as in the VSIS and rule-based approaches.

Specifically, the first step identifies the parameters used by the query, the second step

extracts a histogram from the query image, and the third and fourth steps initialize the

variables used to track the k nearest distances. Step 5 o f the VSII algorithm for

processing nearest neighbor queries is a loop that executes once for each histogram tuple

stored in the database. The algorithm computes the distance between the current

histogram tuple and the histogram extracted from the query image during each pass

through the loop. Since histograms are extracted for all images, both the virtual and

binary images have been processed when the loop completes, so the final step o f the

algorithm is to display the k nearest images.

102

/* Identify the parameters o f the nearest neighbor query. */
1. Identify the parameters k and Q from given query
2. Let HQ be Histogram Extracted from the Query Image Q

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The i"' element o f the array
contains the identifier o f the i‘ known closest image and its distance to Q. The following
code initializes the array. V
3. For i = 1 to k

3.1. Set the image field of the i* element in NEAREST to null
3.2. Set the distance field of the i* element in NEAREST to infinity

4. Set smallest equal to the distance field of the k* element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. */
5. For each histogram tuple, H, stored in the database

5.1. Compute d, the distance between H and HQ.
5.2. if d < smallest

5.2.1. Obtain the object id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains

sorted based on the distance fields.
5.2.3. Set smallest equal to the distance field of the k"" element in NEAREST

/* Render all retrieved images */
6. Display the images contained in the first k image fields of the NEAREST array.

Figure 6-4. VSII Algorithm for Processing Nearest Neighbor Queries

103

CHAPTER 7

PERFORMANCE EVALUATION OF ALGORITHMS

This chapter presents a performance evaluation of the proposed algorithms for

retrieving images in a multimedia database management system that uses virtual images.

First, this chapter presents the probability that the proposed rules for retrieving virtual

images will produce an error. Next, this chapter compares the proposed approaches with

the conventional approach for processing retrieval queries based on in terms of storage

space and execution time.

7.1. Error Probabilities

Two types o f errors can occur when processing image retrieval queries. The first

type is known as a false positive, and it occurs when the algorithm retrieves an image that

does not satisfy the query. The second type is known as a false negative, and it occurs

when an image that satisfies the query is not retrieved by the algorithm. The first type of

error affects the precision of the algorithm since precision is computed as the number of

retrieved and relevant images divided by the number of retrieved images [Falo, 1996].

The second type o f error affects the recall of the algorithm since recall is computed as the

number of retrieved and relevant images divided by the number of relevant images in the

database [Falo, 1996].

Figure 7-1 illustrates a false positive and a false negative. In the figure, there are

two lines with each representing the percentage of pixels [0-1] in a virtual image V that

are of color C q . The point marked “A ctuar represents the actual percentage of pixels

104

that are o f color Cq in V when it is instantiated. The range marked [PCTmin, PCTmax]

represents the range desired by the given query. The range marked '^Computed Bounds’'

represents the boundary range [BOUNDmin, BOUNDmax], which is computed using the

rules o f the proposed algorithm for processing range queries. The top line in Figure 7-1

illustrates a false positive error that occurs when Actual does not lie within the [PCTmin,

PCTm ax] range specified by the query, but that query range does intersect the range

formed by the Computed Bounds, which means the rule-based algorithm retrieves the

image. The bottom line in Figure 7-1 illustrates a false negative error which occurs when

Actual does lie within the [PCTmin, PCTm ax] range specified by the query, but the query

range does not intersect the range formed by the Computed Bounds, which means the

rule-based algorithm does not retrieve the image.

Actual [PCT ĵ„, PCT̂ ĝJ Computed Bounds

False Positive

Actual [PCT ĵm PCT^aJ Computed Bounds

False Negative

Figure 7-1. Types of Image Retrieval Errors

7.1.1. Probability of False Positives

This section will present the probability that a retrieved virtual image V is a false

positive. In order to stay consistent with the variables presented in Figure 7-1, let Query

105

represent the percentage range specified by the given query, which means that Query =

[PCTmin, PCTmax]- hi addition, let Actual represent the percentage of pixels that are of

color Cq in V when it is instantiated, and let Bounds represent the range formed by the

maximum and minimum produced by the rules of the proposed algorithm, which means

that Bounds = [BOUNDmin, BOUNDmax]- Using these variables, a false positive occurs

when Query and Bounds intersect, but Actual i Query.

The rule-based algorithm only returns an image when Query and Bounds

intersect, which means that when an image is returned, the probability that it is a false

positive is the probability that Actual g Query. To calculate this value, it is necessary to

define the values that Actual can have. Since Actual is a percentage, it can have any

value between 0 and 1. Using this information, assume that Actual can be any value in

that range with equal probability, meaning that it follows the uniform probability

distribution. Since the possible values are between 0 and 1, the density function of

Actual,/(Actual), is 1/(1 - 0) = 1 [Mend, 1992].

/(Actual)

Actual

Figure 7-2. Uniform Probability Distribution Function for Actual

106

The probability that Actual g Query is equal to 1 - the probability that Actual e

Query. To find this probability, it is necessary to find the area under the portion of the

curve marked Actual in Figure 7-2. The area of this rectangle equals its width since its

length = 1. Since Query represents the range [PCTmin, PCTmax], the width is PCTmax -

PCTmin- This means that the probability that Actual € Query is PCTmax - PCTmin, so the

probability that Actual g Query is as follows.

/(Actual) Query

PCX,max

BOUND,max

Actual

Figure 7-3. Uniform Probability Distribution Function when Actual e Bounds

The probability that Actual g Query can be reduced by restricting the range of

values that Actual may occupy. If it is known that Actual e Bounds, then the width of the

probability distribution function for Actual is BOUNDmax - BOUNDmin, and the height of

the function is 1/[BOUNDmax - BOUNDmin] [Mend, 1992] as illustrated in Figure 7-3.

To compute the probability that Actual does not lie within Query, it is necessary to

107

compute the area o f the region of the probability density function that does not contain

Query. That area is 1 - the area of the region that contains the intersection of Query and

Bounds. The height of the intersection is as follows.

 1__________

In addition, the width of the intersection is as follows.

, f C7L.) - f)

Consequently, the area of the intersection is represented by the following expression.

Thus, the area o f the region that does not contain Query is the following.

CT) - , f C7\)
-BOUND„

7.1.2. Probability of False Negatives

This section identifies the probability that a virtual image that was not retrieved

by the rule-based algorithm is a false negative. As in the previous section, let Query

represent the percentage range specified by the given query, let Actual represent the

percentage o f pixels that are of color C q when the virtual image is instantiated, and let

Bounds represent the range formed by the maximum and minimum bounds produced by

108

the rules of the proposed algorithm. Using these variables, a false negative occurs when

Query and Bounds do not intersect, but Actual e Query. Note that this also implies that

in a false negative. Actual i Bounds.

To compute the probability that a false negative occurs, consider that although

Actual cannot be within the range Bounds, it may be anywhere else within [0, 1] with

equal probability. Thus, since Bounds is represented by the range [BOUNDmin,

BOUNDmax], the probability distribution function for Actual will appear as in Figure 7-4.

The width of the function is as follows.

In addition, the height of the function is represented by the following expression.

 1____________

The probability that Actual is in query represents the probability that a false negative

occurs, and it is equal to the area of the rectangle identified by Query in Figure 7-4,

which is equal to the following expression.

(f C7L. - f C 7L) X (1 -)

109

/(Actual)
Query Computed

BOmin max mm max

Actual

Figure 7-4. Uniform Probability Distribution Function when Actual g Bounds

7.2. Execution Time and Storage Space

In this section, the proposed algorithms are compared to similar sequential

algorithms for conventionally retrieving images using color. The conventional approach

is the Binary Storage with Histograms (BSH) approach, which stores all of the images in

the database in a traditional binary format and retrieves them using conventional

histogram techniques. The following sections compare the approaches based on

permanent storage space, image insertion time, range query processing time, and nearest

neighbor query processing time. Table 7-1 displays the parameters that are used in each

analysis along with their descriptions.

110

Parameter Description
N Number of Images in the Database
NBinary Number of Binary images in the Database
N v irtu a l Number of Virtual images in the Database

N r Expected Number of Retrieved images
N R B Inary Expected Number of Retrieved Images that are Binary
NR V irtua! Expected Number of Retrieved images that are Virtual

N o p Average Number of Operations vt/ithin a Virtual image
NB ounds Expected Number of Times BOUNDS is executed for Nearest Neighbor Query

T R a n q e Average Time needed to identify Parameters of Range Query
T n n Average Time needed to identify Parameters of Nearest Neighbor Query

Taccbss Average Time needed to Access an image
T in s ta n t Average Time needed to instantiate a Virtual image
T Display Average Time needed to Display an image

T Extract Average Time needed to Extract a Histogram from a Binary image
T H is t Average Time needed to Access and Compare Histogram Bins
T o is t Average Time needed to Compute the Distance Between Two Histograms

T s a s e Average Time needed to identify the Base image of a Virtual image
T s i z e Average Time needed to identify the Number of Rows and Columns of an image
T A S ize Average Time needed to Access the Stored Numbers of Rows & Columns

T B ounds Average Time needed to Execute the BOUNDS algorithm on a virtual image
TVirtual NN Average Time needed to Execute the Virtuai_NN algorithm

T r u Ib Average Time needed to Apply a Rule for an Editing Operation
T o p Average Time needed to Apply an Editing Operation to an image
T ly p B Average Time needed to Determine if an image is Binary or Virtual

T a s Average Time needed to Add an image ID to the Set of Satisfying images
T a b Average Time needed to Add a Binary Image to the Database
T a v Average Time needed to Add a Virtual Image to the Database
T a h Average Time needed to Add a Histogram to the Database

S s in a r y Average Size of Binary images in the Database
S v ir tu a l Average Size of Virtual Images in the Database
S h lis t Average Size of Histogram Extracted From Binary images

Table 7-1. Parameters Used in Performance Evaluation

111

7.2.1. Binary Storage with Histograms Approach (BSH)

The BSH algorithms are for systems that store all images in a binary format. A

histogram from each image as it is inserted into the database, and the histogram is stored

along with the object ID of the image. For range queries, searching is performed by

accessing the extracted histograms and checking the appropriate bins representing the

query color. When processing nearest neighbor queries, a histogram is extracted from the

query image and compared to the histograms stored in the database to identify the ones

that are the most similar.

7.2.1.1. Permanent Storage Space for BSH Algorithms

The above description implies that a system that uses the BSH algorithms to

retrieve images will need space to store all of the images in a binary format and will need

space to store their associated histograms. Using the variables from Table 7-1, the total

space used by the binary images is N x SBinary, and the total space used by the histograms

is N X SHist- Thus, the total permanent storage space used by BSH is as follows.

7.2.1.2. Average Insertion Time for BSH Algorithms

The BSH algorithm for inserting images is displayed in Figure 7-5. Since all

images are stored in a binary format in this approach, histograms can be extracted from

them. So, the first step to inserting an image is to extract its histogram from it. The next

steps are to store the image and the histogram in the database. Using the variables in

Table 7-1, the average time it takes to perform Step 1 is Textract, the average time it takes

112

to perform Step 2 is T ab, and the average time it takes to perform Step 3 is Tah- So, the

average total time it takes to insert an image using the algorithm is as follows.

'^E xtract ^ A B '^A H

/* Since all images are binary, extract a histogram from each image when it is inserted into the
database. */

1. Extract histogram from given image
2. Store image in database using image ID
3. Store histogram and image ID in database using Histogram ID_______________________

Figure 7-5. BSH Algorithm for Inserting Images

7.2.I.3. Average BSH Range Query Processing Time

The BSH algorithm for processing range queries is displayed in Figure 7-6. The

first three steps are used to initialize the variables and identify the parameters used by the

query, and they are the same for each of the BSH, VSIS, VSII, and rule-based algorithms.

The time it takes to complete these steps is represented by the variable Taange-

The fourth step starts a loop that will execute once for each image in the database,

so it will execute N times. Each iteration o f the loop retrieves the current image identifier

and determines if the value in the desired bin of its corresponding histogram is within the

query range. The average time it takes to access and compare a histogram bin to a range

is represented by the variable Thssi, and the average time it takes to add an image

identifier to the set of retrieved images is T as- The comparison of the histogram bin will

occur N times, while adding an image identifier to the set o f retrieved images will occur

N r times. Thus, the total time it takes to complete Step 4 on average is as follows.

113

The final step in the BSH algorithm for processing range queries is to display the

retrieved images. Since all of the images in the database are already in a binary format,

the average time it takes to load and display a single image is Toispiay + TAccess- Since N r

images are retrieved, the total average time for Step 5 is as follows.

^ (^ D isp la y "^Access)

This means that the total time it takes to execute the BSH algorithm for processing range

queries is represented by the following expression.

i '^ R a n g e) + ^ + R ^ C ^D isp tay + "^Access))

/* Identify the desired histogram bin from the parameters o f the range query */
1. Initialize Results = 0
2. Compute parameters (PCTmin, PCT^^, Cq) from query
3 . Compute Histogram Bin (HE) from query color C q

/* Search stored histogram bins V
4. For each histogram stored in the database

4.1. If bin HE is within query range [PCT în, PCT^ax]
4.1.1. Add image ID stored in tuple to Results Set

/* Render all retrieved images V
5. Display images contained in Results set

Figure 7-6. BSH Algorithm for Processing Range Queries

7.2.1.4. Average BSH Nearest Neighbor Query Processing Time

The analysis for the time taken to process a nearest neighbor query considers the

average time needed to identify the parameters of the query, the average time needed to

extract a histogram from an image, the average time needed to compute the distance

between two histograms, and the average time needed to instantiate or display an image.

114

Although there are other steps in the algorithm such as comparison and assignment

statements, the average time used to perform those steps are considered negligible in

comparison to the average times used to perform the steps listed earlier.

The BSH algorithm for processing nearest neighbor queries is displayed in Figure

7-7. These first four steps are the same for each o f the BSH, VSIS, VSII, and rule-based

approaches. Specifically, the first step identifies the parameters used by the query, the

second step extracts a histogram from the query image, and the third and fourth steps

initialize the variables used to track the k nearest distances. Since the average time it

takes to initialize the variables is considered negligible, the average time it takes to

complete the first four steps is Tnn + TExtract-

/* Identify the parameters o f the nearest neighbor query. */
1. Identify the parameters k and Q from given query
2. Let HQ be Histogram Extracted from the Query Image Q

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The element o f the array
contains the identifier o f the i‘*' known closest image and its distance to Q. The following
code initializes the array. V
3. For i = 1 to k

3.1. Set the image field of the i* element in NEAREST to null
3.2. Set the distance field of the i* element in NEAREST to infinity

4. Set smallest equal to the distance field of the k* element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. V
5. For each histogram tuple, H, stored in the database

5.1. Compute d, the distance between H and HQ.
5.2. if d < smallest

5.2.1. Obtain the object id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains

sorted based on the distance fields.
5.2.3. Set smallest equal to the distance field of the k* element in NEAREST

/* Render all retrieved images */
6. Display the images contained in the first k image fields of the NEAREST array.

