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Abstract 

Genetic variation in cis-regulatory elements related to splicing machinery and splicing regulatory elements (SREs) 
results in exon skipping and undesired protein products. We developed a splicing decision model to identify actionable 
loci among common SNPs for gene regulation. The splicing decision model identified SNPs affecting exon skipping by 
analyzing sequence-driven alternative splicing (AS) models and by scanning the genome for the regions with putative 
SRE motifs. We used non-Hispanic Caucasians with neuroimaging, and fluid biomarkers for Alzheimer’s disease (AD) 
and identified 17,088 common exonic SNPs affecting exon skipping. GWAS identified one SNP (rs1140317) in HLA-
DQB1 as significantly associated with entorhinal cortical thickness, AD neuroimaging biomarker, after controlling for 
multiple testing. Further analysis revealed that rs1140317 was significantly associated with brain amyloid-β deposition 
(PET and CSF). HLA-DQB1 is an essential immune gene and may regulate AS, thereby contributing to AD pathology. 
SRE may hold potential as novel therapeutic targets for AD. 

 

Introduction 

Genome-wide association studies (GWAS) have made a significant contribution to our knowledge of genetic variants 
linked to human complex diseases by discovering several thousand frequently-occurring susceptibility loci (1, 2). The 
risk loci predicted by GWAS represent weak effect (per-allele odds ratio < 2) and require further functional analysis to 
identify actionable loci (3, 4).  The strength of GWAS is the ability to analyze the entire genome agnostically for common 
alleles associated with a disease, but its weaknesses are the lack of a priori biological hypothesis to guide inquiry from 
association to underlying functional variants and inability to take into account non-genetic biological variation. These 
points can be addressed by focusing on alternative splicing (AS) as a biological mechanism regulating gene expression 
and influencing phenotypic variation (5-7). AS is regulated in part by DNA sequence motifs, called splicing regulatory 
elements (SREs) (8, 9). When a single variation (i.e., SNP (single nucleotide polymorphism)) occurs at any position of a 
splicing regulatory element (SRE), it can change the accuracy of spliceosome in recognizing splice sites, possibly 
generating harmful protein product (10-12).  

SREs, six base-pairs in length, are known to influence the probability of an AS event. SREs occur in both exons and 
introns. They can either enhance the frequency of splicing at a nearby splice site or inhibit it. There are thus four types 
of SREs depending on their function and where they occur: exonic splicing enhancers (ESEs), exonic splicing silencers 
(ESSs), intronic splicing enhancers (ISEs), and intronic splicing silencers (ISSs). As DNA sequence elements, it would 
be valuable to identify specific genetic variants (i.e., SNPs) in SREs that influence splicing outcomes, potentially leading 
to different ratios of mRNA isoforms or exon skipping between phenotype cases or tissues.  

Genetic variation occurring in cis-regulatory elements (i.e., splice sites, SREs, and branch points) results in exon skipping 
and undesired protein products, and thus forms the genetic basis of 15-50% of heritable human diseases (12-14). 
Furthermore, alternative splicing is a key contributor to increase a biological complexity by producing multiple mRNAs 
from one gene. Some of mRNAs are tissue-specific, especially critical for brain function, and genes associated with 
disease pathogenesis are alternatively spliced (15).  For example, missing exon 5 of PSEN2 were observed in in both 
early and late onset AD patients. Tau isoforms including exon 10 (4R-tau) are known to lead to tau aggregation (16). 
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APOE4 also generates multiple mRNA isoforms that are differentially expressed in normal versus AD patient tissues 
(17).  

Alzheimer’s disease (AD) is an irreversible, progressive brain disorder characterized by the formation of amyloid plaques 
and neurofibrillary tangles in the brain. With the heritability of AD estimated to be as high as 80%, genetic variation may 
play a major role in AD pathogenesis (18-20). However, despite the success of large-scale GWAS, where more than 22 
susceptibility genes for AD including the best established and the most significant genetic risk factor (APOE ε4) were 
discovered and validated, a substantial proportion of the heritability remains to be unexplained for AD (21). Additionally, 
variation affecting AS is understudied in AD. In this study, we developed a splicing decision model to identify actionable 
loci affecting exon skipping among common SNPs by analyzing sequence-driven AS models and by scanning the genome 
for the regions with putative SRE motifs. Then, using non-Hispanic Caucasians with HRC-based imputed GWAS and 
AD-related neuroimaging (MRI and PET scans) and fluid (CSF) biomarkers from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), we examined exonic SNPs in SREs as a mechanism to understand how genetic variants contribute to 
AD (22). 

