3,534 research outputs found

    A Proof System for Compositional Verification of Probabilistic Concurrent Processes

    Get PDF
    Abstract. We present a formal proof system for compositional verification of probabilistic concurrent processes. Processes are specified using an SOS-style process algebra with probabilistic operators. Properties are expressed using a probabilistic modal µ-calculus. And the proof system is formulated as a sequent calculus in which sequents are given a quantitative interpretation. A key feature is that the probabilistic scenario is handled by introducing the notion of Markov proof, according to which proof trees contain probabilistic branches and are required to satisfy a condition formulated byinterpretingthemas Markov Decision Processes. We present simple but illustrative examples demonstrating the applicability of the approach to the compositional verification of infinite state processes. Our main result is the soundness of the proof system, which is proved by applying the coupling method from probability theory to the game semantics of the probabilistic modal µ-calculus.

    Probabilistic Rely-guarantee Calculus

    Full text link
    Jones' rely-guarantee calculus for shared variable concurrency is extended to include probabilistic behaviours. We use an algebraic approach which combines and adapts probabilistic Kleene algebras with concurrent Kleene algebra. Soundness of the algebra is shown relative to a general probabilistic event structure semantics. The main contribution of this paper is a collection of rely-guarantee rules built on top of that semantics. In particular, we show how to obtain bounds on probabilities by deriving rely-guarantee rules within the true-concurrent denotational semantics. The use of these rules is illustrated by a detailed verification of a simple probabilistic concurrent program: a faulty Eratosthenes sieve.Comment: Preprint submitted to TCS-QAP

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Compositional bisimulation metric reasoning with Probabilistic Process Calculi

    Full text link
    We study which standard operators of probabilistic process calculi allow for compositional reasoning with respect to bisimulation metric semantics. We argue that uniform continuity (generalizing the earlier proposed property of non-expansiveness) captures the essential nature of compositional reasoning and allows now also to reason compositionally about recursive processes. We characterize the distance between probabilistic processes composed by standard process algebra operators. Combining these results, we demonstrate how compositional reasoning about systems specified by continuous process algebra operators allows for metric assume-guarantee like performance validation
    corecore