2 research outputs found

    A Proof System for Compositional Verification of Probabilistic Concurrent Processes

    Get PDF
    Abstract. We present a formal proof system for compositional verification of probabilistic concurrent processes. Processes are specified using an SOS-style process algebra with probabilistic operators. Properties are expressed using a probabilistic modal µ-calculus. And the proof system is formulated as a sequent calculus in which sequents are given a quantitative interpretation. A key feature is that the probabilistic scenario is handled by introducing the notion of Markov proof, according to which proof trees contain probabilistic branches and are required to satisfy a condition formulated byinterpretingthemas Markov Decision Processes. We present simple but illustrative examples demonstrating the applicability of the approach to the compositional verification of infinite state processes. Our main result is the soundness of the proof system, which is proved by applying the coupling method from probability theory to the game semantics of the probabilistic modal µ-calculus.

    Compositional bisimulation metric reasoning with Probabilistic Process Calculi

    Full text link
    We study which standard operators of probabilistic process calculi allow for compositional reasoning with respect to bisimulation metric semantics. We argue that uniform continuity (generalizing the earlier proposed property of non-expansiveness) captures the essential nature of compositional reasoning and allows now also to reason compositionally about recursive processes. We characterize the distance between probabilistic processes composed by standard process algebra operators. Combining these results, we demonstrate how compositional reasoning about systems specified by continuous process algebra operators allows for metric assume-guarantee like performance validation
    corecore