 

Methods 

Identification of SNPs in splicing regulatory elements associated with exon skipping events 

We have built a computational pipeline for genome-wide identification of SNPs occurring within SRE sites that are 
related to exon skipping (23, 24). Figure 1 summarizes the proposed method (defined as a "splicing decision model") for 
identifying SNPs affecting SREs with exon skipping. We identified exon skipping events by using alignment information 
(25, 26) for four AS datasets from the UCSC genome browser (27, 28): mRNAs from GenBank (29), Ensembl Gene 
Predictions (30), AceView Gene Models (31), and UCSC known genes (32). Using a set of predicted hexameric SRE 
motifs, including ISEs, ESEs, and ESSs obtained from the publication (33), we searched for all potential SRE sites that 
are perfectly matched with any of these hexamers in intragenic regions. We combined genotype data, SRE regions and 
skipping of the adjacent exon, and identified intragenic SNPs in SREs that potentially affect exon skipping. 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

All individuals used in this study were participants from the ADNI. As detailed previously, inclusion and exclusion 
criteria, clinical and neuroimaging protocols, and other information about ADNI can be found at www.adni-info.org (22).  
Demographic information, raw neuroimaging scan data, APOE and whole-genome genotyping data, neuropsychological 
test scores, and diagnostic information are publicly available from the ADNI data repository 
(http://www.loni.usc.edu/ADNI/). 

Neuroimaging analysis 

For T1-weighted brain MRI scans, two widely employed automated MRI analysis techniques were independently used 
to process MRI scans: whole-brain voxel-based morphometry (VBM) and FreeSurfer software, as previously described 
(34). [18F] Florbetapir scans were pre-processed as described (35). [18F] Florbetapir PET scans were intensity normalized 
by the whole cerebellum. These normalizations yielded standardized uptake value ratio (SUVR) images. 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram of computational methods for identifying SNPs in SREs with exon skipping events. (a) Normal 
splicing of two exons (red and green) is processed by SREs, leading to the inclusion of two exons in mature mRNA. (b) 
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Abnormal splicing of the green exon is led by SREs with the variant at the second position of SRE (white hexamer) 
leading to its skipping from mature mRNA. 

Genotyping and imputation 

Genotyping for ADNI was performed using the Illumina Human610-Quad BeadChip, Illumina HumanOmni Express 
BeadChip, and Illumina HumanOmni 2.5M BeadChip platforms. APOE genotyping was separately obtained using 
standard methods to yield the APOE ε4 allele defining SNPs (rs429358, rs7412) (36). As the ADNI used different 
genotyping platforms, we imputed un-genotyped SNPs separately in each platform using MACH and the HRC 
(Haplotype Reference Consortium) data as a reference panel. Before the imputation, we performed standard sample and 
SNP quality control procedures as described previously (37): (1) for SNP, SNP call rate < 95%, Hardy-Weinberg test 
p<1 x 10-6, and minor allele frequency (MAF) < 1%; (2) for sample, sample gender and identity check, and sample call 
rate < 95%. Furthermore, to prevent spurious association due to population stratification, we selected only non-Hispanic 
Caucasian participants using HapMap data and multidimensional scaling (MDS) analysis (www.hapmap.org) (38). 
Imputation and quality control procedures were performed as described previously (39). After the imputation, we 
imposed an r2 value equal to 0.30 as the threshold to accept the imputed genotypes. 