Figure 7-7. BSH Algorithm for Processing Nearest Neighbor Queries

115

Step 5 o f the BSH algorithm for processing nearest neighbor queries is a loop that

executes once for each histogram tuple stored in the database, which means that it

executes N times. The algorithm computes the distance between the current histogram

tuple and the histogram extracted from the query image during each pass through the loop

in Step 5.1. Each distance computation takes an average o f Toist time, so the total time

for Step 5.1 is N X Toist- The remainder of the loop is considered negligible.

The final step of the above algorithm displays the k nearest images. Since each of

the images in the database is stored in a binary format, the algorithm can load each image

before displaying it. Thus, the total average time used to perform Step 6 is as follows.

^ ^ D i s p l a y '^A ccess)

Therefore, the average time it takes to execute the BSH algorithm for processing nearest

neighbor queries is represented by the following expression.

'^ E x tr a c t) ^ '^ D is t) ^ ^ D i s p l a y ^ A c c e s s))

7.2.2. Virtual Storage with Instantiation while Searching (VSIS) Approach

This section presents the analysis of the VSIS algorithms that were proposed in

the previous chapter. These algorithms store derived images virtually and search them by

instantiating them at the time queries are submitted to the system.

7.2.2.I. Permanent Storage Space for VSIS Algorithms

A system that uses the VSIS algorithms to retrieve images will need space to store

virtual images, binary images, and histograms from the binary images. Using the

116

variables from Table 7-1, the total space used by the virtual images is Nvinuai x Svirtual, the

total space used by the binary images is Nsinary x Ssinary, and the total space used by the

histograms is Neinary x SHist- Thus, the total permanent storage space used by the VSIS

algorithms is as follows.

Virtual ^V ir tu a l) Binary ^ Binary

1.2.2.2. Average Insertion Time for VSIS Algorithms

The VSIS algorithm for inserting images is displayed in Figure 7-8. If the

inserted image is binary, a histogram must be extracted from it before it is added to the

database. Consequently, the first step to inserting an image is to determine whether it is

virtual or binary. The average time it takes to perform this step is Ttype- If the image is

binary, then the next steps are to extract its histogram, and store the image and histogram

in the database. Using the variables in Table 7-1, the average time it takes to perform

these steps is TExtract + Tab + Tah- So, the average total time it takes to insert a binary

image using the BSH algorithm is equal to the following expression.

'^E xtract '^A H

Out o f the N images in the database, these steps will be performed Nsinary times.

Alternatively, if the image is virtual, the average time it takes to insert it is T av- This

case will occur Nvirtuai times. Thus, the total average time it takes to execute the VSIS

insertion algorithm is represented by the following expression.

{ N X X + T̂ g +)) + xT^y)

N

117

/* Histograms should be extracted from any binary images inserted into the database, while
virtual images can be inserted without extracting any values */
1. If image is binary

1.1 Extract the histogram from given image
1.2 Store the image in the database using its identifier
1.3 Store the histogram and image identifier together in the database

2. Else
2.1 Store virtual image in database using its identifier

Figure 7-8. VSIS Algorithm for Inserting Images

/* Identify the desired histogram bin from the parameters o f the range query */
1. Initialize Results to 0
2 . Compute parameters (PCTmin, PCT^ax, C q) from given query
3. Compute Histogram Bin (HB) from query color C q

/* Search stored histogram bins */
4. For each histogram tuple stored in the database

4.1 If bin HB is within query range [PCTmn, PCTmaJ
4.1.1 Add image ID stored in histogram tuple to Results

/* Determine the virtual images that satisfy the query by instantiating them and
extracting their histograms. Then, process the histograms in the same manner as for the
binary images. V
5. For each Virtual Image

5.1 Instantiate Virtual Image
5.2 Extract Histogram from Instantiated Image
5.3 If bin HB is within query range [PCTmin, PCTmax]

5.3.1 Add image ID stored in histogram tuple to Results
5.3.2 Save Instantiated Image for Step 6

/* Render all retrieved images since any retrieved virtual image was converted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure 7-9. VSIS Algorithm for Processing Range Queries

1.2.2.2). Average VSIS Range Query Processing Time

The VSIS algorithm for processing range queries presented previously is

displayed again in Figure 7-9, and its first three steps are the same as in the BSH

I IS

algorithm for processing range queries. The time it takes to complete these steps is

represented by the variable Taange- The fourth step is also the same as in the BSH

algorithm in that it starts a loop that will execute once for each binary image in the

database. Since there are only Neinary images stored in the binary format, the loop will

only execute Neinary times. Each iteration of the loop behaves as in the BSH algorithm, so

the total average time it takes to complete Step 4 is as follows.

Binary ^ i ^ R B i n a r y ^)

Step 5 o f the VSIS algorithm for processing range queries starts a loop that

executes once for each of the Nvirtuai virtual images. Step 5.1 instantiates the current

virtual image, and Step 5.2 extracts a histogram from it. The total average time to

complete these steps is Tinstant + Textract- Step 5.3 is similar to Step 4.1 in that it compares

the value in the desired bin to the query range, which takes an average of Tnist time.

Thus, the total average time it takes to complete Steps 5.1 through 5.3 is as follows.

^ V ir tu a l ^ ^ I n s tan t '^E xtract '^H is t)

The number of virtual images that will be added to the satisfying set is represented by the

variable Navirtuai, so the total time Step 5.3.1 will use on average is NRvirtuai x Tas.

Therefore, the total average time for Step 5 is equal to the following expression.

Virtual ^ (T in s Un t '^Extract '^ H i s l)) + RVirlual ^ ' ^ A s)

The final step in the VSIS algorithm for processing range queries is to display the

retrieved images. The virtual images in the database were converted into a binary format

119

in Step 5.2, so all o f the retrieved images are in binary format. Consequently, the average

time it takes to load and display the retrieved images is the same as in the BSH algorithm

for processing range queries, which is as follows.

 ̂^^Display '^Access ̂

Thus, the total time it takes to execute the above VSIS algorithm is as follows.

iT R a n g e) + Binary ^ RBinary + (^ V i r t u a l ^ + '^E xlrac, + ' ^ H i s l)) +

R V irtm ! ^ ' ^ A s) R ^ D isplay " ^ A c c e s s))

1.2.2A. Average VSIS Nearest Neighbor Query Processing Time

The VSIS algorithm for processing nearest neighbor queries is displayed again in

Figure 7-10, and its analysis is similar to the analysis o f the BSH algorithm in that it only

considers the average time needed to identify the parameters of the query, the average

time needed to extract a histogram from an image, the average time needed to compute

the distance between two histograms, and the average time needed to instantiate or

display an image. Consequently, the total average time it takes to complete the first four

steps o f the VSIS algorithm is as follows.

T + Tnn Extract

120

/* Identify the parameters o f the nearest neighbor query. */
1. Identify the parameters k and Q from given query
2. Let HQ be Histogram Extracted from the Query Image Q

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The i'̂ element o f the array
contains the identifier o f the i‘ known closest image and its distance to Q. The following
code initializes the array. */
3. For i = 1 to k

3.1. Set the image field of the i* element in NEAREST to null
3.2. Set the distance field of the i* element in NEAREST to infinity

4. Set smallest equal to the distance field of the k* element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. */
5. For each histogram tuple, H, stored in the database

5.1. Compute d, the distance between H and HQ.
5.2. if d< smallest

5.2.1. Obtain the obj ect id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains

sorted based on the distance fields.
5.2.3. Set smallest equal to the distance field of the k* element in NEAREST

/* Determine the virtual images that satisfy the query by instantiating them and
extracting their histograms. Then, process the histograms in the same manner as for the
binary images. */
6. For each Virtual Image

6.1. Instantiate Virtual Image
6.2. Extract Histogram H from Instantiated Image
6.3. Compute d, the distance between H and HQ.
6.4. if d < smallest

6.4.1. Obtain the object id associated with H and call it image
6.4.2. Insert d and image into the NEAREST array so that the array remains

sorted based on the distance fields.
6.4.3. Set smallest equal to the distance field of the k* element in NEAREST

6.5. Save Instantiated Image for Step 7

/* Render all retrieved images since any retrieved virtual image was converted to a
binary format in Step 6. */
7. Display first k images contained in NEAREST array__________________________

Figure 7-10. VSIS Algorithm for Processing Nearest Neighbor Queries

Step 5 of the algorithm is a loop that executes once for each histogram tuple

stored in the database, which means that it executes Neinary times. The algorithm

performs a distance computation in Step 5.1, so the average total time used to perform

121

Step 5.1 is Nfiinary X Toist- As in the BSH algorithm for processing nearest neighbor

queries, the remainder of the loop is considered negligible.

Step 6 o f the VSIS algorithm is a loop that executes once for each virtual image in

the database. During each iteration, the algorithm instantiates the virtual image, extracts

a histogram from it, and computes the distance between that histogram and the one

extracted from the query image. Thus, each iteration through the loop requires an

average o f time equal to the following expression.

T + T + T
In s\zx \t Extract D ist

Consequently, the total average time required by Step 6 is represented as follows.

^ V ir tu a l X ^ I n s tan t '^E xtract '^D isl)

The final step of the above algorithm displays the k nearest images. Since this

algorithm instantiates all of the virtual images in Step 6, each of the retrieved images is in

a binary format. Thus, the VSIS algorithm can simply load and display each binary

image as with the BSH algorithm. The total average time used to perform Step 7, then is

the same as in the BSH algorithm, which is as follows.

X Display '^A ccess)

Therefore, the average time it takes to execute the VSIS algorithm for processing nearest

neighbor queries is as follows.

E x t r a c t) B i n a r y X + (^ V i r t u a l X i '^ I n s U a t '^E xtract ^ D i s t)) i ^ R X { '^D isp lay ^ A c c e s s))

122

7.2.3. Virtual Storage with Instantiation while Inserting (VSII) Approach

In this approach, the derived images are stored virtually while the base images

remain stored in a binary format. This approach differs from the VSIS approach in that

histograms are extracted and stored for the virtual images upon insertion which means

that they must be instantiated at that time as well.

7.2.3.1. Permanent Storage Space for VSII Algorithms

The above description implies that a system that uses the VSII algorithms to

retrieve images will need space to store images stored in virtual and formats as well as

the histograms extracted from them. Using the variables from Table 7-1, the total space

used by the virtual images is Nvirtuai x Svirtual, the total space used by the binary images is

Neinary X Sginary, and the total space used by the histograms is N x Seist- Thus, the total

permanent storage space used by the VSII algorithms is as follows.

Binary ^ ^ B in a r y) Virtual ^ ^ V ir tu a l) (V X S

7.2.3.2. Average Insertion Time for VSII Algorithms

The VSII algorithm for inserting images is displayed in Figure 7-11. In order to

extract a histogram from each image inserted into the database, an image stored in a

virtual format must first be instantiated. So, as with the VSIS algorithm for inserting

images, the first step is to determine whether it is virtual or binary, which takes an

average time of Ttype. The insertion of binary images in the VSIS algorithm is the same

as in the VSII algorithm, so the average total time it takes is as follows.

'^E xtract '^A B ^ A H

123

Alternatively, if the image is virtual, the algorithm stores it, instantiates it, extracts a

histogram from it, and stores the histogram. This takes a total average time as follows.

V + T,n, tan (+ Êxtract + '̂ AH

Binary images will be added Ngmary times, and virtual images will be added Nvirtuai times.

Thus, the total average time it takes to execute the VSII insertion algorithm is as follows.

{ N X + { N Binary ^ C ^E xtracl ^ A B ^ A H)) Virtual ^ '^ In sV m t '^E xtract ^ A H))

N

/* Histograms should be extracted from any binary images inserted into the database V
1. If image is binary

1.1 Extract the histogram from given image
1.2 Store the image in the database using its identifier
1.3 Store the histogram and image identifier together in the database

/* Virtual images must be instantiated before histograms can be extracted from them and
subsequently inserted into the database. V
2. Else

2.1 Store virtual image in database using image ID
2.2 Instantiate virtual image
2.3 Extract histogram from image
2.4 Store histogram and virtual image ID in database

Figure 7-11. VSII Algorithm for Inserting Images

7.2.3.3. Average Retrieval Query Processing Times for VSII Algorithms

Since histograms are extracted from every image stored in the database in both

approaches, the VSII algorithms for processing retrieval queries are the same as the BSH

algorithms displayed in Figures 7-6 and 7-7. The only difference is that the VSII

algorithms may retrieve images stored virtually, which means that they must be

instantiated before they can be displayed. Consequently, the average times it takes to

124

execute the VSII retrieval algorithms are the same as the times it takes to execute the

corresponding BSH retrieval algorithms with the exception o f displaying the images.

The BSH algorithms only have to load the N r retrieved images before displaying

them, which means that require an average displaying time equal to as follows.

^ ^ D i s p l a y '^A ccess)

In the VSII algorithms, the Nasinary binary images can be treated in the same manner

giving a total of time equal to the following expression.

^ R B in a r y ^ ^ D i s p l a y '^A ccess)

The Navirtuai virtual images must be instantiated before they can be displayed, which

means the average time to display them is as follows.

^ R V ir U m l ^ ^ D i s p l a y tan <)

Thus, the total average time needed to display all of the retrieved images in the VSII

retrieval algorithms is equal to the following expression.

^ R B i n a r y ^ Display A c c e s s)) ^ ^ R V ir lu a l ^ ^ D i s p l a y

This implies that the VSII range query processing algorithm takes an average o f time

equal to the following expression.

i ^ R a n g e) R ^ ' ^ A s) RBinary ^ ^ D is p la y ^/(ccess)) + RVirtua! ^ ^ D is p la y + ^/nstaiw))

125

In addition, the VSII nearest neighbor query processing algorithm takes an average of

time equal to the next expression.

(.'^N N '^Extract) "I" (V X ^ ^ D is p la y '^Access)) "^ RVirtual ^ ^ D is p la y '^Ins tan r))

7.2.4. Rule-Based Approach

This section presents the analysis of the rule-based algorithms that were proposed

in the previous chapters. These algorithms use histograms to search the binary images

that are stored in the database and the proposed rules to search the virtual images.

7.2.4.1 Permanent Storage Space for Rule-Based Algorithms

In the rule-based algorithms, the Neinary binary images are processed in the same

manner as the BSH algorithms, which means that histograms are extracted from each of

them. Thus, the total space used for the binary images is as follows.

Binary ^ ^ B in a r y) (^ B i n a r y ^ ^ H i s t)

The Nvirtuai virtual images are processed using their descriptions, so it uses Nvirtuai x

Svirtual space. In addition, the algorithms require storing the numbers of rows and

columns of each binary image in the database, so the rule-based algorithms require an

extra 2 x Neinary space. Thus, the total permanent storage space required by the rule-

based algorithms is as follows.

Binary ^ (^ B in a r y + ^ H i s t ^)) Virtual ^ ^ V ir tu a l)

126

1.2A.2 Average Insertion Time for Rule-Based Algorithms

The rule-based algorithm for inserting images is displayed in Figure 7-12, and it is

similar to the VSIS algorithm for inserting images. The difference is that the numbers of

rows and columns in a binary image must be identified and stored when one is inserted

into the database. The average time it takes to identify these values is represented by the

variable Tsize- The average time to insert a binary image in the VSIS algorithm is as

follows.

