

Edinburgh Research Explorer

A Proof System for Compositional Verification of Probabilistic
Concurrent Processes
Citation for published version:
Mio, M & Simpson, A 2013, A Proof System for Compositional Verification of Probabilistic Concurrent
Processes. in F Pfenning (ed.), Foundations of Software Science and Computation Structures: 16th
International Conference, FOSSACS 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. Lecture Notes in
Computer Science, vol. 7794, Springer-Verlag GmbH, pp. 161-176. DOI: 10.1007/978-3-642-37075-5_11

Digital Object Identifier (DOI):
10.1007/978-3-642-37075-5_11

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Foundations of Software Science and Computation Structures

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28975611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-37075-5_11
https://www.research.ed.ac.uk/portal/en/publications/a-proof-system-for-compositional-verification-of-probabilistic-concurrent-processes(352649f6-8c43-45e5-983a-6de57906abd6).html

A Proof System for Compositional Verification

of Probabilistic Concurrent Processes

Matteo Mio1⋆ and Alex Simpson2

1 INRIA and LIX, Ecole Polytechnique, France
2 LFCS, School of Informatics, University of Edinburgh, Scotland

Abstract. We present a formal proof system for compositional verifica-
tion of probabilistic concurrent processes. Processes are specified using
an SOS-style process algebra with probabilistic operators. Properties are
expressed using a probabilistic modal µ-calculus. And the proof system
is formulated as a sequent calculus in which sequents are given a quan-
titative interpretation. A key feature is that the probabilistic scenario is
handled by introducing the notion of Markov proof, according to which
proof trees contain probabilistic branches and are required to satisfy a
condition formulated by interpreting them as Markov Decision Processes.
We present simple but illustrative examples demonstrating the applica-
bility of the approach to the compositional verification of infinite state
processes. Our main result is the soundness of the proof system, which is
proved by applying the coupling method from probability theory to the
game semantics of the probabilistic modal µ-calculus.

1 Introduction

In recent years, model checking has established itself as a powerful and widely
applicable method for verifying properties of systems, with its techniques adapt-
able to systems embodying, for example, concurrency, real-time behaviour and
probabilistic choice, see [1] for a detailed overview. However, model checking has
its limitations. In particular, its applicability is typically restricted to finite-state
systems, or to carefully crafted classes of infinite-state systems. Moreover, even
in the finite-state case, the applicability of model checking is limited by the state
explosion problem: the state space of a concurrent system grows exponentially
in the number of parallel components.

Many phenomena in computer science give rise to infinite-state systems when
modelled at a natural level of abstraction. So it is important to have verifica-
tion methods that can cope with such systems. Since infinite-state systems are

⋆ This research was partially supported by PhD studentships from LFCS and the IGS
at the School of Informatics, University of Edinburgh; by EPSRC research grant
EP-F042043-1; by project ANR-09-BLAN-0169-01 PANDA; and by project ANR-
11-IS02-0002 LOCALI. It was completed during the tenure of an ERCIM “Alain
Bensoussan” Fellowship, supported by the Marie Curie Co-funding of Regional, Na-
tional and International Programmes (COFUND) of the European Commission.

v1lfass
Typewritten Text

v1lfass
Typewritten Text
Mio, M., & Simpson, A. (2013). A Proof System for Compositional Verification of Probabilistic Concurrent Processes. In Pfenning, F. (Ed.), Foundations of Software Science and Computation Structures. (pp. 161-176). (Lecture Notes in Computer Science). Springer Berlin / Heidelberg. doi: 10.1007/978-3-642-37075-5_11

defined using finite descriptions (given using a programming language, process
calculus or similar language for system specification), one seeks verification meth-
ods that relate descriptions of systems to their properties. Such methods cannot,
in general, be fully automatic since, for most interesting cases, the problem of
ascertaining whether a description satisfies a property is undecidable.

