10,807 research outputs found

    Smart Geographic object: Toward a new understanding of GIS Technology in Ubiquitous Computing

    Get PDF
    One of the fundamental aspects of ubiquitous computing is the instrumentation of the real world by smart devices. This instrumentation constitutes an opportunity to rethink the interactions between human beings and their environment on the one hand, and between the components of this environment on the other. In this paper we discuss what this understanding of ubiquitous computing can bring to geographic science and particularly to GIS technology. Our main idea is the instrumentation of the geographic environment through the instrumentation of geographic objects composing it. And then investigate how this instrumentation can meet the current limitations of GIS technology, and offers a new stage of rapprochement between the earth and its abstraction. As result, the current research work proposes a new concept we named Smart Geographic Object SGO. The latter is a convergence point between the smart objects and geographic objects, two concepts appertaining respectively to

    Middleware architectures for the smart grid: A survey on the state-of-the-art, taxonomy and main open issues

    Get PDF
    The integration of small-scale renewable energy sources in the smart grid depends on several challenges that must be overcome. One of them is the presence of devices with very different characteristics present in the grid or how they can interact among them in terms of interoperability and data sharing. While this issue is usually solved by implementing a middleware layer among the available pieces of equipment in order to hide any hardware heterogeneity and offer the application layer a collection of homogenous resources to access lower levels, the variety and differences among them make the definition of what is needed in each particular case challenging. This paper offers a description of the most prominent middleware architectures for the smart grid and assesses the functionalities they have, considering the performance and features expected from them in the context of this application domain

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Software reference architecture for smart environments: Perception

    Get PDF
    With the increase of intelligent devices, ubiquitous computing is spreading to all scopes of people life. Smart home (or industrial) environments include automation and control devices to save energy, perform tasks, assist and give comfort in order to satisfy specific preferences. This paper focuses on the proposal for Software Reference Architecture for the development of smart applications and their deployment in smart environments. The motivation for this Reference Architecture and its benefits are also explained. The proposal considers three main processes in the software architecture of these applications: perception, reasoning and acting. This paper centres attention on the definition of the Perception process and provides an example for its implementation and subsequent validation of the proposal. The software presented implements the Perception process of a smart environment for a standard office, by retrieving data from the real world and storing it for further reasoning and acting processes. The objectives of this solution include the provision of comfort for the users and the saving of energy in lighting. Through this verification, it is also shown that developments under this proposal produce major benefits within the software life cycle.Ministerio de EconomĂ­a y Competitividad TIN2009-14378-C02-01 (ARTEMISA)Junta de AndalucĂ­a TIC-8052 (Simon
    • …
    corecore