T _i_ T T
^E x tra c t ^ AB ^ AH

Also, the average time to insert a binary image in the rule-based algorithm is as follows.

T E xtrac t + + '^A H + '^S ize

Consequently, the total average time it takes to execute the rule-based insertion algorithm

is equal to the following expression.

(V X + (7^g,-„a,y X {T E x tra c t '^A B '^A H ’̂ S i z e)) Virtual ^ ' ^ A v)

N

/* Histograms should be extracted from any binary images inserted into the database */
1. If image is binary

1.1 Extract the histogram from given image
1.2 Extract and store the numbers of rows and columns for use by BOUNDS
1.3 Store the image in the database using its identifier
1.4 Store the histogram and image identifier together in the database

/* Virtual images are inserted into the database correctly. */
2. Else

2.1 Store virtual image in database using image ID
Figure 7-12. Rule-Based Algorithm for Inserting Images

127

7.2.4.3. Average Rule-Based Range Query Processing Time

The rule-based algorithm for processing range queries was presented in Chapter 3.

The first three steps of the algorithm identified the parameters o f the query and initialized

the variables, which takes an average of Taange time. Step 4 o f the algorithm was the

same as Step 4 o f the VSIS algorithm for processing Range queries, which means that the

average time to complete it will be the same as the following time o f the VSIS algorithm.

(^ B i n a r y ^ RBinary ^ ^ A s)

Step 5 o f the algorithm executed the BOUNDS procedure for each virtual image in the

database. The average time to execute the BOUNDS procedure is represented by the

variable Tgounds, which means the total average time executing the procedure will be

Nvirtuai X Teounds- hi addition, Navirtuai images are expected to be retrieved, and that will

take an additional Navirtuai x Tas time.

The last step of the rule-based range query processing algorithm displays the

retrieved images. As with the VSII algorithm, the virtual images must be instantiated

before they can be displayed. Consequently, the average time needed to display the

retrieved images in the rule-based algorithm is the same as in the VSII algorithm, which

is as follows.

RBinaty ^ ^ D i s p l a y A c c e s s)) RVirlual ^ ^ D i s p l a y ^ « s ta n ())

So, the total average time needed to execute the rule-based algorithm for processing

range queries is represented by the following expression.

128

C ^ R m g e) + Binary ^ + RBinary ^ ^ A s) (^ V ir tu a l ^ '^B ounds) RVirlual ^ ^ /(s) +

RBinary ^ Disphiy ^Access)) RVirtual ^ Display '^Instttn t))

V . 2 . 4 . 4 . A v e r a g e R u l e - B a s e d N e a r e s t N e i g h b o r Q u e r y P r o c e s s i n g T i m e

The rule-based algorithm for processing nearest neighbor queries was presented in

Chapter 4. The first four steps of the algorithm are the same as in the previous algorithms

for the BSH, VSIS, and VSII approaches, and they take an average o f T„n + Tnxtract time.

Step 5 o f the algorithm is a loop that is the same as in the VSIS algorithm. Thus, the

average total time used to complete the loop is Nsmary x Toist, as in the VSIS algorithm.

Step 6 of the rule-based algorithm executes the VIRTUAL_NN procedure, which takes

an average time o f Tvirtuai_NN- The last step of the rule-based algorithm displays the

retrieved images, which again requires an average o f time as follows.

RBinary ^ ^ D i s p l a y ^ c c e i s)) RVirtual ^ ^ D i s p l a y ^ n j t a n r))

Thus, the total average time used to execute the rule-based algorithm is represented by

the following expression.

^W/V '^Extracl Binary ^ '^D isl) '^V inual _ NN

RBinary ^ ^ D is p la y '^Access)) RVirtual ^ Display '^Ins tan I))

7 . 3 . C o m p a r i s o n o f A p p r o a c h e s

This section compares the performance of each of the above approaches for

retrieving virtual images. The comparisons are performed using relationships between

the variables in Table 7-1. For example, since each image must be stored in either a

virtual or a binary format, N = Neinary + Nvirtuai, and N r = Nasinary + Navirtuai- In addition,

129

this section assumes that the average size of a binary image is much larger than the

average size o f a virtual image, so Seinary > Svirtual- Finally, this section assumes that the

technique used to instantiate a virtual image involves accessing the base image stored

within the first line of its description, then applying each of the associated editing

operations. Thus, the average time used to instantiate a virtual image, Tinstant, c a n also be

represented by the following expression.

"^Access ^ '^O p)

7 . 3 , 1 . C o m p a r i s o n o f P e r m a n e n t S t o r a g e S p a c e

Table 7-2 compares the total amount of storage space used by the various

approaches. The table decomposes the terms presented earlier into the amount o f space

used to store binary images, the amount of space used to store virtual images, the amount

of space used to store the extracted histograms, and the amount o f space used to store the

numbers of rows and columns of the binary images. These totals are represented by the

"Binary Images", "Virtual Images", "Histograms", and "Sizes" columns, respectively.

A p p r o a c h B i n a r y I m a g e s V i r t u a l I m a g e s H i s t o g r a m s S i z e s

BSH N X Seinarv 0 N X Seist 0
VSIS NBInarv ^ Seinary Nvirtuai X Svirtual Neinary X Seist 0
VSII ĥ BInarv ^ Seinary Nvirtuai X Svirtual N X Seist 0

Rule-Based ĥ BInary X Seinary Nvirtuai X Svirtual Neinary X Snist Neinary ^ 2
Table 7-2. Comparison of Total Space Used by Each Approach

Since Seinary is expected to be much larger than Svirtual, the B S H algorithms are

expected to use much more space than the B S H , V S IS , and V S II algorithms. This is

because the B S H algorithms store all images in a binary format while the other

130

algorithms store Svirtual of the images virtually. In addition, since N > Neinary, the

following expression is tme.

(N X X)

The above expression also means that the BSH and VSII algorithms are expected to use

more space to store the histograms extracted from images than the rule-based and VSIS

algorithms.

When comparing the VSIS, VSII, and rule-based algorithms, all three are

expected to use the same space to store the images. The VSII algorithms, however, are

expected to use the following amount of additional space to store the histograms than the

other two approaches.

{N X X)

The above expression can be simplified to Nvirtuai x Shisi- The rule-based algorithms are

expected to use IxNginary more space than the other approaches to store the numbers of

rows and columns in each binary image. Thus, the VSIS algorithms are expected to use

the least space, followed by either the rule-based algorithms or the VSII algorithms

depending on whether Nvirtuai x Shisi or ZxNsinary is smaller.

7 . 3 . 2 . C o m p a r i s o n o f A v e r a g e I n s e r t i o n T i m e

Table 7-3 compares the average insertion time produced by each of the four

approaches. The table decomposes the times presented earlier into the average time

needed to determine whether an image is virtual or binary, the average time needed to

131

insert a binary image, and the average time needed to insert a virtual image for each

approach. These times are represented by the "Type of Image", "Binary Images", and

"Virtual Images" columns, respectively.

A p p r o a c h T y p e o f I m a g e B i n a r y I m a g e s V i r t u a l I m a g e s

BSH 0 TExtract + T ab + T ah 0

Ttyoe TExtract + T aB + T ah T av

VSII Ttype TExtract + T ab + T ah T av "t" Tinstant T Extract T ah

Rule-Based Ttype TExtract + T ab + T ah T av

Table 7-3. Comparison of Average Insertion Times for Each Approach

When comparing the average insertion times for each approach, assume that the

values TExtract and Tinstant should be much larger than the values T a v , T ab , T ah , and Ttype.

Thus, the latter values are assumed to be negligible. Since all N images are binary in the

BSH algorithms, the total time for insertion should be N x TExtract- Thus, the average

insertion time should be Textract-

Alternatively, the total insertion time for the VSII approach should be as follows.

Binary ^ E x tra c t^ Virtual ^ (^ /n s tant E x tra c t))

This implies that the average insertion time should be equal to the following expression.

^ B i n a r y ^ ’̂ E x tra c t ̂ ^ V ir tu a l ^ ^ I n s i z n t ’̂ E x t r a c t)

N N

The above expression can be simplified as follows:

V,Binary

N
x LExtract

132

^ B in a r y ^ V ir tu a l rp ^ V ir tu a lX T 4- Mntw; „ f
Extract » r Ins tan t

T A- (lîliiSBsL V T \
Extract V I n s tm t '

Since the above expression is greater than TExtract, the average time needed to insert an

image using the VSII algorithms is longer than the corresponding time for the BSH

algorithms.

The average times to insert an image using the VSIS and rule-based algorithms

are the same, according to Table 7-3. Since the total insertion time is expected to be

Neinary X Textract, the average insertion time should be as follows.

^ B in a r y j.
Extract

Thus, the average time used to insert an image using the VSIS and rule-based algorithms

is expected to be shorter than the other algorithms.

7 . 3 . 3 . C o m p a r i s o n o f A v e r a g e T i m e s f o r P r o c e s s i n g R a n g e Q u e r i e s

Table 7-4 compares the average time used to process a range query using the four

approaches. The "Param" column represents the average amount o f time used to identify

the parameters o f the range query, the "Hist" column represents the average amount of

time used to access a histogram bin and compare it to the query range, the "Results"

column represents the average amount of time used to add an image ID to the results set.

133

the "Display Binary" column represents the average amount o f time used to display a

binary image, and the "Display Virtual" column represents the average amount o f time

used to display a virtual image.

Approach Param Hist Virtual Results Display Binary Display Virtual

BSH T R ange
N X

i H i s t
0 Nr X Tas

Nr X (Taccbss +

T o isp ia y)
0

VSIS T R ange
N s in a ry X

ÎH is t
N virtuai X (T in s ta n t

+ T ex trac t)
Nr X Tas

N R ein ary X (Taccbss +

T Dispiay)
N eV irtual X (Taccbss +

T o isp ia y)

VSII T R ange
N Binary X

ThisI
N virtuai X Thlist Nr X Tas

NR Binary X (Taccoss

T Display)
N eV irtual X (Taccbss ^

T Instant)

Rule-
Based T p a n g e

N e in a ry X

T h is t
N virtuai X T e o u n d s Nr X Tas

N R B inary X (Taccbss +

T o is p ia y)
N eV irtuai X (Taccbss "*■

T instant)

Tab e 7-4. Comparison of Average Times for Processing Range Queries

The time used to identify the parameters and the time used to retrieve an image ID

are not included in the comparison since they are the same for all four approaches. The

time used to access and compare a histogram bin to the query value should be small, so

those values should be considered negligible, which means that the "Hist" column is not

included in the comparison. Thus, when comparing approaches, consider only the

columns for processing virtual images and displaying images.

When comparing how long it takes the query processor is to identify the images

that satisfy a given query for each approach, then it is not necessary to compare the time

it takes to display an image. Given that assumption, the only column contributing to the

comparison is the average time taken to process virtual images. The VSII range query

processing algorithm checks histograms for the virtual images, so its average time should

be the same as the time for the corresponding BSH algorithm. The average time used by

the rule-based algorithm is based on the average time needed to execute the BOUNDS

algorithm, which is represented by the following expression.

134

'^Base + '^Size Op ^ '^R u le)

The average time used by the VSIS algorithm is based on the average time needed to

instantiate an image, which is as follows.

'^B ase '^A ccess Op ^ ^ O p)

Assuming that the variables Tsize and TAccess are comparable, and Top should be much

larger than TruIb, the average time for executing the VSIS algorithm should be much

larger than the rule-based algorithm.

7 . 3 . 4 . C o m p a r i s o n o f A v e r a g e T i m e s f o r P r o c e s s i n g N e a r e s t N e i g h b o r Q u e r i e s

Table 7-5 compares the average time used to process a nearest neighbor query

using the four approaches. The "Extraction" column represents the average amount of

time used to extract a histogram from the Query Image, the "Binary" column represents

the average amount of time used to compute the distance between the query histogram

and the histograms extracted from the binary images, the "Virtual" column represents the

average amount o f time process the virtual images, the "Display Binary" column

represents the average amount of time used to display a binary image, and the "Display

Virtual" column represents the average amount of time used to display a virtual image.

135

Approach Extraction Binary Virtual Display Binary Display Virtual

BSH T Extract
N x

T o is t
0

Nr X (Taccbss +

T Display)
0

VSIS T Extract
N Binary
X T ü is t

N virtual X (T In s tan t ■*"
TE x trac t^ T Dist)

N R B inaiy X (T A c c e ss +
T Display)

NRVirtcal X (T A ccess
T D isp lay)

VSII T Extract
N s in a ry
X T o is t

N virtual X T o is t
NRBInary X (T A c c e ss +

T Display)
NRViftual X (T A c c e ss ■*"

T Instant)

Rule-Based T Extract
N Binary

X T o is t
T v irtuaL N N

N R B inaiy X (T A ccess
T D isplay)

NRVirtual X (T A c c e ss "*■
T Instant)

Table 7-5. Comparison of Average Times for Processing Nearest b eighbor Queries

The time used to extract the histogram from the query image is not included in the

comparison since it is the same for all four approaches. As with the comparison for the

range query, if the goal of the algorithm is to identify the nearest images to a given query

image, it is not necessary to include the average time used to display the images. Thus,

the comparison between the four approaches is based on the columns for processing the

binary and virtual images.

Both the BSH and VSII algorithms are expected to take the same time to process

a nearest neighbor query, which is N x Toist- The VSIS algorithm is expected to use time

equal to the following expression.

Binary ^ Virtual ^ ^ ^ I n s U n t '^E xtract))

The above expression simplifies as follows.

{ N X X + '^ E x tr a c t))

Thus, the average time to execute the VSIS algorithm for processing nearest neighbor

queries should be longer than the times for the BSH and VSII algorithms.

The expected time used by the rule-based algorithm to process nearest neighbor

queries is represented by the following expression.

136

Binary ^ ^^Virtual _ N N ^

The expected time used by the BSH and VSII algorithms can be expressed as follows.

Thus, the comparison of the approaches depends on whether it takes longer to execute the

VIRTUAL_NN procedure or make Nvinuai distance computations.

7.3.5. Summary of Comparisons

The above comparisons demonstrate the rule-based algorithms provide many

benefits when considering permanent storage space, insertion time, and retrieval time.

By storing editing images virtually, the rule-based algorithms use less permanent storage

space than the BSH algorithms. Because they avoid instantiating the virtual images, the

rule-based algorithms are relatively fast in inserting virtual images unlike the VSII

algorithms. For the same reason, the rule-based algorithms are relatively fast in

processing retrieval queries unlike the VSIS algorithms.

7.4. Analysis of Proposed Data Structure

A data structure is presented in Chapter 5 that can be used to reduce the time it

takes to process a range query using the rules proposed in Chapter 3. The purpose of this

section is to analyze the algorithms presented for the data structure in order to compare

their performance against the performance of the proposed rule-based algorithms. Table

7-6 lists additional variables that are used in the performance evaluation.

