20,326 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThe widespread use of genomic information to improve clinical care has long been a goal of clinicians, researchers, and policy-makers. With the completion of the Human Genome Project over a decade ago, the feasibility of attaining this goal on a widespread basis is becoming a greater reality. In fact, new genome sequencing technologies are bringing the cost of obtaining a patient's genomic information within reach of the general population. While this is an exciting prospect to health care, many barriers still remain to effectively use genomic information in a clinically meaningful way. These barriers, if not overcome, will limit the ability of genomic information to provide a significant impact on health care. Nevertheless, clinical decision support (CDS), which entails the provision of patient-specific knowledge to clinicians at appropriate times to enhance health care, offers a feasible solution. As such, this body of work represents an effort to develop a functional CDS solution capable of leveraging whole genome sequence information on a widespread basis. Many considerations were made in the design of the CDS solution in order to overcome the complexities of genomic information while aligning with common health information technology approaches and standards. This work represents an important advancement in the capabilities of integrating actionable genomic information within the clinical workflow using health informatics approaches

    Genetic variation affecting exon skipping contributes to brain structural atrophy in Alzheimer's disease

    Get PDF
    Genetic variation in cis-regulatory elements related to splicing machinery and splicing regulatory elements (SREs) results in exon skipping and undesired protein products. We developed a splicing decision model to identify actionable loci among common SNPs for gene regulation. The splicing decision model identified SNPs affecting exon skipping by analyzing sequence-driven alternative splicing (AS) models and by scanning the genome for the regions with putative SRE motifs. We used non-Hispanic Caucasians with neuroimaging, and fluid biomarkers for Alzheimer's disease (AD) and identified 17,088 common exonic SNPs affecting exon skipping. GWAS identified one SNP (rs1140317) in HLA-DQB1 as significantly associated with entorhinal cortical thickness, AD neuroimaging biomarker, after controlling for multiple testing. Further analysis revealed that rs1140317 was significantly associated with brain amyloid-f deposition (PET and CSF). HLA-DQB1 is an essential immune gene and may regulate AS, thereby contributing to AD pathology. SRE may hold potential as novel therapeutic targets for AD

    Principles for the post-GWAS functional characterisation of risk loci

    Get PDF
    Several challenges lie ahead in assigning functionality to susceptibility SNPs. For example, most effect sizes are small relative to effects seen in monogenic diseases, with per allele odds ratios usually ranging from 1.15 to 1.3. It is unclear whether current molecular biology methods have enough resolution to differentiate such small effects. Our objective here is therefore to provide a set of recommendations to optimize the allocation of effort and resources in order maximize the chances of elucidating the functional contribution of specific loci to the disease phenotype. It has been estimated that 88% of currently identified disease-associated SNP are intronic or intergenic. Thus, in this paper we will focus our attention on the analysis of non-coding variants and outline a hierarchical approach for post-GWAS functional studies

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    A standards-based ICT framework to enable a service-oriented approach to clinical decision support

    Get PDF
    This research provides evidence that standards based Clinical Decision Support (CDS) at the point of care is an essential ingredient of electronic healthcare service delivery. A Service Oriented Architecture (SOA) based solution is explored, that serves as a task management system to coordinate complex distributed and disparate IT systems, processes and resources (human and computer) to provide standards based CDS. This research offers a solution to the challenges in implementing computerised CDS such as integration with heterogeneous legacy systems. Reuse of components and services to reduce costs and save time. The benefits of a sharable CDS service that can be reused by different healthcare practitioners to provide collaborative patient care is demonstrated. This solution provides orchestration among different services by extracting data from sources like patient databases, clinical knowledge bases and evidence-based clinical guidelines (CGs) in order to facilitate multiple CDS requests coming from different healthcare settings. This architecture aims to aid users at different levels of Healthcare Delivery Organizations (HCOs) to maintain a CDS repository, along with monitoring and managing services, thus enabling transparency. The research employs the Design Science research methodology (DSRM) combined with The Open Group Architecture Framework (TOGAF), an open source group initiative for Enterprise Architecture Framework (EAF). DSRM’s iterative capability addresses the rapidly evolving nature of workflows in healthcare. This SOA based solution uses standards-based open source technologies and platforms, the latest healthcare standards by HL7 and OMG, Decision Support Service (DSS) and Retrieve, Update Locate Service (RLUS) standard. Combining business process management (BPM) technologies, business rules with SOA ensures the HCO’s capability to manage its processes. This architectural solution is evaluated by successfully implementing evidence based CGs at the point of care in areas such as; a) Diagnostics (Chronic Obstructive Disease), b) Urgent Referral (Lung Cancer), c) Genome testing and integration with CDS in screening (Lynch’s syndrome). In addition to medical care, the CDS solution can benefit organizational processes for collaborative care delivery by connecting patients, physicians and other associated members. This framework facilitates integration of different types of CDS ideal for the different healthcare processes, enabling sharable CDS capabilities within and across organizations

    3D Convolutional Neural Networks for Tumor Segmentation using Long-range 2D Context

    Full text link
    We present an efficient deep learning approach for the challenging task of tumor segmentation in multisequence MR images. In recent years, Convolutional Neural Networks (CNN) have achieved state-of-the-art performances in a large variety of recognition tasks in medical imaging. Because of the considerable computational cost of CNNs, large volumes such as MRI are typically processed by subvolumes, for instance slices (axial, coronal, sagittal) or small 3D patches. In this paper we introduce a CNN-based model which efficiently combines the advantages of the short-range 3D context and the long-range 2D context. To overcome the limitations of specific choices of neural network architectures, we also propose to merge outputs of several cascaded 2D-3D models by a voxelwise voting strategy. Furthermore, we propose a network architecture in which the different MR sequences are processed by separate subnetworks in order to be more robust to the problem of missing MR sequences. Finally, a simple and efficient algorithm for training large CNN models is introduced. We evaluate our method on the public benchmark of the BRATS 2017 challenge on the task of multiclass segmentation of malignant brain tumors. Our method achieves good performances and produces accurate segmentations with median Dice scores of 0.918 (whole tumor), 0.883 (tumor core) and 0.854 (enhancing core). Our approach can be naturally applied to various tasks involving segmentation of lesions or organs.Comment: Submitted to the journal Computerized Medical Imaging and Graphic
    corecore