One general methodology for obtaining such broader verification methods is
to develop formal proof systems tailored to the goal of establishing that (de-
scriptions of) systems satisfy properties. The verification task then becomes
one amenable to the technology of computer-assisted reasoning. An important
desideratum for a proof system for verification is that it should support com-
positional reasoning methods, by which the the task of establishing a property
of a complex system is broken down into suitable verification goals for the com-
ponents of the system. As has been extensively discussed in the literature, see,
e.g., [9], such compositional methods support methodologies for the modular
development and verification of systems. Compositional methods also provide
a route to taming the state explosion problem, since the size of a compound
system is usually much larger than that of its components.

The purpose of this paper is to present one interesting instantiation of the
above general approach to verification. We develop a formal proof system for
compositional reasoning about (possibly infinite state) concurrent probabilistic
systems. The systems we deal with are ones described by a simple algebra for con-
current probabilistic processes, with SOS-style operational semantics (Section 2).
While, in this paper itself, we consider only a few basic process operators, a key
feature of our approach is that it is applicable to a wide class of operators (any
that can be described in the probabilistic GSOS framework of [2]).

Properties are specified using the probabilistic (a.k.a. quantitative) modal µ-
calculus (pLµ) introduced independently in [10,12] (Section 3). Our reason for
not using a standard logic for stating properties of probabilistic systems, such
as PCTL [1, §10.2], is that fixed-point logics such as pLµ appear to be better
adapted to compositional reasoning. One reason for this is that formulas express
properties of states rather than properties of objects of higher complexity, such
as paths or Markov chains. Also, powerful proof methods for reasoning about
fixed points are available. Nevertheless, as the first author has shown [13], the
full expressivity of PCTL (and beyond) can be recovered by extending pLµ with
a few additional operators. This makes it plausible that the proof system of
the present paper might be similarly extended to provide a system capable of
reasoning about arbitrary PCTL-properties.

The main contributions of the paper are the proof system itself and its (non-
trivial) soundness theorem (Section 4). Adapting a general methodology for com-
positional verification, expounded in [19], the proof system is a sequent calculus
with sequents of assertions of the form p : F . In our quantitative setting, the
semantics of p : F is a real number in [0, 1], which roughly (see Section 3 for
clarification) expresses the probability that property F holds of process p. The
right-hand side of a sequent is a multiset of such assertions, itself given a quan-
titative meaning as the Lukasiewicz disjunction (see, e.g., [8] and [10]) of the

individual assertions. The use of this disjunction from fuzzy logic underpins sev-
eral features of our proof system, most importantly the soundness of certain
crucial proof rules which allow probabilistic choices within different processes to
be coupled in the reasoning.

To enable the proof system to handle the fixed points in the logic, we allow
cyclic derivations and require a combinatorial condition to hold in order for
a proof to count as valid. This approach is familiar from proof systems for the
ordinary (non-probabilistic) modal µ-calculus [15,21] and other fixed-point logics
[3]. However, there is a twist in our probabilistic setting. One of the proof rules
in our system introduces probabilistic branching into the proof tree itself. This is
addressed by interpreting the proof tree as specifying a Markov Decision Process
(MDP), in which the participant, Refuter, is trying to refute the correctness of
the proof. Refuter’s goal is to try to find an infinite branch through the proof
along which all sequences of fixed-point unfoldings illegitimately unfold a least-
fixed-point infinitely often. The proof tree is declared valid just in case Refuter
almost surely fails in his endeavour; that is when the value of the MDP is zero.
Due to the critical role played by the probabilistic rule, we call such a valid
proof tree a Markov proof. An important fact, crucial for the applicability of the
approach, is that the property of being a Markov proof is decidable. This follows
from known decidability results for one-player stochastic parity games [5].

In Section 5, we present two examples of Markov proofs, illustrating the sort
of compositional reasoning possible within our system and establishing nontrivial
properties of infinite state systems.