137

Parameter Description
N u a in Number of virtual images that contain only operations with bound-widening rules
N U nclass Number of virtual images that have an operation whose rule is not bound-widening

T w a in Average Time needed to Access an Element of the Main Component
T U nclass Average Time needed to Access an Element of the Unclassified Component

T A dd M ain Average Time needed to Add an Element to the Main Component
T A d d U n c la ss Average Time needed to Add an Element to the Unclassified Component

S id Average Size of an Identifier
Table 7-6. Additional Variables Used in Evaluation of Data Structure

7.4.1. Permanent Storage Space for Proposed Data Structure

The proposed data structure is to be used by the underlying database management

system along with the images and histograms. Thus, utilizing the proposed data structure

will result in using more space than is needed by the rule-based algorithms. Specifically,

the permanent storage space is equal to the storage space used by the rule-based

algorithms added to the space needed to store the data structure.

The permanent storage space required by the rule-based algorithms is as follows.

(^ B i n a r y ^ (^ B in a r y ^ H i s I ^)) Virtual ^ ^ V ir tu a l)

To determine the space needed by the proposed data structure, consider that the Main

Component will contain exactly one histogram identifier for each binary image in the

database. In addition, the identifier o f each virtual image will be added to either the Main

Component or the Unclassified Component, which means that each identifier will be

added exactly once to the data structure. Thus, the data structure will contain a total o f N

identifiers, which means that the total amount of permanent storage space expected to be

used by the algorithms for the proposed data structure is as follows.

138

Binary ^ (^ B in a ry + ^ H is t ^)) ^ Virtual ^ ^V irtuai) ^ ^ I d)

7.4.2. Average Insertion Time for Proposed Data Structure

Since the purpose of the proposed data structure is to arrange the image identifiers

in order to speed up processing of the retrieval queries, it is expected that the average

time to insert into a system that utilizes the data structure will be longer than the average

time to insert into a system that does not utilize it. This section presents an analysis of

the time it takes to insert an ID into the proposed data structure.

To insert an ID for an image into the proposed data structure, it is first necessary

to determine the type o f image it references, which should take Ttype time. If the image is

binary, the identifier of its histogram is added to the end of the Main Component, which

should take TAddMain time. If the image is virtual, the insertion algorithm presented in

Chapter 5 is executed.

The first two steps of the insertion algorithm identify the base image and its

associated histogram, which takes Tease time. The third step is a loop that executes for

each editing operation within the description of the virtual image. During each step, the

rule for the editing operation is checked to determine if it is bound-widening. The

average time taken for this step can be represented by the variable TruIc, so the total time

used by this step is expected to be Nop x T ruIb- If the loop identified a rule that was not

bound-widening, the final step of the algorithm is to add the identifier of the virtual

image the Unclassified Component, which takes TAddUnciass time. Alternatively, if all of

the rules were bound-widening, the final step is to add the identifier to the Main

Component in the list of the appropriate histogram identifier. Adding the identifier

139

should take TAddMain time, while identifying the histogram identifier should take the

following time.

^Binary rp

Out of N images, the insertion of a binary image should occur N sin ary times, and

the insertion o f a virtual image should occur Nvirtuai times. So, the average time needed to

insert an identifier into the proposed data structure is equal to the following expression

where a is the average time to insert a virtual image.

rp ^ B i n a r y ^ '^AddM ain ^ V i r tu a l ^ ^

A total o f NMain o f the virtual images will be added to the Main Component, while Nunciass

of them will be added to the Unclassified Component. So, a equals the next expression.

Virtual

T + V T t
^A ddM ain ^ ■‘ ■ M a i n . '

V ^ y
I ^ U n c la s s ^ (T \

^ ^ t - * AddUnclass)
Virtual

7.4.3. Average Range Query Processing Time for Proposed Data Structure

The algorithm for processing a range query using the proposed data structure has

the same first three steps as the previously presented algorithms. Thus, the average time

needed to execute them is Taange- Step 4 accesses each element in the Unclassified

Component and executes the BOUNDS algorithm. Thus, the total time expected to be

taken by Step 4 is Nunciass x Teounds- hr addition, during the execution of this query

processing algorithm, the same number of images should be retrieved as in the rule-based

140

algorithm. Thus, the total time used to add image identifiers to the set o f satisfying

images will be N r x T a s-

Step 5 accesses each of the Nsinaty histograms in the Main Component. Steps 5.1

and 5.2 access the desired histogram bin and compare it to the query range, which takes

Thisi time. This implies that Steps 5.1 and 5.2 are expected to take a total of (Nflinary x

THist) time.

If the histogram bin falls within the query range, which should occur NRBinary

times, all of the elements in V list are retrieved. If the histogram bin is not within the

query range, which should occur Neinary - NRBinary times, the BOUNDS algorithm is

executed for each element in the list. Since there are Nsinary binary images and NMain

virtual images represented in the Main Component, each V list is expected to have

NMain/Nsinary viitual image identifiers. Thus, the BOUNDS algorithm will be executed

the following number of times.

N(M - f j
^ Binary ■' * RBinary a t

Binary

The final step of the algorithm for processing range queries using the proposed

data structure displays the retrieved images. This is expected to take the same amount of

time as in the rule-based algorithm since the images in the database are stored in the same

format. Thus, the average time for displaying the retrieved images is as follows.

RBinary ^ ^ D i s p l a y ^ ^ R V ir lu a l ^ D isplay tan ())

141

To summarize, the average time used to process a range query using the proposed

data structure is equal to the following expression.

^ M a i n

^Binary

i ^ R ^ RBinary ^ Display ^ A c c e s s)) i ^ R V i r t u a l ^ (^ D is p la y ' ^ I n s ta n t)) '

Range Unclass ^ '^Bounds) (^ B i n a r y ^ '^H isl) Binary ^ R B i n a r y) ^ ^ ^ '^Bounds)

This is in comparison to the average time used by the rule-based algorithm to process a

range query, which is as follows.

^ R a n g e) (.^ B in a r y ^ R ^ ^ A S) Virtual ^ "^Bounds)

RBinary ^ ^ D is p la y '^Access)) RVirtual ^ Display '^Instan t))

Eliminating the terms (Taange), (Nuinary x ThisO, (Nr x Tas), and (NRBinary x (Toispiay +

T a c c b s s)) + (NRVirtual X (Toispiay + Tinstant) ffom both cxpressions yields the following values

representing the average time used for the data structure and the average time used by the

rule-based algorithm, respectively.

Unclass ^ '^Bounds) Binary ~ ^ R B i n a r y) ^ T t ^ ’̂ B o u n d s)
Binary

^ V ir tu a l ^ '^Bounds

The average time used for the proposed data structure can be simplified in the

following manner.

Unclass (^ B i n a r y ^ R B in a r y ^ ^ '^Bounds
Binary

Unclass ^ M a i n RBinary ^ ^ ^ '^Bounds
Binary

142

Let (NRBinaryxNMain/Neinary) be represented by the variable (3, and note that P > 0. Since

Nvirtual equals Nunciass + NMain, the average time used for the proposed data structure is

equivalent to the following expression.

Virtual ^ '^Bounds

Since the average time used by the rule-based algorithm is Nvirtuai x TTgounds, it is greater

than the average time used by the proposed data structure.

143

CHAPTER 8

A PROTOTYPE VIRTUAL IMAGE RETRIEVAL SYSTEM

In order to confirm the analysis presented in the previous chapter, several

prototype image retrieval systems were developed during this research. This chapter

describes the implementation of these systems including the development environment

and the resulting user interface along with a diagram of the information flowing between

the modules o f the systems. In addition, this chapter provides a performance evaluation

o f the prototype systems that illustrate their various strengths and weaknesses.

The structure of the remainder of the chapter is as follows. Section 8.1 describes

the implementation of the prototypes virtual image retrieval systems. Section 8.2

describes the performance parameters used in this research, and Section 8.3 presents the

results o f processing range and nearest neighbor queries with the prototypes.

8.1. Implementation

The prototype virtual image retrieval system [Brow, 2001] developed as a result

o f this dissertation is a web-enabled prototype accessible from the URL

http://www.cs.ou.edu/~lbrown. The system processes the retrieval queries on the weh

server on the network of the School of Computer Science at The University of Oklahoma

and sends the results as a weh page to the client of the user. It was developed using the

Perl language on a SUNsparc workstation using the Unix operating system, and does not

use any commercial software for managing the databases. It does use utilities from the

144

http://www.cs.ou.edu/~lbrown

pbmplus [PBMP, 2003] package, however, to convert binary images between the text-

based ppm format and more commonly used formats such as gif and jpeg.

The prototype, called the Virtual image Retrieval System (VRS), implements the

rule-based algorithms presented in Chapters 3 and 4. In addition, additional prototypes

were constructed in order to implement the alternative approaches to retrieving virtual

images. One prototype stores all of the images in a binary format and implements the

conventional histogram algorithms. This prototype is referred to as the Binary Storage

with Histograms prototype (BSH). Another prototype, which is called the Virtual

Storage with Instantiation while Searching Prototype (VSIS), stores edited images

virtually and instantiates them during retrieval query processing in order to utilize

histograms. The final prototype, called the Virtual Storage with Instantiation while

Inserting (VSII) Prototype, stores edited images virtually but instantiates them at the time

they are inserted in the database in order to extract their histograms. Afterwards, the

histograms are stored in the database while the instantiated version of the virtual images

is discarded.

8.1.1. Prototype Structure

Figure 8-1 displays the components of the VRS and illustrates how they interact.

Specifically, the figure contains the model for a DataBase Management System (DBMS)

that uses virtual images. In the figure, users interact with various interfaces in order to

perform the different tasks common to DBMSs. When users enter an image stored in a

binary format into the system through the insertion interface, it must be sent to the feature

extraction module before it is stored in the underlying database. The feature extraction

145

module extracts the color histogram from the binary image and stores it in the database as

well. When users enter a virtual image into the database, they will have to access an

editing interface that allows them to add or remove image editing operations. To

summarize, the DBMS must provide interfaces to allow users to interact with the three

types of data items stored in the database, images represented using a conventional

format, values o f features extracted from those images, and images stored virtually.

Insertion
Interface

Feature
Extraction

Features

Update
Interface

Similarity
Searching

Retrieval
Interface

Random
Searching

Access
Method

Binary
Images

User

Range
Searching

Deletion
Interface

Virtual Images

Editor

Figure 8-1. Components of the Virtual Image Retrieval System Prototype

When users want to update or delete an image from the system, they must first

identify the image through the update or deletion interface. Once the image is identified,

it must be located in the database using the random searching module. The module may

utilize an access method such as an index in order to make the searching more efficient.

146

The image may be stored in a conventional format or stored virtually, so the access

method must be able to access both data sets.

When the user submits a query through the retrieval interface, the DBMS should

loeate those images that satisfy it. The query may be a random query in which a specific

image is requested, a range query in which images that have features within certain

values are requested, or a similarity search which requests the images that are similar to a

given query image. To locate the images that satisfy these queries, the searching modules

must be able to access the virtual images, conventional images, and features. Again,

these modules should use some type of access method in order to make searching more

efficient. In addition, in order to determine if the images in the database are similar to a

query image, the similarity search module will need to send the query image to the

feature extraction module.

8.1.2. Queries and Images

The VRS prototype allows users to retrieve images using the two different types

of queries described in Chapters 3 and 4 of this dissertation. The first type is the range

query ^'Retrieve all images that are between PCTmin and PCTmax percent o f color C q \

where PCTmin and PCTmax represent percentages and C q represents a eolor in the RGB

model. For example, if PCTmin is 10, PCTmax is 100, and C q is (255,0,0), then the query

is to retrieve all images that are between 10% and 100% of color (255,0,0), which is

equivalent to retrieving all images that are at least 10% red. The second type o f query is

a nearest neighbor of the form ‘‘'Retrieve the k images that most resemble Q based on

color”, where k represents a number, and Q represents a query image.

147

The prototype retrieves images from data sets obtained from various sites on the

Internet ([Flag, 2003], [Helm, 2003]). Each data set consists o f images stored as gif files.

The first data set contains a collection of images o f flags around the world [Flag, 2003],

and the second contains a collection of images of college football helmets [Helm, 2003].

Many o f the images in the flag data set are very similar, such as the flags of France and

Italy. In addition, some of the flag images are closer views of portions of other flag

images. In the collection of images from the Helmet Project, many images only differ in

the color o f the facemask or logo. Again, this means that several o f the images in that

data set are similar.

8.1.3. User Interface

To submit the range query described in the previous section to the VRS, users

must access the screen displayed in Figure 8-2. This screen allows the user to populate a

form by entering values for PCTmin, PCTmax, and C q . The values for PCTmin and PCTmax

are restricted to integers between 0 and 1 0 0 . The color C q is expressed as a value in the

RGB color model, so the user must enter a value between 0 and 255 for each of the Red,

Green, and Blue axes of that model. In addition, the interface requires the user specify

the data set to search since there are multiple data sets in the system.

Upon submission of the form, the prototype executes the rule-based range query

processing algorithm. Upon completion of the algorithm, the system generates and

displays a web page back to the user containing the set o f retrieved images. Specifically,

the system displays the thumbnail of each retrieved image along with its associated

filename in the web page. An example of such a page is shown in Figure 8-3.

148

a V i ' W a l lii t.iij*? H e i t i e v a !

rap;/Aww.cs;ou.edu/nbKxwiA9wi/vUangeLpi

■ 3

Retrieve Images by Color

Haaieve iram tke faQawing database
^ Ceoobies (bgaaet)
r Col<«a Footbdl Ĥ nels gaddeMsK*)

all images vrfiere
no less than jsô %
and 00 mote dam |l 00 %

of the image eontains die color
Red(P-235) p T
Green <0 - 255) p T
Bkie (0 - 255) p

SibmitGuaiv»

• trOM /

Figure 8-2. User Interface for Submitting
Range Queries to Prototype

Retrieved Im ^es

M m a g is tka l are bslMietn SOa>ai lO O ptm ni QSS^Si.O)

TJNST052.gif

NEIHOll gif

BELG006.gif

NIDEOOl.gf)

MALS009.gif

Figure 8-3. User Interface for Displaying
Retrieved Images

Since the prototype retrieves both virtual and binary images, the creation o f the

thumbnails differs. For binary images, the thumbnail is a version o f the image reduced to

40x40 pixels. Since the prototype does not store an instantiated version o f a virtual

image, it cannot display a reduced version o f that image, so the prototype displays a

default picture for each virtual image it retrieves. When users click the thumbnail o f a

binary image, the system generates a web page containing the M l size o f the image.

Alternatively, when users click the default picture corresponding to a virtual image, the

system instantiates the image and displays a web page containing the derived image as

displayed in Figure 8-4. An additional feature o f the query results page displayed in

149

Figure 8-3 is that users can view the description o f a virtual image by clicking on its

filename as displayed in Figure 8-5

UNST060.vrt

^ U N S TOP,H v rt M ic ro s o ft In te rn e t Ex.

Figure 8-4. User Interface for Displaying
an Instantiated Virtual Image

UNST060.vrl - Micros

U N S T 0 6 0 . w t

http://vww(.cs.DU.edu/~bown i

JS NS TQ5 9 . g i J
Û e / i n e 4 4 1 1 2 2 0 4 2 7 2
me r g e N U LLOù
d e f i n e OOl 6 0 1 60
mu t a t e 1 . 6 0 0 0 1 . 6 0 001

Figure 8-5. User Interface for Displaying
the Description o f a Virtual Image

Users must specify a query image in order to submit a nearest neighbor query. In

the VRS prototype, users can specify a query image using the browsing interface as

displayed in Figures 8-6 and 8-7. In the first figure, the prototype allows users to specify

the desired data set by selecting a random image displayed fi'om each set. When users

click on one o f the images, the prototype randomly chooses 25 images and displays them

as shown in the second figure. At this point, users may select any one o f the 25 random

images to be the query image by clicking its image. In order to select from a different set

o f images in the data set, users may regenerate the web page, which will again randomly

choose 25 images.

