19,842 research outputs found

    A Proposed Architecture for Big Data Driven Supply Chain Analytics

    Full text link
    Advancement in information and communication technology (ICT) has given rise to explosion of data in every field of operations. Working with the enormous volume of data (or Big Data, as it is popularly known as) for extraction of useful information to support decision making is one of the sources of competitive advantage for organizations today. Enterprises are leveraging the power of analytics in formulating business strategy in every facet of their operations to mitigate business risk. Volatile global market scenario has compelled the organizations to redefine their supply chain management (SCM). In this paper, we have delineated the relevance of Big Data and its importance in managing end to end supply chains for achieving business excellence. A Big Data-centric architecture for SCM has been proposed that exploits the current state of the art technology of data management, analytics and visualization. The security and privacy requirements of a Big Data system have also been highlighted and several mechanisms have been discussed to implement these features in a real world Big Data system deployment in the context of SCM. Some future scope of work has also been pointed out. Keyword: Big Data, Analytics, Cloud, Architecture, Protocols, Supply Chain Management, Security, Privacy.Comment: 24 pages, 4 figures, 3 table

    Visual analytics for supply network management: system design and evaluation

    Full text link
    We propose a visual analytic system to augment and enhance decision-making processes of supply chain managers. Several design requirements drive the development of our integrated architecture and lead to three primary capabilities of our system prototype. First, a visual analytic system must integrate various relevant views and perspectives that highlight different structural aspects of a supply network. Second, the system must deliver required information on-demand and update the visual representation via user-initiated interactions. Third, the system must provide both descriptive and predictive analytic functions for managers to gain contingency intelligence. Based on these capabilities we implement an interactive web-based visual analytic system. Our system enables managers to interactively apply visual encodings based on different node and edge attributes to facilitate mental map matching between abstract attributes and visual elements. Grounded in cognitive fit theory, we demonstrate that an interactive visual system that dynamically adjusts visual representations to the decision environment can significantly enhance decision-making processes in a supply network setting. We conduct multi-stage evaluation sessions with prototypical users that collectively confirm the value of our system. Our results indicate a positive reaction to our system. We conclude with implications and future research opportunities.The authors would like to thank the participants of the 2015 Businessvis Workshop at IEEE VIS, Prof. Benoit Montreuil, and Dr. Driss Hakimi for their valuable feedback on an earlier version of the software; Prof. Manpreet Hora for assisting with and Georgia Tech graduate students for participating in the evaluation sessions; and the two anonymous reviewers for their detailed comments and suggestions. The study was in part supported by the Tennenbaum Institute at Georgia Tech Award # K9305. (K9305 - Tennenbaum Institute at Georgia Tech Award)Accepted manuscrip

    Attribute Identification and Predictive Customisation Using Fuzzy Clustering and Genetic Search for Industry 4.0 Environments

    Get PDF
    Today´s factory involves more services and customisation. A paradigm shift is towards “Industry 4.0” (i4) aiming at realising mass customisation at a mass production cost. However, there is a lack of tools for customer informatics. This paper addresses this issue and develops a predictive analytics framework integrating big data analysis and business informatics, using Computational Intelligence (CI). In particular, a fuzzy c-means is used for pattern recognition, as well as managing relevant big data for feeding potential customer needs and wants for improved productivity at the design stage for customised mass production. The selection of patterns from big data is performed using a genetic algorithm with fuzzy c-means, which helps with clustering and selection of optimal attributes. The case study shows that fuzzy c-means are able to assign new clusters with growing knowledge of customer needs and wants. The dataset has three types of entities: specification of various characteristics, assigned insurance risk rating, and normalised losses in use compared with other cars. The fuzzy c-means tool offers a number of features suitable for smart designs for an i4 environment

    Applied business analytics approach to IT projects – Methodological framework

    Full text link
    The design and implementation of a big data project differs from a typical business intelligence project that might be presented concurrently within the same organization. A big data initiative typically triggers a large scale IT project that is expected to deliver the desired outcomes. The industry has identified two major methodologies for running a data centric project, in particular SEMMA (Sample, Explore, Modify, Model and Assess) and CRISP-DM (Cross Industry Standard Process for Data Mining). More general, the professional organizations PMI (Project Management Institute) and IIBA (International Institute of Business Analysis) have defined their methods for project management and business analysis based on the best current industry practices. However, big data projects place new challenges that are not considered by the existing methodologies. The building of end-to-end big data analytical solution for optimization of the supply chain, pricing and promotion, product launch, shop potential and customer value is facing both business and technical challenges. The most common business challenges are unclear and/or poorly defined business cases; irrelevant data; poor data quality; overlooked data granularity; improper contextualization of data; unprepared or bad prepared data; non-meaningful results; lack of skill set. Some of the technical challenges are related to lag of resources and technology limitations; availability of data sources; storage difficulties; security issues; performance problems; little flexibility; and ineffective DevOps. This paper discusses an applied business analytics approach to IT projects and addresses the above-described aspects. The authors present their work on research and development of new methodological framework and analytical instruments applicable in both business endeavors, and educational initiatives, targeting big data. The proposed framework is based on proprietary methodology and advanced analytics tools. It is focused on the development and the implementation of practical solutions for project managers, business analysts, IT practitioners and Business/Data Analytics students. Under discussion are also the necessary skills and knowledge for the successful big data business analyst, and some of the main organizational and operational aspects of the big data projects, including the continuous model deployment

    Towards a Novel Cooperative Logistics Information System Framework

    Get PDF
    Supply Chains and Logistics have a growing importance in global economy. Supply Chain Information Systems over the world are heterogeneous and each one can both produce and receive massive amounts of structured and unstructured data in real-time, which are usually generated by information systems, connected objects or manually by humans. This heterogeneity is due to Logistics Information Systems components and processes that are developed by different modelling methods and running on many platforms; hence, decision making process is difficult in such multi-actor environment. In this paper we identify some current challenges and integration issues between separately designed Logistics Information Systems (LIS), and we propose a Distributed Cooperative Logistics Platform (DCLP) framework based on NoSQL, which facilitates real-time cooperation between stakeholders and improves decision making process in a multi-actor environment. We included also a case study of Hospital Supply Chain (HSC), and a brief discussion on perspectives and future scope of work

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Architecture for Analysis of Streaming Data

    Full text link
    While several attempts have been made to construct a scalable and flexible architecture for analysis of streaming data, no general model to tackle this task exists. Thus, our goal is to build a scalable and maintainable architecture for performing analytics on streaming data. To reach this goal, we introduce a 7-layered architecture consisting of microservices and publish-subscribe software. Our study shows that this architecture yields a good balance between scalability and maintainability due to high cohesion and low coupling of the solution, as well as asynchronous communication between the layers. This architecture can help practitioners to improve their analytic solutions. It is also of interest to academics, as it is a building block for a general architecture for processing streaming data

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security
    corecore