Related work: Several approaches to compositional verification methods for con-
current probabilistic systems have received attention in the recent literature. In
Cardelli et. al. [4], new ‘spatial’ operators are added to a probabilistic modal
logic to support compositional reasoning about labelled Markov processes [16]
enriched with an algebraic structure defining composition of systems, and a com-
pleteness result is obtained for a Hilbert-style axiomatization. However, the logic
is limited to expressing local properties of systems (that is, it cannot state prop-
erties of infinite runs). In Kwiatkowska et. al. [11,7], assume-guarantee tech-
niques for compositional verification of (parallel composition of) probabilistic
automata [18] are developed. Their approach does handle some global proper-
ties of systems, namely safety and liveness properties expressed using automata.
However, being based on fully automatizable model-checking techniques, it is
restricted to finite models. Similarly, Larsen et. al. [6] introduce compositional
methodologies for design and verification of finite probabilistic concurrent sys-
tems. These are based on Abstract Probabilistic Automata which are structures
capable of modelling both specifications and implementations, and closed under
natural logical operations such as composition and refinement.

Distinguishing features of our approach are: we have a clear separation be-
tween the process language and a purely behavioural endogenous [17] logic; the
nested fixed-points of the logic allow the specification of complex global be-
haviour; and we are able to establish nontrivial properties of infinite state sys-
tems.

2 Probabilistic Concurrent Processes

Ordinary Labeled Transition Systems (LTS) allow the description of processes
exhibiting nondeterministic behavior. In his PhD thesis, R. Segala introduced a
new class of models, nowadays known as Probabilistic Labeled Transition Systems
(PLTS), for modelling processes exhibiting both nondeterministic and probabilis-
tic behaviours. Since their introduction, PLTS’s have been successfully adopted
as models for formal languages describing concurrent probabilistic systems, such
as the class of PGSOS languages of [2] among others.

Definition 1 (PLTS [18]). Given a countable set L of labels, a Probabilistic

Labeled Transition System (PLTS) is a pair L = 〈P, {
a

−→}a∈L〉, where P is a

set of states and
a

−→ ⊆ P ×D(P), for every a ∈ L, where D(P) denotes the set
of discrete probability distributions over P .

The intended interpretation of a PLTS L = 〈P, {
a

−→}a∈L〉 is the following:
the process states p∈P represent the possible configurations of the system. At
a process state p, the system can react to an a-action, for a ∈ L, by changing
its state to a process q in accordance with some nondeterministically chosen
probability distribution d ∈ D(P) such that p

a
−→ d.

prefix
a.x

a
−→ δ(x)

x
a

−→ α | left
x|y

a
−→ {α z}δ(z|y)

y
a

−→ α
| right

x|y
a

−→ {α z}δ(x|z)

x
a

−→ α
!

!x
a

−→ {α z}δ(z|!x)

x
a

−→ α
!
1

2

!
1

2 x
a

−→ α+ 1

2

{α y}δ(y|!
1

2 x)

Fig. 1. SOS Rules. The letter a ranges over a fixed set L of labels.

In this paper, we consider PLTS’s described by a few very simple process
operators chosen to present the examples in Section 5. Our approach, however,
adapts straightforwardly to handle arbitrary process algebras described by means
of well-behaved operational rules (such as, e.g., the PGSOS format of [2]). The
term constructors we consider are the constant 0 denoting the inactive process,
the prefix operation (a.) of arity 1, the non-communicating asynchronous paral-
lel composition (|) of arity 2, the bang operator (!) and a probabilistic variant

of it (!
1

2), both of arity 1. Their semantics, specified by the SOS operational

rules of Figure 1, allows the derivation of statements of the form p
a

−→ d where
p is a process term, the letter a is a label and d is a process distribution term.
Process distribution terms, denoting probability distributions over processes, are
specified by the syntax: d, e ::= α | δ(p) | d+λ e | {d x}e , where α is a process
distribution variable and λ ∈ [0, 1]. The term δ(p) denotes the (Dirac) probabil-
ity distribution that proceeds deterministically onward to p, and d+λ e denotes
the probabilistic choice that chooses d with probability λ and e with probability

1 − λ. The distribution term {d x}e, first, randomly chooses a process p in
accordance with probability distribution d, and then proceeds as e[p/x].