150

http://vww(.cs.DU.edu/~bown

mpc/AwHw.cs.cuedur'Ibroiwcghbn/Vb̂

Select a Database

...Æl.-K '-HjiffltSM. . VHKH

n a g i i f C m m lR n.(B B |tju$

C alege FnmAaH H ekaets

" ~ "'tglSm* ■ ■

ayiaybBafB

w

Figure 8-6. User Interface for Selecting a
Data Set

Figure 8-7. User Interface for Browsing
Images o f a Data Set

j V i s u a l I r r i s f j e R e i i i e v a t S y s f t - m - l n » o t . n e i 1 x p l o f f - i E F

S/It FjMrtM look IM

I ht^//vmvM.c&oM^«ju/Mb(own/cgFàVYbffipl? :

Nearest Ndighbor Query

RfltrievB A b u p pô~ i

t
Figure 8-8. User Interface for Submitting Nearest Neighbor Queries

151

When one o f the 25 random images is clicked, the prototype uses it as the query

image and generates the nearest neighbor query form that allows users to specify a value

for k. An example of this form is displayed in Figure 8-8. After the query is submitted,

the prototype executes the rule-based nearest neighbor retrieval algorithm and generates a

web page containing the list of images that satisfy the query as shown previously in

Figure 8-3.

8,2. Performance Parameters

The prototype developed in the previous section was used to compare and

evaluate the performance of the four different image retrieval algorithms described

earlier. The tests were conducted using three different sets of images collected from the

Internet. The first set represents a set of college football helmets [Helm, 2003], and the

second set represents a set of flags of countries [Flag, 2003]. Although these data sets

represent real-world data, they have certain biases in them that may affect the test results,

so a third image set was used in the performance evaluation. This final set was created as

a collection o f images representing various application areas including business, law

enforcement, weather forecasting, and space exploration [Rand, 2003].

The default values for the variables used in the performance evaluations are listed

in Tables 8-1 and 8-2. The variables N , Nsmary, Nvirtuai, and Nop will vary for each data

set, so their default values will differ as well. This is also true for the variables NMain and

Nunciass- Alternatively, the variables N r, NRBinary, NRVirtuai, and Nsounds are dependent on

the query posed to the prototype, so they are not given default values.

152

Param D e sc rip tio n D e fau lt V a lue

N Num ber o f Images in the Database
551 (Helmet)
817 (Flag)
500 (Random)

N Binary Num ber of Binary Images in the Database
391 (Helmet)

466 (Flag)
5 (Random)

N virtual Num ber o f Virtual Images in the Database
160 (Helmet)
351 (Flag)
495 (Random)

N r Expected Number of Retrieved Images Query-Dependent

N R binary Expected Number o f Retrieved Images that are Binary Query-Dependent

NRVirtual Expected Number o f Retrieved Images that are Virtual Query-Dependent

N o p Average Number of Operations within a Virtual Image
4.56 (Helmet)

4.99 (Flag)
2.11 (Random)

N s o u n d s Expected No. o f Times BOUNDS is executed for Nearest Neighbor Query Query-Dependent

T R an g e Average T ime needed to Identify Parameters o f Range Query 0

I N N Average Time needed to Identify Parameters o f Nearest Neighbor Query 0

T A ccess Average Time needed to Access an Image 0

T Instant Average T ime needed to Instantiate a Virtual Image T s a s e + T A ccess + (N o p X T o p)
T o isp lay Average Time needed to Display an Image 0
TE xtract Average Time needed to Extract a Histogram from a Binary Image 1.49

T n is t Average T im e needed to Access and Compare Histogram Bins 0.000025

T o is t Average T ime needed to Compute the Distance Between Histograms 0.0017

T s a s e Average T ime needed to Identify the Base Image o f a Virtual Image 0.00032

T s iz e Average Time needed to Identify the No. o f Rows & Columns o f an Image 0.00066

T a s Izs Average T ime needed to Access the Numbers o f Rows & Columns 0.000063

T Bounds Average T ime needed to Execute the BOUNDS algorithm T B a s e + T x c c e s s + (N o p x T r u Ib)
T virtuaL N N Average Time needed to Execute the Virtual_NN algorithm NBounds X T Bounds
T r u Io Average T ime needed to Apply a Rule for an Editing Operation 0.00028

T o p Average T ime needed to Apply an Editing Operation to an Image 1.58

T l y p e Average Time needed to Determine if an Image is Binary or Virtual 0.00018

T a s Average Time needed to Add an Image ID to the Set o f Satisfying Images 0

T a b Average T ime needed to Add a Binary Image to the Database 0

T a v Average T ime needed to Add a Virtual Image to the Database 0

T a h Average T ime needed to Add a Histogram to the Database 0

S B inaty Average Size o f Binary Images in the Database (in bytes)
7281.88 (Helmet)
6204.28 (Flag)

11396.6 (Random)

Sv irtua l Average Size of Virtuai Images in the Database (in bytes)
131.04 (Helmet)
137.16 (Flag)
70.27 (Random)

S H is t Average Size o f Histogram Extracted From Binary Images (in bytes)
190.74 (Helmet)
228.27 (Flag)
190.40(Random)

"able 8-1. Default Values of Parameters Used in Performance Evaluation

153

Param Description Default Value

NM ain Number o f virtual images that contain only operations with bound-widening rules
14 (Helmet)
207 (Flag)

425 (Random)

N u n c la ss Number o f virtuai images that have an operation whose rule is not bound-widening
146 (Helmet)
144 (Flag)

70 (Random)

TM ain Average Time needed to Access an Element o f the Main Component 0.00005

T Unclass Average Time needed to Access an Element o f the Unclassified Com ponent 0

TAddM ain Average Time needed to Add an Element to the Main Component 0.0025

T AddUnciass Average Time needed to Add an Element to the Unclassified Component 0.0010

S id Average Size of an identifier (in bytes) 18.21

Table 8-2. Default Values of Data Structure Parameters used in Performance Evaluation

All o f the Time (T) variables are expressed in seconds. Some of the expected

times are directly dependent on a data set. For those variables, a default time is given for

each of the flag and helmet data sets. The default values for each of the Time variables

were determined by executing the prototype for each action. In addition, the Size (S)

variables are all dependent upon the data sets. Thus, a default value, which is expressed

in bytes, is given for each of the three data sets.

Table 8-3 describes the dynamic parameters used in the evaluation. The

percentage o f virtual images was varied in the tests that evaluated the execution time and

permanent storage space of the algorithms. The query parameters were varied in the tests

that evaluated the retrieval accuracy.

Param Parameter Range of Values Default Value

Pvirtual
Percentage o f images in the Database Stored Virtually
(Nvirtual/N)

0-29% (Helmet)
0-43% (Flag)
0-95% (Random)

29% (Helmet)
43% (Flag)
99% (Random)

Width
Range specified by parameters of range query

(PCTmax-PCTmln)
5 - 7 5 25

k
Number o f images requested by parameters of k-nearest
neighbor query

5 - 1 0 0 25

Table 8-3. Dynamic Parameters used in Performance Evaluation

154

8.3. Performance Evaluation Results

This section presents the results o f the various sets o f tests performed to measure

the accuracy, execution time, and permanent storage space o f the four different

approaches to image retrieval: Rule-based, BSH, VSIS, and VSII. The first set of tests

examines how the permanent storage space is affected by varying the percentage of

images in the database that are stored virtually. This test will illustrate one of the main

advantages o f using virtual images over the BSH approach. The second set o f tests

examines the effect of the same parameter on the time needed to execute retrieval

queries. The third set of tests examines the effect of the percentage of virtual images in

the database on the time needed to insert edited images. The final set of tests examines

how the parameters of each query affect the retrieval accuracy of the rule-based

algorithms.

8.3.1. Permanent Storage Space

The first test measured the permanent storage space required by the conventional

BSH approach and the approaches that utilize virtual images while varying the

percentage o f images stored virtually and keeping the total number of images constant.

The results o f the test for the helmet, flag, and random data sets are displayed in Figures

8-9a, 8-9b, and 8-9c, respectively. Each figure indicates that the virtual approaches

consume much less space than the BSH approach.

155

Permanent Storage Space (Helmet Data Set)

4.5

4 — V R S

B - V S I S

^ V S II

3.5

2.5
0.2 0.250.05 0.15

P ercen tage of Im ages Stored Virtually

0.3

Figure 8-9a. Space Savings vs. Percentage of Images Stored Virtually (Helmet Data Set)

Permanent Storage Space (Flag Data)

5.5

4 — V R S

T^r-BSH
■ a - V S IS

^ V S II

4.5
O)

3.5

0.30.1 0.2

P ercentage of Im ages Stored Virtually

0.4

Figure 8-9b. Space Savings vs. Percentage of Images Stored Virtually (Flag Data Set)

156

Permanent Storage Space (Random Data)

- f — V R S

^ B S H
Q - V S I S

^ V S II

0.4 0.6 0.8

P ercen tage o f Im ages Stored Virtually

0.2

Figure 8-9c. Space Savings vs. Percentage of Images Stored Virtually (Random Data Set)

Because the binary images compose the largest portion o f the total space used by

the approaches, the difference in space is directly related to the percentage o f images that

are stored virtually. For the helmet data set, the virtual approaches store 29% fewer

binary images than the BSH approach, and they use 28% less space. Similarly, for the

flag data set, the virtual approaches store 43% fewer binary images than the BSH

approach, and they use 41% less space. Finally, the virtual approaches store 99% fewer

images than the BSH approach for the random data set, and they use 99% less space.

Since the percentage of images stored virtually directly affects the space saved, it can be

concluded that applications that need to reduce the amount o f space consumed by data

will benefit by storing as many images as possible virtually. Such applications include

those that archive data or transmit data across a network.

157

8 . 3 . 2 . R e t r i e v a l T i m e

The next set of tests compared the time required to process retrieval queries using

the algorithms for the various approaches. To determine the average time used by the

VRS prototype to process range queries, 27 queries were executed with random values

for the query parameters PCTmin, PCTmax, and C q for each data set. This number of

executions permitted computing the mean average time with a relative error below 0.1.

Similarly, 27 queries were executed with random values for the query parameters Q and k

to determine the average time used to process nearest neighbor queries.

Figures 8-10a, 8-10b, and 8-10c show the results for the helmet, flag, and random

data sets, respectively. These results compare the time taken by the VSIS and rule-based

approaches for processing nearest neighbor queries against the percentage o f images

stored virtually. Each of the illustrates demonstrates the main disadvantage of the VSIS

approach, namely that it requires much more time than the other methods to process the

retrieval queries. For example, the rule-based algorithm is an average of 99.40% faster

than the VSIS approach for the helmet data set, an average o f 99.87% faster than the

VSIS approach for the flag data set, and an average of 99.95% faster than the VSIS

approach for the random data set.

158

Nearest Neighbor Query Time (Helmet Data Set)

60 0

500

4 0 0

e - V R S

« - V S I S
30 0

200

100

0 .1 5

P ercen tage o f Im ages Stored Virtually

0 .0 5 0.2 0 .2 5 0 .3

Figure 8-10a. Searching Time for Nearest Neighbor Query vs. Percentage o f Images
Stored Virtually (Helmets)

Nearest Neighbor Query Time (Flag Data Set)

7 0 0 0 1

6 0 0 0

50 0 0

4 0 0 0 e - V R S

« - V S I S3000

2000

1000

0.1 0 .2 0 .3

P ercen tage o f Im ages Stored Virtually

0 .4

Figure 8-10b. Searching Time for Nearest Neighbor Query vs. Percentage o f Images
Stored Virtually (Flags)

159

Nearest Neighbor Query Time (Random Data Set)

14000

1? 12000
T3
C
o
y
(0
% 8000
E
H 6000
c
o
■-§ 4000
u
lE 2000

0 0.2 0.4 0.6 0.8 1

-Q -V R S

-« -V S I S

P ercentage of Im ages Stored Virtually

Figure 8-lOc. Searching Time for Nearest Neighbor Query vs. Percentage o f Images
Stored Virtually (Random)

Similar results are obtained when the execution time for the rule-based and VSIS

approaches are presented for the range query. These results are in Figures 8-1 la, 8-1 lb,

and 8-1 Ic for the helmet, flag, and random data set, respectively. During the testing, the

rule-based approach was an average of 99.39% faster for the helmet data set, 99.99%

faster for the flag data set, and an average of 99.99% faster for the random data set when

compared to the VSIS approach.

160

Range Query Time (Helmet Data Set)

600

w 500
Cq
% 400
Î2.
V
E 300

I 200
3

X 100 UJ

0 0.05 0.15 0.20.1 0.25 0.3

-B -V R S

- ■ - V S IS

P ercen tage o f Im ages Stored Virtually

Figure 8-1 la. Searching Time for Range Query vs. Percentage o f Images Stored Virtually
(Helmets)

Range Query Time (Flag Data Set)

7000 1

6000

5000

4000 B -V R S

« - V S I S3000 -

2000

1000

0.1 0.2

P ercen tage o f Im ages Stored Virtually

0.3 0.4

Figure 8-1 lb. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Flags)

161

Range Query Time (Random Data Set)

14000 1

12000

10000

8000 ■e—Rule
« - V S I S6000

4000

2000

0.2 0.4 0.6 0.8

P ercen tage o f Im ages Stored Virtually

Figure 8-1 Ic. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Random)

The results of all of the above figures indicate that the VSIS approach behaves

worse as more images are stored virtually unlike the rule-based approach. The reason for

this behavior is that the each virtual image is instantiated as a part o f the VSIS approach.

Consequently, an increase in the percentage of images stored virtually means an increase

in the number o f instantiations performed during query processing.

Tests were also conducted to compare the time required by the rule-based

algorithm for processing retrieval queries to the time required by the BSH and VSII

approaches which are histogram-based. The first test measured the average execution

times o f the different approaches for processing nearest neighbor queries. The results of

the test are displayed in Figure 8-12a, 8-12h, and 8-12c for the helmet, flag, and random

data sets, respectively. They indicate that the rule-based algorithms get slower as the

162

percentage o f virtual images increases. In contrast, the time o f the histogram-based

algorithms remain constant since they search N feature vectors irrespective o f the

percentage o f images that are stored virtually. Thus, the rule-based algorithm does

execute slower than the histogram-based ones. On average, the histogram-based

algorithms were 21.04% faster for the helmet data set, 16.72% faster for the flag data set,

and 14.06% faster for the random data set.