Imaging genetics analysis 

We performed genome-wide association analysis (GWAS) using HRC-based imputed genotype data and AD-related 
imaging biomarker, mean entorhinal cortical thickness, as an endophenotype. In order to investigate further the 
association of candidate SNPs with quantitative imaging phenotypes, we performed a whole-brain surface-based analysis 
using the SurfStat software package (http://www.math.mcgill.ca/keith/surfstat/) and multivariate models for cortical 
thickness on the brain surface on vertex-by-vertex bases. We used age at baseline, sex, years of education, MRI field 
strength, and total intracranial volume (ICV) as covariates. Correction for multiple comparisons was performed using the 
random field theory (RFT) correction method at a 0.05 level of significance. 

 

Results 

Using the splicing decision model, we identified 17,088 exonic SNPs affecting exon skipping (MAF >1%) from HRC-
based imputed ADNI GWAS data. Table 1 shows the demographic information for 1,559 non-Hispanic Caucasian ADNI 
participants (362 cognitively normal older adults (CN), 95 significant memory concern (SMC), 281 early mild cognitive 
impairment (EMCI), 511 late MCI (LMCI), and 310 AD) with GWAS data and MRI scans at baseline.  

Table 1. Demographic information for 1,559 ADNI participants 

 CN SMC E-MCI L-MCI AD 
N 362 95 281 511 310 

Age mean  
(SD) 

74.7 
(5.5) 

71.8 
(5.6) 

71.1 
(7.3) 

73.5 
(7.6) 

74.7 
(7.8) 

Sex (M/F) 192/170 39/56 156/125 318/193 176/134 
Education mean  

(SD) 
16.3 
(2.7) 

16.8 
(2.6) 

16.1 
(2.7) 

16.0 
(2.9) 

15.2 
(3.0) 

APOE ε4-/ε4+ 264/97 63/32 161/119 230/291 104/206 
 

We performed GWAS for the exonic SNPs in SREs affecting exon skipping to identify genetic variation contributing to 
brain structural atrophy, mean entorhinal cortical thickness, in AD. Figure 2 displays quantile-quantile and Manhattan 
plots.  

 

The genomic inflation factor is 1.045, suggesting no evidence of systematic inflation of p-values (Fig. 2 (a)). We 
identified one SNP as significantly associated with entorhinal cortical thickness after controlling for multiple testing 
using Bonferroni correction (corrected p<0.05; red horizontal line) (Fig. 2 (b)). The missense SNP (rs1140317) is within 
HLA-DQB1. As shown in Figure 3, the SNP (rs1140317) exists within two different exonic splicing enhancers (ESEs) 
(CCACCT and ACCTCG) located in the second exon marked with the rectangle (as reversely transcribed), which is 
skipped in mRNA transcript (ENST00000399082). Furthermore, we note that the putative function of the skipped exon 
is a coding region translated into the MHC_II_beta domain (PF00969). 
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Figure 2. Quantile-quantile (a) and Manhattan (b) plots for entorhinal cortical thickness 

 

Figure 3. Model of exon skipping affected by rs1140317 SNP in two exonic splicing enhancers and potential impact of 
the skipped exon on the MHC_II_beta domain region (PF00969) of HLA-DQB1. 

 

As a novel association, the entorhinal cortical thickness increases with the number of minor alleles (A) of rs1140317 
(p=1.04 x 10-7) (Fig. 4), which is the allele (A) disrupting SRE function, leading to the exon skipping. 

 
The novel genome-wide significant SNP (rs1140317) was analyzed further to examine possible associations in AD. 
Figure 5 displays the results of the main effect of rs1140317 using surface-based analysis of baseline MRI scans. The 
unbiased, detailed whole-brain analysis of rs1140317 using multivariate regression models identified significant clusters 
in the bilateral temporal including entorhinal cortex, parietal, and frontal lobes (corrected p<0.05), where individuals 
carrying minor alleles showed greater mean cortical thickness compared with the participants carrying no minor allele 
(Fig. 5). No significant cortical regions were observed at the same statistical threshold in the negative contrast. 
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Figure 4. Association of rs1140317 in HLA-DQB1 with entorhinal cortical thickness (p=9.75 x 10-7) 

Figure 5. Association of rs1140317 in HLA-DQB1 with cortical atrophy on the brain surface measured by MRI scans 
from whole brain surface-based analysis 

In order to investigate further the effect of rs1140317 on other AD-related imaging and fluid biomarkers, we performed 
an association analysis of rs1140317 with amyloid-beta (Aβ) measures, AD hallmark, in [18F] Florbetapir PET and 
cerebrospinal fluid (CSF). The analysis revealed that rs1140317 was also significantly associated with global brain 
cortical amyloid-β deposition (Fig. 6 (a); p=4.60 x 10-3) and CSF Aβ1-42 levels (Fig. 6 (b); p=3.69 x 10-3), suggesting that 
the minor allele of rs1149317 confers protection. 