A SOS-model, or just a model, is a PLTS equipped with sound interpreta-
tions for all process constructors under consideration (see, e.g., [19] and [2] for

general definitions). In the case of prefix, for example, the PLTS 〈P, {
a

−→}a∈L〉

is required to come with a function fa. : P → P for which fa. (p)
b

−→ d holds if
and only if a=b and d is the Dirac distribution with mass at p, for every p∈P .
In what follows we reserve the letter M to range over models.

Definition 2 (Interpretations). Given a model M=〈P, {
a

−→}a∈L〉, an inter-
pretation of the variables is a function γ mapping process-variables x to states
p∈P and process distribution-variables α to probability distributions d∈D(P).
The map γ extends uniquely to a function from process-terms to P and to process
distribution terms to D(P), defined as expected. In particular

γ
(

{d x}e
)

(p)
def
=

∑

q∈P

(

γ
(

d
)

(q) · γ[q/x]
(

e
)

(p)
)

where γ[q/x](x)=q and γ[q/x](y)=γ(y) for all variables x 6= y.

3 Probabilistic Modal µ-Calculus (pLµ)

The probabilistic (or quantitative) modal µ-calculus (pLµ) [14,12] is a fixed-point
logic designed for expressing properties of PLTS’s. The syntax of pLµ formulas
is the same of the standard modal µ-calculus (Lµ) [20].

Definition 3. Given a countable set of propositional variables Var ranged over
by the letters X,Y, Z and a set of labels L ranged over by the letters a, b, c, the
formulas of the logic pLµ (in positive form) are defined by the following grammar:

F,G ::= X | 〈a〉F | [a]F | F ∨G | F ∧G | µX.F | νX.F

As usual the operators νX.F and µX.F bind the variable X in F .

Definition 4 (Denotational Semantics [12]). Given L=〈P, {
a

−→}a∈L}, the
denotational semantics of the pLµ formula F under the interpretation ρ :Var→
(P → [0, 1]), is the map JF Kρ :P→ [0, 1] defined by structural induction on F as:

LX Mρ(p) = ρ(X)(p)
LG ∨H Mρ(p) = LG Mρ(p) ⊔ LH Mρ(p) LG ∧H Mρ(p) = LG Mρ(p) ⊓ LH Mρ(p)

L 〈a〉G Mρ(p) =
⊔

{

LG Mρ(d) | p
a

−→ d
}

L [a]G Mρ(p) =
l

{

LG Mρ(d) | p
a

−→ d
}

LµX.G Mρ(p) = lfp
(

λf.(LG Mρ[f/X])
)

(p) L νX.G Mρ(p) = gfp
(

λf.(LG Mρ[f/X])
)

(p)

where ⊔, ⊓, lfp and gfp denote the join, meet, least and greatest fixed point
operations of the complete lattice [0, 1] with its standard order, and LF Mρ(d) is
defined as LF Mρ(d)=

∑

p∈P d(p) · LF Mρ(p).

It is easy to verify that the interpretation assigned to every pLµ operator is
monotone. Thus, the existence of the least and greatest fixed points is guaran-
teed by the Knaster-Tarski theorem. Although it is convenient to consider open
formulas when defining the semantics of pLµ, logical specifications are generally
formulated as closed formulas. For this reason, and for simplifying the presen-
tation of the proof system in Section 4, we shall only consider closed formulas
in the rest of this paper. Thus we omit the interpretation ρ from LF Mρ and just
write LF M. Given a formula F we denote with ¬F its De Morgan dual obtained
by replacing every connective appearing in F with its dual. Note that F =¬¬F .
As customary, we denote with ⊤ the pLµ formula νX.X and define ⊥ = ¬⊤.