Nearest Neighbor Query Time (Helmet Data Set)

T3
§ 1.2

I 1
Q)
E 0.8

I 0.6

Ü 0.4
Xm 0.2

0 0.15 0.2 0.250.05 0.1 0.3

P ercen tage o f Im ages Stored Virtually

— 1--VRS

- h - -BSH

- X - -VSII

Figure 8-12a. Searching Time for Nearest Neighbor Query vs. Percentage of Images
Stored Virtually (Helmets)

163

Nearest Neighbor Query Time (Fiag Data Set)

3.5 1—

V) <3 TJ
8 2.5
<uw

c
o
3 I

%
^ 0.5

0.2 0.30 0.1 0.4

— 1--VRS

- A - -BSH

- X - -VSII

P ercentage of Im ages Stored Virtually

Figure 8-12b. Searching Time for Nearest Neighbor Query vs. Percentage o f Images
Stored Virtually (Flags)

Nearest Neighbor Query Time (Random Data Set)

3.5

2.5 4 — VRS

^ V S II

0.5

0.2 0.4 0 .6 0.8

P ercen tage of Im ages Stored Virtually

Figure 8-12c. Searching Time for Nearest Neighbor Query vs. Percentage of Images
Stored Virtually (Random)

164

The next test indicates one of the causes o f the slower execution time of the rule-

based approach by measuring the average time needed to process range queries. The

results o f this test are displayed in Figures 8-13a, 8-13b, and 8-13c, respectively, and they

demonstrate that the rule-based algorithm requires substantially more time to execute

than the histogram-based algorithms. The reason for the increase in time is that the rule-

based algorithm applies a rule for each editing operation in a virtual image to determine

the colors in an image while the other approaches simply access a single histogram value.

The rule-hased algorithm for processing k-nearest neighbor queries uses this range query

algorithm repeatedly which means that if the time needed by this algorithm could be

reduced, it would reduce the time needed by the rule-based k-nearest neighbor query

processing algorithm.

Range Query Time (Helmet Data Set)

0.18

_ 0.16 - U)
c 0.14 -

« 0.12 -

? 0. 1 -
E
H 0.08 -

I 0 .0 6 -

i 0.04^
0.02 -

0 0.05 0.1 0.15 0.2 0.25 0.3

A - BSH

P ercen tage of Im ages Stored Virtually

Figure 8-13a. Searching Time for Range Query vs. Percentage o f Images Stored Virtually
(Helmets)

165

Range Query Time (Flag Data Set)

0.4

0.35

0.3

0.25 ■4— VRS

T^r-BSH
* -V S I I

0.2

0.15

0.05

0.1 0.2 0.3

P ercen tage of Im ages Stored Virtually

0.4

Figure 8-13b. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Flags)

Range Query Time (Random Data Set)

0.25 1

0.2

0.15

lA-BSH
^ V S l l0.1

0.05

0.4 0.6 0.8

P ercen tage of Im ages Stored Virtually

0.2

Figure 8-13c. Searching Time for Range Query vs. Percentage o f Images Stored Virtually
(Random)

166

Speeding up the rule-based query processing algorithm is one of the goals of the

data structure proposed in Chapter 5. The next test compared the average execution time

of the rule-based algorithm for processing range queries with and without that data

structure. As with the previous tests, the average execution time is measured against the

percentage o f the images in the database that are stored virtually.

The results of the above test are displayed in Figures 8-14a, 8-14b, and 8-14c for

the flag, helmet, and random data sets, respectively. They indicate that the average

execution time of the proposed data structure is smaller than the average execution time

without it. Specifically, using the proposed data structure allows the rule-based approach

to process the range queries an average of 33.07% faster for the helmet data set, an

average of 22.08% faster for the flag data set, and an average of 18.03% faster for the

random data set. The reason for the improvement is that the data structure processes the

queries while avoiding the application of some of the rules for virtual images.

167

Range Query Time (Helmet Data Set)

0.18

0.16

0.14

0.12

-B—w /out D ata S truc tu re

a —with D ata S truc tu re0.08

0.06

0.04

0.02

0.05 0.1 0.15 0.2 0.25 0.3

P ercen tage o f Im ages Stored Virtually

Figure 8-14a. Searching Time for Range Query vs. Percentage o f Images Stored Virtually
(Helmets)

Range Query Time (Flag Data Set)

0.4

0.35

0.3

0.25
g —w /out D ata S truc tu re

a —with D ata S truc tu re
0.2

0.15

0.05

0.1 0.2 0.3 0.4

P ercen tage o f Im ages Stored Virtually

0.5

Figure 8-14b. Searching Time for Range Query vs. Percentage o f Images Stored Virtually
(Flags)

1 6 8

Range Query Time (Random Data Set)

0.25

I 0.2 -
80>
S2. 0.15 -
o
E
F ^ ^

C
o
3

® 0.05
UJ

0.20 0.4 0.6 0.8 1

-B —w /out D ata S truc tu re

-m—with D ata S truc tu re

P ercen tage of Im ages Stored Virtually

Figure 8-14c. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Random)

8.3.3. Insertion Time

The next set of tests compared the time required to insert images using the various

approaches for retrieving images. The time calculated for inserting images into the

database was determined as the time needed to extract the features from the images stored

in a conventional binary format. Figures 8-15a, 8-15b, and 8-15c show the results of

comparing the insertion time of the rule-based and VSII approaches for the helmet, flag,

and random data sets, respectively. Each of the figures demonstrates the main

disadvantage o f the VSII approach, namely that it requires much more time than the other

approaches since it instantiates virtual images to extract their features. For example, the

rule-based algorithm is an average of 51.56% faster for the helmet data set, an average of

71.59% faster for the flag data set, and an average o f 92.28% faster for the random data

set over the VSII approach.

169

Insertion Time (Helmet Data Set)

1000

^ 900
¥ 8 0 0

8 700
w 6 0 0

I 500

4 0 0

I 3 0 0
o
(A

“ 100

200

0 0 .0 5 0.1 0.20 .1 5 0 .2 5 0 .3

- B - - V R S

- ■ - V I I

P ercen tage o f Im ages Stored Virtually

Figure 8-15a. Insertion Time vs. Percentage of Images Stored Virtually (Helmets)

Insertion Time (Flag Data Set)

8 0 0 0

7 0 0 0

6 0 0 0

5 0 0 0
a - V R S

«HVII
4 0 0 0

3 0 0 0

2000

1000 FT"

0.1 0.2

P ercen tage o f Im ages Stored Virtually

0 .3 0 .4

Figure 8-15b. Insertion Time vs. Percentage of Images Stored Virtually (Flags)

170

Insertion Time (Random Data Set)

14000 T-

^ 12000 -

o 10000 -
a>

^ 8000 - 0)
E
H 6000 -
c
• | 4000 -
0)
(Ac 2000

0 0.2 0.4 0.6 0.8 1

P ercen tage o f Im ages Stored Virtually

- B - V R S

- ■ - V I I

Figure 8-15c. Insertion Time vs. Percentage of Images Stored Virtually (Random)

When comparing the times required to insert images using the BSH approach and

the rule-based and VSIS approaches, it is sufficient to note that the insertion time is

computed as the time needed to extract histograms from the binary images. BSH stores

all images in a binary format while the rule-based and VSIS approaches store only those

that are not edited. Thus, BSH stores more binary images than the rule-based and VSIS,

which means that it must extract more histograms. Consequently, it can be determined

that BSH will take longer than the rule-based and VSIS approaches without testing the

prototypes. The difference in the times will be directly proportional to the number of

images in the rule-based and VSIS approaches that are not stored in a binary format.

171

8.3.4. Retrieval Accuracy

The results o f the tests in the previous sections indicate that the rule-based

algorithms use much less permanent storage space than the BSH algorithms, require

much less retrieval time than the VSIS algorithms, and require much less insertion time

than the VSII algorithms. Thus, the rule-based approach is the only one among the four

that does not perform poorly in at least one of the three areas, permanent storage space,

retrieval query processing time, and insertion query processing time. The VSII and VSIS

approaches, however, have an advantage over the rule-based approaches in that they use

histograms to compare and retrieve images. Thus, they will produce the same results in

response to retrieval queries as the BSH approach. The purpose of the tests in this

section is to illustrate the difference between the results o f the rule-based approach and

the histogram-based approaches.

The metrics used to determine the accuracy of the rule-based algorithms in the

following set o f tests were precision and recall. Precision is the number of relevant

images retrieved divided by the total number of images retrieved, and recall is the

number of relevant images retrieved divided by the total number of relevant images in the

database [Falo, 1996]. Since the k-nearest neighbor specifies the number of images

obtained from the database by the retrieval algorithms, both the precision and the recall

o f the algorithms will be the same. To illustrate, consider if an algorithm retrieves x of

the k relevant images, where x is some number less than or equal to k. The result is that

the recall of the algorithm would be x/k. In addition, the algorithm returned k images as

well, which means that only x of those k images are relevant. Thus, the precision of the

algorithm would also be x/k.

172

8.3.4.I. Accuracy of Rule-Based Nearest Neighbor Query Processing Algorithm

This set o f tests compared the precision and recall of the various approaches for

processing nearest neighbor queries of the type '''Retrieve the k images that are the most

similar to the query image Q \ where k is an integer and Q is a image stored in a binary

format. The number of images that are retrieved should affect the accuracy of the rule-

based algorithm, so the first test measured the precision and recall against the number of

images retrieved by the algorithm, which is k. The values of k ranged from 5 to 50 for

the flag and helmet data set, and from 5 to 100 for the random data set.

The results of this test are displayed in Figures 8-16a, 8-16b, and 8-16c for the

helmet, flag, and random data sets. The results indicate that the histogram-based

algorithms perform slightly better than the rule-hased algorithm in terms of retrieval

accuracy. Specifically, the rule-based algorithm retrieved 12.36% fewer relevant images

than the histogram approaches for the helmet data set, 25.57% fewer relevant images for

the flag data set, and 11.22% fewer relevant images for the random data set.

The above results also indicate that the rule-hased algorithm performs better when

users search for many images that are similar to a query image than when users search for

the a smaller number of images. Thus, the rule-based algorithm is more appropriate

when a user can pose a query requesting many images o f flags that are similar in color to

the U.S. flag instead of requesting the image of the flag that is most similar to it. An

example application that requires retrieving many images is one for law enforcement

where a query may be posed that requests pictures of all suspects that are similar to a

drawing formed by a sketch artist. Because of the uncertainty in the drawing, the system

should retrieve many images of suspects that may be similar.

173

Nearest Neighbor Recall/Precision for Helmet Data Set

0.9
0.8
0.7

0.6
0.5
0.4

0.3

0.2

B S H

e-vsis
^ V S II

Number o f Retrieved Im ages

Figure 8-16a. Retrieval Accuracy vs. Number o f Retrieved Images (Helmets)

Nearest Neighbor Recail/Precision for Fiag Data Set

0 . 6 T-

0.4 4 — V R S

■e-vsis
4 f - V S I I

0.3

0.2

Number of Retrieved Im ages

Figure 8-16b. Retrieval Accuracy vs. Number of Retrieved Images (Flags)

174

Nearest Neighbor Accuracy (Random Data Set)

0.9

0.8
0.7

0.6
0.5

0.4

0.3

0.2

-̂ — VRS

e-vsis
4(-V SII

100
Number o f Im ages R etrieved

Figure 8-16c. Retrieval Accuracy vs. Number of Retrieved Images (Random)

S.3.4.2. Accuracy of Rule-Based Range Query Processing Algorithm

One of the factors affecting the retrieval accuracy of the rule-based algorithm for

processing k-nearest neighbor queries is the retrieval accuracy of the range query

processing algorithm. The next set of tests measured that accuracy in order to identify

the cause o f the results of the previous test. Since the rule-based range query processing

algorithm works by computing bounds on the percentage o f pixels that may be of the

desired query color, and it retrieves an image if those bounds intersect the range [PCTmin,

PCTmax], then the range specified in the query will affect whether the algorithm retrieves

an image. Thus, the query range affects the precision and recall of the rule-based

algorithm. Consequently, the next test measures the precision and recall against the

width of the query range [PCTmin, PCTmax] as it increased from 5 to 75

175

Range Recall/Precision for Helmet Data Set

0.8

0
1 0-6
£
9:

0.4
u
a:

0.2

5 15 25 35 45 6555 75

- P recision

■ Recall

Width of R ange Query (PCTmax-PCTmin)

Figure 8-17a. Precision and Recall vs. Width of Range Query (Helmets)

Range Recall/Precision for Flag Data Set

c
o
w

I 0.4u
C£.

0.2

5 25 6515 35 45 55 75

-P rec ision

■ Recall

Width of R ange Query (PCTmax-PCTmin)

Figure 8-17b. Precision and Recall vs. Width of Range Query (Flags)

176

Range Recall/Precision for Random Data Set

0.8
cg
•2 0.6

a.I 0.4
%ÛÜ

0.2

5 15 4525 35 55 65 75

-P rec ision

- Recall

Width of Range Query (PCTmax - PCTmin)

Figure 8-17c. Precision and Recall vs. Width of Range Query (Random)

The results of the above test are displayed in Figures 8-17a, 8-17b, and 8-17c for

the helmet, flag, and random data sets respectively. The results display the precision and

recall for the rule-based approach since it is the only approach that is not histogram-

based. Since the recall is much higher than the precision in each of the tests, the results

indicate that the rule-based algorithm retrieves most o f the images that should be returned

as a result of the query along with many more images that should not he retrieved.

The reason for the above result can be determined from the behavior o f the rules.

After applying the rules to the editing operations in a virtual image, the rule-based

algorithm produces an interval [BOUNDmin, BOUNDmax]. This interval should enclose

the actual percentage of pixels in the virtual image that are o f the query color. Since the

actual percentage o f pixels is not known, however, the algorithm retrieves the image if

[PCTmin, PCTmax] intcrsects this interval. Thus, it is possible that the intervals intersect.

177

but the actual percentage of pixels that are of the query color is not within [PCTmin,

PCTmax]- Since the actual percentage is not within this interval, the image is not relevant

to the given query. Because the intervals intersect, however, the rule-based algorithm

would retrieve the image. Thus, the algorithm would retrieve an image that is not

relevant, which decreases its precision.

Another conclusion that is implied by the above results is that the rule-based

algorithm tends to have higher rates o f precision and recall as the query interval grows.

Since it is easier for the bounds computed by the rules to intersect the query range if it is

large, it is expected that the rule-based algorithm will retrieve more images with larger

query ranges. Since the algorithm retrieves more images with larger query ranges, it is

expected that the recall of the algorithm should improve and the precision o f the

algorithm should decline as the query range grows. The results also show that the

precision is low when the query range is small, however. The reason why is that there

are fewer images that can be matched by the rule-based algorithm.

The above results imply that the rule-based range query processing algorithm is

more effective when used with queries with larger ranges. Thus, the rule-based algorithm

is more appropriate when users search for images with a general amount o f color than

when they search using the precise amount of color. For example, the rule-based

algorithm is more appropriate when a user can pose a query requesting the images of

flags that are at least 50% red instead of requesting images that are exactly 75% red.

178

8.4. Perform ance Evaluation Summary

The performance evaluation conducted in the previous section measured the

differences on the metrics of space, time, and accuracy when using the various

approaches for processing queries in retrieval systems that store images virtually. This

section summarizes the advantages and disadvantages of each approach.

The Binary Storage with-Histograms (BSH) algorithms have the advantage of

being simple. All images can be stored in the same format so the underlying database

management system only needs to manipulate one type of image. The disadvantage of

the algorithms is that they consume the most space o f the four approaches since no

images are stored virtually. The BSH algorithms also extract histograms from all images

during insertion, so this approach is also slower than the rule-based approach when

inserting images.