 

Discussion and Conclusion 

Eukaryote cells utilize alternative splicing mechanism to generate various transcript isoforms by differently assembling 
exons in mature mRNAs without introns. These mature mRNAs are often tissue-specifically and disease specially 
produced from one gene. As the splicing process in assembling exons are generally regulated by cis-regulatory elements 
including splice sites and splicing regulatory elements, the genetic variation (i.e., SNP) occurred within these elements 
leads to the undesired protein products in many complex diseases including cancers (40). Recently, we have developed 
methods for annotating SNPs within splicing regulatory element regions associated with exon skipping events and 
investigated its utility for identifying disease-associated loci (23, 24). In principle, our splicing decision methods are 
similar to Splicing Quantitative Trait Loci (sQTL) in terms of using a regression model to identify responsible SNPs to 
splicing alteration. However, the strength of our approach is to utilize SRE as a mechanism that can explain how SNPs 
affect the splicing. Our methods not only propose a molecular mechanism-driven annotation for SNPs but also a new 
way for identifying functional roles of coding and intronic SNPs using SRE. Intronic SNPs within splicing regulatory 
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elements were enriched among established SNPs in human complex traits. Furthermore, certain SNPs in splicing 
regulatory elements were extremely differentiated among populations. These studies emphasize an importance of 
alternative splicing in many human complex traits and diseases, and its usefulness for identifying disease-associated 
variation in the human genome. We note that the protein products of the changed splicing can characterize the genetic 
basis of inter-individual variability providing mechanistic clues to the pathophysiology of human diseases and traits. 

 

 

 

 

 

 

 

	
	
	
 

Figure 6. Association of rs1140317 in HLA-DQB1 with amyloid-β measurements from [18F] Florbetapir PET and 
cerebrospinal fluid biomarkers (CSF): (a) global cortical amyloid-β deposition (p=4.60 x 10-3) and (b) CSF Aβ1-42 
levels (p=3.69 x 10-3) 

	
In this study, we investigated the utility of the splicing mechanism for one complex brain disease, Alzheimer’s disease. 
GWAS identified one SNP (rs1140317) in HLA-DQB1 as significantly associated with mean entorhinal cortical thickness 
in Alzheimer’s disease, which starts in the entorhinal cortex. Further analysis revealed that rs1140317 was significantly 
associated with amyloid-β deposition, which is involved in Alzheimer’s disease as a neuropathological hallmark found 
in the brains of Alzheimer patients. The HLA-DQB1 (major histocompatibility complex, class II, DQ beta 1) gene 
provides instructions for making a protein that plays a central role in the immune system. Known AD susceptibility genes 
(increasing or decreasing the risk for AD) have been involved in immunity and inflammation.   

Although more genes are alternatively spliced in the brain and several exons of AD-related susceptibility genes such as 
APP and APOE are brain-specially skipped, it is necessary to do a follow-up study in order to validate our findings. In 
the future, using several AD studies such as the Religious Order Study and the Rush Memory and Aging Project study 
(ROS/MAP), which have collected brain-tissue specific RNA-Seq, GWAS, and MRI data, we will validate our findings 
by performing an integrative analysis to identify exon skipping events using RNA-Seq, investigate the effect of 
identified SNPs on exon skipping events, and replicate our findings using the independent data set. 

In conclusion, our splicing decision model enabled to identify significant associations of AD-related neuroimaging and 
fluid biomarkers with one missense exonic SNP in HLA-DQB1, an essential immune gene, that may regulate alternative 
splicing and thereby contribute to AD pathology. SRE may hold potential as novel therapeutic targets for AD. Our results 
warrant further investigation in a larger independent cohort. 
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