Proposition 5. For every PLTS L= 〈P, {
a

−→}a∈L〉, the equalities L⊤ M(p) = 1,
L⊥ M(p)=0 and L¬F M(p) = 1 − LF M(p) hold, for all p∈P .

It is often suggestive to think of the value of LF M(p) as representing the
probability that a property asserted by F holds for p. Technically, this is justified
by an alternative semantics for pLµ, which interprets a formula as the value of
a two-player stochastic parity game [12]. The game in question is obtained by
running the usual two-player game for the modal µ-calculus formula over the
PLTS. As with ordinary modal µ-calculus games, game configurations p : 〈a〉F
and p : [a]F are under the control of different players (here called Maximizer
and Minimizer respectively) whose move is to choose an a transition out of p. In
the case of pLµ, the destination of this transition is a probability distribution,
and Nature intercepts in the game to make the probabilistic choice. The winning
condition for Maximizer is the usual one that a greatest fixed-point gets unfolded
infinitely often. One can then think of the value of the game as the (upper limit)
probability with which Maximizer is able to verify the property expressed by the
ordinary µ-calculus formula F .

It is a nontrivial fact that the game interpretation of a pLµ formula coincides
with the denotational one of Definition 4. This was originally shown just for finite
PLTS’s in [12], and only recently for general PLTS’s in [14].

4 Proof System

We introduce in this section our proof system designed to reason about pLµ-
calculus properties of processes given in our process algebra. The system is a
sequent calculus, in which sequents have the form Σ ⊢ ∆, where Σ and ∆ are
multisets of (different kinds of) assertions. We use the letter J to range over
operational assertions in Σ which are either of the form d ≃ e, where d and e
are process distribution terms, or of the form p

a
−→ d, where p is a process term,

a is an action-label and d is a process distribution term. We use the letters φ and
ψ to range over logical assertions in ∆, which are of the form p :F or d :F , where
F is a closed pLµ formula, p a process term and d a distribution term. Given an
assertion φ of the form t :F , with t∈{p, d}, we write ¬φ for the assertion t :¬F .

Definition 6 (Semantics of assertions). Given a model M and an interpre-
tation of the variables γ, the meaning J KMγ of the assertions is defined as:

1. Jd ≃ eKMγ = 1 if γ(d) = γ(e) and Jd ≃ eKMγ = 0 otherwise.

2. Jp a
−→ dKMγ = 1 if γ(p)

a
−→M γ(d) and Jp a

−→ dKMγ = 0 otherwise.

3. Jt :F KMγ
def
= LF M

(

γ(t)
)

, for any process or distribution term t.

We write (M,γ) |= J if the equality JJKMγ = 1 holds. We write (M,γ) |= Σ, for
Σ = J1, . . . , Jm, if for all i∈{1, . . . ,m} it holds that (M,γ) |= Ji.

Note that the value JJKMγ of a logical assertion is either 1 or 0, whereas Jt :F KMγ
lies anywhere in [0, 1], representing, using the informal reading of pLµ discussed
in Section 3, the probability of the property expressed by F holding at γ(t). In
order to extend the semantics from assertions to sequents, we first recall basic
notions from Lukasiewicz logic [8].

Definition 7 ([8]). The operations ⊕ : [0, 1]2 → [0, 1] and ¬ : [0, 1] → [0, 1]
defined as x ⊕ y = min{x + y, 1} and ¬x = 1 − x, are known as Lukasiewicz
disjunction and negation. The induced conjuction (⊖) and implication (⇒) op-
erations are defined as x ⊖ y = ¬(¬x ⊕ ¬y) and x ⇒ y = ¬x ⊕ y. Note that
((x ⊖ y)⇒z) = (x⇒(¬y ⊕ z)) and (x⇒ y)=1 if and only if x ≤ y.