Considering the above discussion, the BSH algorithms are best suited for

applications that are most dependent on retrieval query processing time and not space or

insertion time. Thus, the algorithms are the most appropriate for applications with static

data sets that are searched frequently, such as medical diagnostic applications where an

image taken from a patient may be compared with images o f known diseases. The BSH

algorithms are also appropriate for data sets that do not contain sets of images that are

similar, since they do not store images virtually.

The virtual algorithms have various advantages and disadvantages. One of the

advantages o f the Virtual Storage with Instantiation while Searching (VSIS) algorithms is

that they save space by storing images virtually. In addition, the algorithms do not store

or extract any information from virtual images when they are first inserted, so the VSIS

179

algorithms are as fast as the rule-hased algorithms when inserting images. Another

advantage o f the VSIS algorithms is that they are histogram-based, so they produce the

same results as the conventional BSH algorithms.

The main disadvantage of the VSIS algorithms is that they are extremely slow

when processing retrieval queries since they instantiate all o f the virtual image and

extract their histograms. This means that these algorithms are not appropriate for

applications that allow users to perform content-hased searches frequently. Thus, the

VSIS algorithms are best suited for applications in which users may constantly create and

add new images to the database hut rarely retrieve them. Thus, the algorithms are more

useful for applications that simply archive data.

The Virtual Storage with Instantiation while Inserting (VSII) algorithms extract

histograms from all images like the BSH algorithms, so they share some of the same

advantages. Specifically, the BSH algorithms process the retrieval queries as quickly as

the BSH algorithms, and those queries produce the same results. In addition, the VSII

algorithms store images virtually, so they use less space than the BSH algorithms.

The main disadvantage of the VSII algorithms is that they are extremely slow

when inserting virtual images into the underlying database management system since

they instantiate the images before extracting their features. Thus, these algorithms are

not appropriate for applications in which users will frequently update the database by

adding new images. Alternatively, the VSII algorithms are most appropriate for many of

the same applications as the BSH algorithms, which are applications with static data sets

that are frequently searched. The difference is that the VSII algorithms should be used

180

with those applications that store edited images, such as one that displays standard

automobile models that differ only in color.

The rule-based algorithms implemented in the VRS prototype have the advantage

that they require the significantly less space than the BSH algorithms, just as the VSIS

and VSII algorithms. The main contribution of the rule-based algorithms, however, is

that they do not instantiate images during the processing of insertion or retrieval queries.

The result is that they are significantly faster than the VSIS algorithms when retrieving

images and significantly faster than the VSII algorithms when inserting images. A

potential disadvantage of the rule-based algorithms, however, is that they do not produce

the same results as the BSH algorithms when processing retrieval queries. As indicated

in the previous section, the algorithms are better suited for queries when users want to

retrieve many images.

Considering the above information, the rule-based algorithms are best suited for

applications where users insert and retrieve images frequently, and need to reduce the

amount o f space used by those images. Also, users should pose less-specific queries, or

queries that request many images to be retrieved. Applications with these characteristics

include databases for web-based stores where users want to browse many images of

products that are updated quickly.

Tables 8-4a, 8-4b, and 8-4c summarize the comparison o f the four approaches to

retrieving images. The first column specifies the approach used and the remaining

columns specify the metrics used for comparison. Each cell in the table describes the

performances o f the prototypes during the tests with the maximum percentage of images

stored virtually, which are 29% for the helmet data set, 43% for the flag data set, and

181

50% for the random data set. Table 8-4a is for the helmet data set, 8-4b is for the flag

data set, and 8-4c is for the random data set.

Approach Storage Space
(MB)

Insertion Time
(sec)

Nearest
Neighbor
Time (sec)

Nearest
Neighbor
Accuracy

Rules (VRS) 23^65 1.34 46%
BSH 4.12 337.91 1.00 53%
VSIS 246 23^65 554.74 53%
VSII 249 89T65 1.00 53%

Table 8-4a. Comparison of Alternative Approaches (Helmet)

Approach Storage Space
(MB)

Insertion Time
(sec)

Nearest
Neighbor
Time (sec)

Nearest
Neighbor
Accuracy

Rules (VRS) 348 817.72 3.09 34%
BSH 526 1414.21 223 45%
VSIS 3.07 817.72 5727.79 45%
VSII 3.15 7139.65 223 45%

Table 8-4b. Comparison of Alternative Approaches (Flag)

Approach Storage Space
(MB)

Insertion Time
(sec)

Nearest
Neighbor
Time (sec)

Nearest
Neighbor
Accuracy

Rules (VRS) 0.09 6.54 223 73%
BSH 14.36 876.9 2.29 83%
VSIS 0.09 6.54 12174.96 83%
VSII 0.15 13049.23 229 83%

Table 8-4c. Comparison of Alternative Approaches (Random)

182

CHAPTER 9

CONCLUSION

9.1. Summary and Conclusions

MultiMedia DataBase Management Systems (MMDBMSs) focus on the storage

and retrieval o f images and other types of multimedia data. One requirement of these

systems is to provide users a method of performing content-based searching of the

multimedia data objects. Common techniques used by MMDBMSs to satisfy this

requirement, such as feature extraction, usually assume that the data objects are stored in

a conventional binary format.

In data sets that contain edited images, storing the edited images virtually allows

them to be stored using a smaller amount of space when compared to storing them in

conventional binary formats. The goal of this dissertation was to develop and evaluate

multiple algorithms for performing content-based image retrieval o f virtual images. In

the following sections, the main points of the dissertation are summarized which includes

the results of the performance evaluations.

9.1.1. Algorithms for Processing Range Queries

The first contribution of this research is the development of algorithms for

processing range queries of the type ‘'Retrieve all images that are between PCTmin and

PCTmax percent o f color Cq for a multimedia database management system that uses

virtual images, where PCTmin and PCTmax represent percentages and Cq represents a color

183

in the RGB model. Three different approaches are presented for processing the above

query type. The first approach uses the semantic information in virtual images to process

the query. The benefit of this approach is that it is able to process queries of the above

type without having to instantiate any of the virtual images by utilizing their descriptions.

The algorithm has two major steps. The first step identifies the images stored in

conventional binary formats that satisfy the user’s query using conventional histograms.

The second step in the algorithm identifies the virtual images that satisfy the query by

computing the maximum and minimum bounds on the percentage of pixels that may be

o f color C q for each virtual image when it is instantiated. The bounds are computed

using a series of rules, which are presented in Chapter 3. Once the hounds for a virtual

image have been computed, they can then be compared to the range formed by the query

arguments PCTmin and PCTmax to determine if the virtual image satisfies the query.

The second algorithm for processing range queries is the Virtual/Instantiation-

Searching (VIS) approach. This approach utilizes conventional histogram techniques to

retrieve virtual images by converting the images to a binary format during searching.

The final algorithm for processing range queries is the Virtual/Instantiation-

Insertion (VII) approach. This approach also utilizes conventional histogram techniques

to retrieve virtual images. The difference between this approach and the VIS approach is

that instantiation is performed when the virtual images are inserted into the database.

After each instantiation, the color histogram is extracted from the instantiated image and

stored in the database.

184

9.1.2. Algorithms for Processing Nearest Neighbor Queries

The second contribution o f this dissertation is the development of algorithms for

processing nearest neighbor queries of the type '^Retrieve the k images that most resemble

Q based on color” for an MMDBMS that uses virtual images, where k represents a

number and Q represents a query image. These features are assumed to be extracted from

each of the binary images as they are inserted into the MMDBMS.

This dissertation presented three different approaches to processing the query, as

for the processing o f range queries. The rule-based approach utilizes the rules presented

earlier in order to determine the colors that are contained within the virtual image without

instantiating it. The VIS approach again instantiates the virtual images during retrieval in

order to process the nearest neighbor queries using the conventional histogram

techniques. Finally, the VII approach instantiates the virtual images during insertion and

stores histograms extracted from each image in order to utilize the conventional

histogram techniques later during retrieval.

9.1.3. Data Structure for Speeding up Query Processing

The third contribution o f this dissertation is the development o f a data structure

that can be used to speed up the rule-based range query processing algorithm presented in

Chapter 3. The data structure is able to save time by avoiding the processing of some of

the descriptions o f the virtual images. It accomplishes this by utilizing properties of

some of the proposed rules for computing the minimum and maximum bounds on the

percentage o f pixels in a virtual image that are of a given color. Specifically, many of the

185

rules are bound-widening meaning that they do not increase the minimum bound, and

they do not decrease the maximum bound. Since the base image of a virtual image is

used to initialize the minimum and maximum bounds, a virtual image whose operations

correspond to bound-widening rules will satisfy a given query if its base also satisfies the

query.

The proposed data structure contains two components. The first component

contains a list o f the binary images in the database. Each binary image is associated with

the list of virtual images that all have the binary image as their base images and all

contain only operations that correspond to bound-widening rules. The second component

contains those virtual images that have at least one operation that does not correspond to

a bound-widening rule.

9.1.4. Perform ance Evaluation

In Chapter 8, this dissertation provides the results o f a performance evaluation

comparing the conventional Binary-Histogram (BH) approach for processing retrieval

queries to the rule-based, VII, and VIS approaches for processing retrieval queries with

virtual images. The performance evaluation demonstrates that the BH approach uses the

most space since it does not store edited images virtually. In addition, the average times

used to insert an image using the VIS and rule-based approaches are expected to be

shorter than the other approaches since they do not perform any processing on virtual

images when they are inserted. Alternatively, the VII approach takes a long time to insert

186

a virtual image since it instantiates the image to produce a binary version and then

extracts a color histogram from the image to store into the database.

The performance evaluation also demonstrated that the rule-based approach

requires much less time than the VIS approach for processing retrieval queries since the

proposed approach avoids instantiating virtual images. Thus, the rule-based algorithms

can process both insertion and retrieval queries quickly unlike the VIS and VII

approaches while maintaining the space savings over the BH approach by storing edited

images virtually.

The final result of the performance evaluation demonstrates that the rule-based

approaches do not always produce the same results as the other approaches when

processing retrieval queries. This is the trade-off when utilizing the rule-based approach

instead o f the other approaches to processing virtual images.

9.2. Directions for Future Research

Several areas of research are related to the work presented in this dissertation.

One such area is to extend the work by developing techniques for retrieving images using

other features besides color, such as retrieval by texture and retrieval by object shape.

The reason is that although there are many applications that may benefit from virtual

images, most o f the real-life applications require searching based on texture and shape in

addition to color. The development of these techniques is dependent on defining new

rules for determining how editing operations affect texture and shape.

Another open research area concerns optimization o f editing operations. When a

virtual image is created inefficiently, its description may be very large. Many

1 8 7

consequences may occur when a data set contains several virtual images with large

descriptions. One such consequence is that virtual images with large descriptions require

more space, which means that the space savings gained by using virtual images

decreases. Another consequence is that the bounds computed by the algorithms are

adjusted for each editing operation in the description o f the virtual images. Thus, having

a data set with large numbers of operations in the descriptions may degrade the retrieval

accuracy of the algorithms. Finally, one method of instantiating a virtual image is to

access the base image and apply the sequence of editing operations in the description of

the virtual image on the base. If the descriptions are large, then it will take longer to

apply the sequence of editing operations, which means that instantiation will be slower.

Consequently, displaying the retrieved virtual images will also be slower.

Given the above problems, an MMDBMS that uses virtual images must avoid

storing ones with unnecessarily long descriptions. This means that when users create

virtual images inefficiently, the MMDBMS needs to be able to optimize the sequence of

editing operations [Grue, 1996]. Further research is needed to develop methods of

automatic optimization.

Another open research area is to evaluate the effect o f using algorithms that are

hybrids of the rule-based and histogram-based algorithms presented in this dissertation in

order to obtain the advantages of both. For example, one such hybrid approach could

store histograms corresponding to some of the virtual images in order to optimize the

permanent storage space and query processing time. An open issue, then, in creating

such a hybrid approach is how to determine which histograms to store that optimize those

metrics.

188

REFERENCES

[Aars, 1999] Aars, Michael, ''Automatic Feature Extraction Using Specifications o f Images”,
Master’s Thesis, Baylor University, 1999.

[Anna, 2000] Annamalai, Melliyal, et al., “Indexing Images in OracleSi”, Proceedings o f the
2000 ACM SIGMOD International Conference on Management o f Data, May
2000, pp. 539-547.

[Asia, 1999] Aslandogan, Y. Alp and Clement T. Yu, “Techniques and Systems for Image and
Video Retrieval”, 1ERE Transactions on Knowledge and Data Engineering,
Volume 11, Number 1, January/February 1999, pp. 56-63.

[Bach, 1993] Bach, Jeffrey R., Santanu Paul, and Ramesh Jain, “A Visual Information System
for the Interactive Retrieval of Faces”, IEEE Transactions on Knowledge and
Data Engineering, Volume 5, Number 4, August 1993, pp. 619-628.

[Beck, 1990] Beckmann, Norbert, et al., “The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles”, Proceedings o f the 1990 ACM SIGMOD
International Conference on Management o f Data, May 1990, pp. 322-331.

[Berc, 1996] Berchtold, Stefan, Daniel A. Keim, and Hans-Peter Kriegel, “The X-Tree: An
Index Structure for High-Dimensional Data”, Proceedings o f the 22nd
International Conference on Very Large Databases, 1996, pp. 28 - 39.

[Blan, 1997] Blanken, Hans, “Introduction”, Multimedia Databases in Perspective, Chapter 1,
P. M. G Apers, H. M. Blanken, and M. A. W. Houtsma (Eds.), Springer, 1997,
pp. 3-11.

[Boue, 1999] Bouet, Marinette, Ali Khenchaf, and Henri Brand, “Shape Representation for
Image Retrieval”, Proceedings of the 7'̂ ACM International Conference on
Multimedia, 1999, pp. 1-4.

[Bozk, 1997] Bozkaya, Tolga and Meral Ozsoyoglu, “Distance-Based Indexing for High-
Dimensional Metric Spaces”, Proceedings o f the 1997 ACM SIGMOD
International Conference on Management o f Data, May 1997, pp. 357-368.

[Bozk, 1999] Bozkaya, Tolga and Meral Ozsoyoglu, “Indexing Large Metric Spaces for
Similarity Search Queries”, ACM Transactions on Database Systems, Volume
24, Number 3, September 1999, pp. 361-404.

[Brin, 1995] Brin, Sergey, “Near Neighbor Search in Large Metric Spaces”, Proceedings of
the 21st International Conference on Very Large Databases, 1995, pp. 574-584.

[Brow, 1997] Brown, Leonard, Le Gruenwald, and Greg Speegle, “Testing a Set of Image
Processing Operations for Completeness”, Proceedings o f the 2nd Conference on
Multimedia Information Systems, April 1997, pp. 127-134.

[Brow, 1998] Brown, Leonard and Le Gruenwald, “Determining a Minimal and Independent
Set of Image Processing Operations for a Multimedia Database System”,
Proceedings o f the 1998 Energy Technology Conference and Exhibition,
February 1998, pp. 1-6.

