82,884 research outputs found

    Computing with and without arbitrary large numbers

    Full text link
    In the study of random access machines (RAMs) it has been shown that the availability of an extra input integer, having no special properties other than being sufficiently large, is enough to reduce the computational complexity of some problems. However, this has only been shown so far for specific problems. We provide a characterization of the power of such extra inputs for general problems. To do so, we first correct a classical result by Simon and Szegedy (1992) as well as one by Simon (1981). In the former we show mistakes in the proof and correct these by an entirely new construction, with no great change to the results. In the latter, the original proof direction stands with only minor modifications, but the new results are far stronger than those of Simon (1981). In both cases, the new constructions provide the theoretical tools required to characterize the power of arbitrary large numbers.Comment: 12 pages (main text) + 30 pages (appendices), 1 figure. Extended abstract. The full paper was presented at TAMC 2013. (Reference given is for the paper version, as it appears in the proceedings.

    Identification of PKD1L1 Gene Variants in Children with the Biliary Atresia Splenic Malformation Syndrome

    Get PDF
    Biliary atresia (BA) is the most common cause of end‐stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations — a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient‐parent trios, from the NIDDK‐supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. Candidate gene variants derived from a pre‐specified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects harbored rare and potentially deleterious bi‐allelic variants in polycystin 1‐like 1, PKD1L1, a gene associated with ciliary calcium signaling and embryonic laterality determination in fish, mice and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other non‐cholestatic diseases. Conclusion WES identified bi‐allelic and heterozygous PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN dataset. The dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a new, biologically plausible, cholangiocyte‐expressed candidate gene for the BASM syndrome

    Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration

    Full text link
    We present an overview of quantum key distribution (QKD), a secure key exchange method based on the quantum laws of physics rather than computational complexity. We also provide an overview of the two most widely used commodity security protocols, IPsec and TLS. Pursuing a key exchange model, we propose how QKD could be integrated into these security applications. For such a QKD integration we propose a support layer that provides a set of common QKD services between the QKD protocol and the security applicationsComment: 12Page

    Waveform flexibility in database-oriented cognitive wireless systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we discuss the idea of waveform flexibility in future wireless networks utilizing cognitive radio functionality. Mainly, we consider the possibility to adjust the shape of the waveform based on the information about the surrounding environment stored in a dedicated context-information database. In our approach, the cognitive terminal has an option to select one of four available waveforms to adapt itself in the best way to the constraints delivered by the database. In this paper we present the key concept of waveform flexibility, the proposed algorithm for waveform selection and the achieved simulation results.Peer ReviewedPostprint (author's final draft

    Reduced-Complexity Maximum-Likelihood Detection in Downlink SDMA Systems

    Get PDF
    The literature of up-link SDMA systems is rich, but at the time of writing there is a paucity of information on the employment of SDMA techniques in the down-link. Hence, in this paper a Space Division Multiple Access (SDMA) down-link (DL) multi-user communication system invoking a novel low-complexity Maximum Likelihood (ML) space-time detection technique is proposed, which can be regarded as an advanced extension of the Complex Sphere Decoder (CSD). We demonstrate that as opposed to the previously published variants of the CSD, the proposed technique may be employed for obtaining a high effective throughput in the so-called “over-loaded” scenario, where the number of transmit antennas exceeds that of the receive antennas. The proposed method achieves the optimum performance of the ML detector even in heavily over-loaded scenarios, while the associated computational complexity is only moderately increased. As an illustrative example, the required Eb/N0 increased from 2 dB to 9 dB, when increasing the normalized system load from unity, representing the fully loaded system, to a normalized load of 1.556
    corecore