Definition 8 (Semantics of Sequents). Let Σ ⊢ ∆ be a sequent with Σ =
J1, . . . , Jn and ∆=φ1, ..., φm. Given a model M and an interpretation γ of the
variables, we define the semantics JΣ ⊢ ∆KMγ ∈ [0, 1] of the sequent as:

JΣ ⊢ ∆KMγ
def
=

(

JJ1KMγ ⊖ . . .⊖ JJnKMγ
)

⇒
(

Jφ1KMγ ⊕ . . .⊕ JφmKMγ
)

Note that, since each JJiKMγ is in {0, 1}, so is the value of the antecedent. We

write (M,γ) |= Σ ⊢ ∆ if JΣ ⊢ ∆KMγ =1. A sequent is valid, written |= Σ ⊢ ∆, if
(M,γ) |= Σ ⊢ ∆ for every pair (M,γ).

The choice of considering a quantitative semantics of sequents is naturally moti-
vated by the [0, 1]-valued semantics of the logic pLµ. Among the many possible
choices (several are studied in fuzzy logic [8]) for interpreting commas in se-
quents, Lukasiewicz logic enjoys pleasant properties. Its operators coincide with
the ordinary boolean ones when arguments have values in {0, 1}. Furthermore L-
negation coincides with pLµ negation (see Proposition 5) and interacts well with
 L-disjunction (as in Definition 7). This allows our one-sided (in the set of logical
assertions) formulation of sequents. Lastly, and most importantly, L-disjuction
validates a sound probabilistic interpretation of some key rules of the proof sys-
tem (see Proposition 15 below). The validity of a sequent Σ ⊢ ∆ expresses a form
of implication: for every model (M,γ) satisfying all the operational assertions
in Σ, the sum of the values of the (interpreted) assertions in ∆ is at least 1.
Valid sequents express nontrivial relations between the probabilities associated
to the logical assertions in ∆. For example, the validity of a sequent of the form
Σ ⊢ ¬φ1,¬φ2, φ can be understood as follows: in every model (M,γ) satisfying
the operational assertions in Σ, the value of the assertion φ is bounded below by
a function (⊖) of the values of φ1 and φ2. We now briefly discuss a few illustrative
examples of valid sequents showing how the chosen quantitative interpretation
allows the expression of interesting properties.

Example 9. Define F
def
= µX. [a]X . The following sequents are valid:

Seq1
def
= x

a
−→ α ⊢ x :〈a〉⊤ Seq3

def
= ∅ ⊢ x :¬F, y :¬F, x|y :F

Seq2
def
= ∅ ⊢ x|y :¬F, x :F Seq4

def
= ∅ ⊢!

1

2 (a.0):F

The first example expresses a trivial property: if a process x can perform an
a-labeled transition then it satisfies the pLµ formula 〈a〉⊤ with probability 1.
The meaning of the pLµ formula F above can be understood as expressing
a termination goal (i.e., the impossibility of producing an infinite sequence of
a’s) under an adversary environment. Thus the sequent Seq2 expresses a simple
property: the parallel (non-communicating) system x|y with two components
has termination probability less than or equal to that of its components. The
third sequent Seq3 expresses a slightly less obvious property, providing a lower
bound on the termination probability for x|y. Lastly, the fourth sequent Seq4

expresses the fact that the process !
1

2 (a.0) terminates with probability 1, i.e.,
almost surely. All the sequents above can be proven valid by our proof system.
In Section 5 we present proofs for Seq3 and Seq4.

Before introducing the derivation rules of our system, we introduce an aux-
iliary kind of judgement useful for expressing entailments between operational
assertions. We shall consider operational judgments of the form Σ ⊲ {Σi}0≤i≤n.