[Brow, 1998a] Brown, Leonard and Le Gruenwald, “Tree-Based Indexes for Image Data”,
Journal of Visual Communication and Image Representation, Volume 9, Number
4, 1998, pp. 300-313.

[Brow, 2001] Brown, Leonard and Le Gruenwald, “A Prototype Content-Based Retrieval
System that Uses Virtual Images to Save Space”, Proceedings o f the 27‘’'
International Conference on Very Large DataBases (VLDB), 2001, pp.693-694.

[Cheu, 1998] Cheung, King Lum and Ada Wai-chee Fu, “Enhanced Nearest Neighbour Search
on the R-tree”, ACM SIGMOD Record, Volume 27, Number 3, September 1998,
pp. 16-21.

189

[Ciac, 1997] Ciaccia, Paolo, Marco Patella, and Pavel Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces”, Proceedings o f the 23rd
International Conference on Very Large Databases, 1997, pp. 426-435.

[Come, 1979] Comer, Douglas, “The Ubiquitous B-Tree”, ACM Computing Surveys, Volume
11, Number 2, June 1979, pp. 121-137.

[Dao, 1996] Dao, Son, Qi Yang, and Asha Vellaikal, “MB^-Tree: An Index Structure for
Content-Based Retrieval”, Multimedia Database Systems, Chapter 11, Kingsley
C. Nwosu, Bhavani Thuraisingham, and P. Bruee Berra (Eds.), Kluwer Academic
Publishers, Boston, 1996, pp.298-317.

[Djer, 1997] Djeraba, Charbane et al., “Retrieval and Extraction by Content of Images in an
Object Oriented Database”, Proceedings o f the 2nd Conference on Multimedia
Information Systems, April 1997, pp. 50-57.

[Eaki, 1996] Eakins, John P., Kevin Sheilds, and Jago Boardman, “ARTISAN - A Shape
Retrieval System Based on Boundary Family Indexing”, SPIE Volume 2670
Storage and Retrieval for Image and Video Databases IV, I. K. Sethi and R. C.
Jain (Eds.), SPIE Press, Bellingham, Washington, 1996, pp. 17-28.

[Eaki, 1998] Eakins, John P., Jago Boardman, and Margaret E. Graham, “Similarity Retrieval
of Trademark Images”, IEEE Multimedia, Volume 5, Number 2, April-June
1998, pp. 53-63.

[Fagi, 1998] Fagin, Ronald, “Fuzzy queries in Multimedia Database Systems”, Proceedings o f
the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles o f Database
Systems, June 1998, pp. 1-10.

[Falo, 1994] Faloutsus, C. et al., “Efficient and Effeetive Querying by Image Content”,
Journal o f Intelligent Information Systems, Volume 3, 1994, pp. 231-262.

[Falo, 1996] Faloutsus, Christos, Searching Multimedia Databases by Content, Kluwer
Académie Publishers, Boston, 1996.

[Flag, 2003] images from http://www.flags.net, accessed on January 7, 2003.
[Flic, 1995] Flickner, Myron, et al., “Query by Image and Video Content: The QBIC

System”, IEEE Computer, Volume 28, Number 9, September 1995, pp. 23-31.
[Free, 1995] Freeston, Miehael, “A General Solution of the n-dimensional B-tree Problem”,

Proceedings o f the 1995 ACM SIGMOD International Conference on
Management o f Data, 1995, pp. 80-91.

[Gaed, 1998] Gaede, Volker and Oliver Gunther, “Multidimensional Aceess Methods”, ACM
Computing Surveys, Volume 30, Number 2, June 1998, pp. 170-231.

[Gong, 1994] Gong, Yihong et al, “An Image Database System with Content Capturing and
Fast Image Indexing Abilities”, Proceedings o f the International Conference on
Multimedia Computing and Systems, IEEE Computer, May 1994, Volume 27,
Number 5, pp. 121-130.

[Gonz, 1993] Gonzales, Rafael C. and Richard E. Woods, Digital Image Processing, Addison-
Wesley Publishing Company, Reading, MA, 1993.

[Gray, 1995] Gray, Robert S., “Content-Based Image Retrieval: Color and Edges”, Teehnieal
Report, Dartmouth University, Identification Number PCS-TR95-252, March
1995, available at URL: http://attcomm.dartmouth.edU/~rgray/#papers.

[Gree, 1995] Greenberg, Adele Droblas and Seth Greenberg, Fundamental Photoshop,
McGraw-Hill, Inc., Berkeley, 1995.

[Gros, 1997] Grosky, William, “Managing Multimedia Information in Database Systems”,
Communications o f the ACM, Volume 40, Number 12, December 1997, pp. 73-
80.

[Grue, 1996] Gruenwald, Le and Greg Speegle, “Research Issues in View-Based Multimedia
Database Systems”, Proceedings of the 2nd World Conference on Integrated
Design and Process Technology, Deeember 1996, pp. 331-336.

190

http://www.flags.net
http://attcomm.dartmouth.edU/~rgray/%23papers

[Gutt, 1984] Guttman, Antonin, “R-trees: A Dynamic Index Structure for Spatial Searching”,
Proceedings o f the 1984 ACM SIGMOD International Conference on
Management of Data, 1984, pp. 47-57.

[Hafn, 1995] Hafher, James et al., “Efficient Color Histogram Indexing for Quadratic Form
Distance Functions”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Volume 17, Number 7, July 1995, pp. 729-736.

[Hear, 1997] Hearn, Donald and M. Pauline Baker, Computer Graphics C Version, Prentice
Hall, Upper Saddle River, N.J., 1997.

[Helm, 2003] Images from http://inside99.net/Helmet_Project/index.htm, accessed on January
7, 2003.

[Hu, 1999] Hu, Shaowen, ""Instantiation o f the Logical Model Language", Baylor University,
Master’s Thesis, 1999.

[Jaga, 1990] Jagadish, H. V., “Spatial Search with Polyhedra”, Proceedings o f the 6th
International Conference on Data Engineering, 1990, pp. 311-319.

[Jaga, 1997] Jagadish, H. V., “Content-Based Indexing and Retrieval”, The Handbook of
Multimedia Information Management, Chapter 3, William I. Grosky, Ramesh
Jain, and Rajiv Mehrotra (Fds.), Prentice Hall, 1997, pp.69-93.

[Kata, 1997] Katayama, Norio, and Shin'ichi Satoh, “The SR-Tree: An Index Structure for
High-Dimensional Nearest Neighbor Queries”, Proceedings o f the 1997 ACM
SIGMOD International Conference on Management o f Data, May 1997, pp. 369-
380.

[Kell, 1995] Kelly, Patrick M., Michael Cannon, and Donald R. Hush, “Query by Image
Example: The CANDID Approach”, SPIE Volume 2420 Storage and Retrieval
for Image and Video Database III, 1995, pp. 238-248.

[Klas, 1997] Klas, Wolfgang and Karl Aberer, “Multimedia and its Impact on Database
System Architectures”, Multimedia Databases in Perspective, Chapter 3, P. M.
G. Apers, H. M. Blanken, and M. A. W. Houtsma (Eds.), Springer, New York,
1997, pp.31-62.

[Kort, 1991] Korth, Henry F. and Abraham Silberschatz, Database System Concepts,
McGraw-Hill, Inc., New York, 1991.

[Kuma, 1994] Kumar, Akhil, “G-Tree: A New Data Structure for Organizing Multidimensional
Data”, IEEE Transactions on Knowledge and Data Engineering, Volume 6,
Number 2, April 1996, pp. 341 - 347.

[Lin, 1994] Lin, King-Ip, H. V. Jagadish, and Christos Faloutsos, “The TV-Tree: An Index
Structure for High-Dimensional Data”, VLDB Journal, Volume 3, 1994, pp 517-
542.

[Lin, 2001] Lin, Shu, et ah, “An Extendible Hash for Multi-Precision Similarity Querying of
Image Databases”, Proceedings of the 2?“' International Conference on Very
Large Databases, 2001, pp. 221-230.

[Lome, 1990] Lomet, David B. and Betty Salzberg, “The hB-Tree: A Multiattribute Indexing
Method with Good Guaranteed Performance”, ACM Transactions on Database
Systems, Volume 15, Number 4, December 1990, pp. 625-658.

[Mehr, 1995] Mehrotra, Rajiv and James E. Gary, “Similar Shape Retrieval in Shape Data
Management”, IEEE Computer, Volume 28, Number 9, September 1995, pp. 57-
62.

[Mend, 1992] Mendenhall, William, and Terry Sincich, Statistics for Engineering and the
Sciences, Dellen Publishing Company, San Francisco, 1992.

[NASA, 2003] Images from http://nix.nasa.gov/browser.html, accessed on January 7, 2003.
[Oria, 2000] Oria, Vincent et ah, “DISJMA: A Distributed and Interoperable Image Database

System”, Demonstration, Proceedings o f the 2000 ACM SIGMOD International
Conference on Management o f Data, May 2000, p. 600.

191

http://inside99.net/Helmet_Project/index.htm
http://nix.nasa.gov/browser.html

[Oria, 2001] Oria, Vincent et al., “Similarity Queries in the DISMA Image DBMS”,
Proceedings o f the 9th ACM International Conference on Multimedia, October
2001, pp. 475-478.

[Orte, 1997] Ortega, Michael et al., “Supporting Similarity Queries in MARS”, Proceedings
o f the 5‘̂ ACM International Conference on Multimedia, 1997, pp. 403-413.

[Orte, 1998] Ortega, Michael et al., “Supporting Ranked Boolean Similarity Queries in
MARS”, IEEE Transactions on Knowledge and Data Engineering, Volume 10,
Number 6, November/December 1998, pp. 905-925.

[Park, 1997] Park, Youngchoon and Forouzan Golshani, “ImageRoadMap: A New Content-
Based Image Retrieval System”, Proceedings o f the 8th International Conference
on Database and Expert System Applications, September 1997, Lecture Notes in
Computer Science, Volume 1308, Springer, pp. 225-239.

[Park, 1999] Park, Du-sik et al., “Image Indexing using Weighted Color Histogram”,
Proceedings o f the 10* International Conference on Image Analysis and
Processing, 1999, pp.909-914.

[Pass, 1996] Pass, Greg, Ramin Zabih, and Justin Miller, “Comparing Images Using Color
Coherence Vectors”, Proceedings o f the 4* ACM International Conference on
Multimedia, 1996, pp. 65-73.

[Pbmp, 2003] http://www.acme.com/software/pbmplus/, accessed January 7, 2003.
[Rand, 2003] Images from http://nix.nasa.gov/browser.html, http://www.toyota.com,

http://c2. com/~ward/plates/, http://www. cs. ou. edu/~database/members.htm, and
http://www.weathergallery.com/tornado-gallery.shtml, accessed January 7, 2003.

[Ritt, 1996] Ritter, Gerhard X. and Joseph N. Wilson, Handbook o f Computer Vision
Algorithms in Image Algebra, CRC Press, Boca Raton, 1996.

[Robi, 1981] Robinson, John T., “The K-D-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes”, Proceedings o f the 1981 ACM SIGMOD
International Conference on Management o f Data, April 1981, pp. 10-18.

[Rous, 1995] Roussopoulos, Nick, Stephen Kelley, and Frédéric Vincent, “Nearest-Neighbor
Queries”, Proceedings of the 1995 ACM SIGMOD International Conference on
Management o f Data, pp. 71-79.

[Sant, 1999] Santini, Simone and Ramesh Jain, “Similarity Measures”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Volume 21, Number 9, September
1999, pp. 871-883.

[Scla, 1997] Sclaroff, Stan, Leonid Taycher, and Marco La Cascia, HmageRover: A Content-
Based Image Browser for the World Wide Web”, Technical Report TR97-005,
Boston University, Boston, 1997.

[Seid, 1997] Seidl, Thomas and Hans-Peter Kriegel, “Efficient User-Adaptable Similarity
Search in Large Multimedia Databases”, Proceedings o f the International
Conference on Very Large Databases, 1997, pp. 506-515.

[Sell, 1987] Sellis, Timos, Nick Roussopoulos, and Christos Faloutsos, “The R+-Tree: A
Dynamic Index for Multidimensional Objects”, Proceedings o f the 13th
International Conference on Very Large Databases, 1987, pp. 507-518.

[Shas, 1990] Shasha, Dennis and Tsong-Li Wang, “New Techniques for Best-Match
Retrieval”, ACM Transactions on Information Systems, Volume 8, Number 2,
April 1990, pp. 140-158.

[Smit, 1995] Smith, John R. and Shih-Fu Chang, ‘"Single Color Extraction and Image Query”,
IEEE Proceedings of the International Conference on Image Processing, October
1995,pp.528-531.

[Smit, 1996] Smith, John R. and Shih-Fu Chang, “VisualSEEK: A Fully Automated Content-
Based Image Query System”, Proceedings o f ACM Multimedia 1996, pp. 87-98.

192

http://www.acme.com/software/pbmplus/
http://nix.nasa.gov/browser.html
http://www.toyota.com
http://c2
http://www
http://www.weathergallery.com/tornado-gallery.shtml

[Spec, 1995] Speegle, Greg, “Views of Media Objects in Multimedia Databases”, Proceedings
o f the International Workshop on Multimedia Database Management Systems,
August 1995, pp. 20-29.

[Spee, 1998] Speegle, Greg, Xiaojun Wang, and Le Gruenwald, “A Meta-Structure for
Supporting Multimedia Editing in Object-Oriented Databases”, Proceedings o f
the 16th British National Conference on Databases, July 1998, Lecture Notes in
Computer Science, Volume 1405, Springer, pp. 89-102.

[Spee, 2000] Speegle, Greg et al., “Extending Databases to Support Image Editing”,
Proceedings of the IEEE International Conference on Multimedia and Expo,
August 2000, pp.235-238.

[Steh, 2000] Stehling, Renato O., Mario A. Nascimento, and Alexandre X. Falcao, “On
‘Shapes’ of Colors for Content-Based Image Retrieval”, Proceedings o f the 2000
ACM Workshops on Multimedia, November 2000, pp. 171-174.

[Steh, 2002] Stehling, Renato O., Mario A. Nascimento, and Alexandre X. Falcao, “A
Compact and Efficient Image Retrieval Approach Based on Border/Interior Pixel
Classification”, Proceedings o f the i f ^ International Conference on Information
and Knowledge Management, November 2002, pp. 102-109.

[Wall, 1991] Wallace, Gregory K., “The JPEG Still Picture Compression Standard”,
Communications o f the ACM, Volume 34, Number 4, April 1991, pp. 30-44.

[Whit, 1996] White, David A. and Ramesh Jain, “Similarity Indexing with the SS-tree”,
Proceedings of the 12th International Conference on Data Engineering, 1996,
pp. 516-523.

[Wu, 1994] Wu, Jian Kang, and Arcot Desai Narasimhalu, “Identifying Faces Using Multiple
Retrievals”, IEEE Multimedia, Volume 1, Number 3, Summer 1994, pp. 27-38.

[Yian, 1992] Yianilos, Peter N., “Data Structures and Algorithms for Nearest Neighbor Search
in General Metric Spaces”, Proceedings o f the 3'̂ ‘‘ Annual ACM-SIAM
Symposium on Discrete Algorithms, 1992, pp. 311-321.

193