Definition 10. Given an operational judgment Σ⊲{Σi}0≤i≤n, we write (M,γ) |=
Σ ⊲ {Σi}0≤i≤n when the following implication holds: if (M,γ) |= Σ then there
is some i ∈ {0, . . . , n} such that (M,γi) |= Σi, for some interpretation γi that
agrees with γ on all (process and distribution) variables appearing in Σ. We say
that Σ ⊲ {Σi}0≤i≤n is valid, written |= Σ ⊲ {Σi}0≤i≤n, if for every pair (M,γ)
it holds that (M,γ) |= Σ ⊲ {Σi}0≤i≤n. Note that |= Σ ⊲ {∅} holds, |= Σ ⊢ ∅
holds iff Σ is not satisfiable and ∅⊲ {Σ} holds iff (M,γ) |= Σ for all (M,γ). In
order to improve readability, we just write Σ ⊢ J instead of Σ ⊢ {{J}}.

Example 11. The following are examples of valid operational judgments:

1. 0
a

−→ α⊲ ∅ 2. ∅⊲ {{a.x
a

−→ α, α ≃ δ(x)}} 3. a.x
b

−→ α⊲ ∅, if b 6=a

4. x|y
a

−→ α⊲ {ΣL, ΣR} 5. !x
a

−→ α ⊲
{{

x
a

−→ β, α ≃ {β y}δ(y|!x)
}}

5. ∅ ⊲ α ≃ {α x}δ(x) 6. ∅ ⊲ α+ 1

4

β ≃ (α+ 1

2

β) + 1

2

β

where ΣL=x
a

−→ β, α ≃ {β x′}δ(x′|y) and ΣR=y
a

−→ β, α ≃ {β y′}δ(x|y′).

The derivation rules for our main proof system for quantitative sequents are
presented in Figure 2. The rule Σ-Rule supports reasoning about the operational
semantics by means of case analysis, using a side-condition exploiting the seman-
tic validity of operational judgements (Definition 10). In practice, this semantic
side-condition can be replaced with a formal proof system for proving validity
of operational judgements, which can be constructed following established ap-
proaches (see, e.g., “action assertions rules” in [19, p. 18]). For lack of space, we
do not go into further details about this, focussing instead on our main proof
system for quantitative sequents, whose design is significantly more intricate.

{Σi ⊢ ∆}i∈I
Σ-Rule

(

proviso: Σ ⊲ {Σi}i∈I

)

Σ ⊢ ∆
Σ ⊢ Γ, ψ Σ ⊢ ∆,¬ψ

Cut
Σ ⊢ Γ,∆

Σ ⊢ ∆
P-Sub

Σ[q/x] ⊢ ∆[q/x]
Σ ⊢ ∆

D-Sub
Σ[d/α] ⊢ ∆[d/α]

Σ[e/α] ⊢ ∆[e/α]
Σ-Sub

(

proviso: Σ ⊲ d ≃ e
)

Σ[d/α] ⊢ ∆[d/α]
Σ ⊢ p :Fi,∆

∨i i ∈ {1, 2}
Σ ⊢ p :F1 ∨ F2,∆

Σ ⊢ p :F,∆ Σ ⊢ p :G,∆
∧

Σ ⊢ p :F ∧G,∆

Σ ⊢ d :F,∆
〈a〉

(

proviso: Σ ⊲ p
a

−→ d
)

Σ ⊢ p :〈a〉F,∆

Σ, p
a

−→ α ⊢ α :F,∆
[a] α fresh

Σ ⊢ p : [a]F,∆
Σ ⊢ p :F [µX.F/X], ∆

µ
Σ ⊢ p :µX.F,∆

Σ ⊢ p :F [νX.F/X], ∆
ν

Σ ⊢ p :νX.F,∆
Σ ⊢ ∆, p :F

δ
Σ ⊢ ∆, δ(p) :F

Σ ⊢ ∆, d1 :F1, . . . , dn :Fn Σ ⊢ ∆, e1 :F1, . . . , en :Fn
+λ λ∈(0, 1)

Σ ⊢ ∆, d1 +λ e1 :F1, . . . , dn +λ en :Fn

Σ ⊢ ∆, e1[y/x1] :F1, . . . , en[y/xn] :Fn
{ } y fresh.

Σ ⊢ ∆, {d x1}e1 :F1, . . . , {d xn}en :Fn

Fig. 2. Derivation rules.

A typical usage of the Σ-Rule is better explained by means of a simple

example. Consider the valid sequent x|y
a

−→ α ⊢ x : 〈a〉⊤, y : 〈a〉⊤ asserting
that in every model such that x|y can make an a-transition then either x or
y or both can make an a-transition (this qualitative interpretation holds since
L 〈a〉⊤ M(p) ∈ {0, 1} in every model). The crucial step in proving its validity is:

ΣL ⊢ x :〈a〉⊤, y :〈a〉⊤ ΣR ⊢ x :〈a〉⊤, y :〈a〉⊤
Σ-Rule: x|y

a
−→ α⊲ {ΣL, ΣR}

x|y
a

−→ α ⊢ x :〈a〉⊤, y :〈a〉⊤

where ΣL and ΣR are as in Example 11. This step performs the required case
analysis, based on the operational semantics of the (non-communicating) parallel
operator, required to distinguish the two relevant cases. Both premises above are
easily seen to be valid (see also Seq1 in Example 9). Note that the only axiom
rule (i.e., rule without premises) in the proof system is the instance of the Σ-
Rule when the proviso is of the form Σ ⊲ ∅, i.e., when Σ is unsatisfiable. We
refer to this particular use of this rule as Σ-Axiom. For example, the sequent
∅ ⊢ 0: [a]⊥ can be proved as follows,

Σ-Rule
(

0
a

−→ α⊲ ∅
)

0
a

−→ α ⊢ α :⊥ [a]
∅ ⊢ 0: [a]⊥

where the axiom is used to reveal the inconsistency in the assumption that the
null process 0 could make an a-transition.

Definition 12. Let R be a derivation rule. We say that R is sound if, whenever
the sequent Σ ⊢ ∆ is derived using R from the premises {Σi ⊢ ∆i}i∈I (for some
finite index set I) which are all valid, then also Σ ⊢ ∆ is valid. We also say that
R is strongly sound if, for every (M,γ), the following inequality holds

JΣ ⊢ ∆KMγ ≥ min
{

JΣi ⊢ ∆iKMγ′

}

i∈I

for all interpretations γ′ that agree with γ on all variables appearing in Σ ⊢ ∆.

The notion of strong soundness clearly implies the ordinary one. The proposition
bellow explains the reason for omitting the contraction rule.

Proposition 13. The contraction rule
Σ ⊢ ∆,φ, φ

Σ ⊢ ∆,φ
is not sound.

Proposition 14. The CUT rule is sound but not strongly sound. All other
derivation rules of Figure 2 are strongly sound.

Proof. Most cases are trivial to verify. The strong soundness of the rules +λ and
{ } follows from Proposition 15 below. ⊓⊔

Remark 1. Strong soundness of derivation rules is a technical requirement needed
in the proof of our main theorem (see remarks after Theorem 17 below). As stated
in Proposition 14, the CUT rule is not strongly sound. This fact requires restric-
tions to be placed on applications of CUT in proofs (see Definition 16 below).
These restrictions are needed for our soundness proof to go through.

The rules {P-Sub,D-Sub, Σ-Sub} are called substitution rules and support
parametric reasoning [19]. In particular note how using the rule Σ-Sub one can
substitute some of the occurrences of a compound distribution term with an-
other equivalent (in all models satisfying Σ) compound distribution term. For
example, the term d + 1

3

e can be rewritten to (d + 2

3

e) + 1

2

e. Such equational

reasoning on distribution terms can be very useful (see, e.g., Remark 2 below).
The rules {∨1,∨2,∧, 〈a〉, [a] , µ, ν} are called logical rules. The rules ∨1, ∨2, ∧,
µ, ν are standard and also the rules 〈a〉, [a] for reasoning about modalities are
natural counterparts to the analogous rules adopted in proof systems for modal
(fixed point) logics appeared in the literature (see, e.g., [19], [21] and [15]). The
rules {δ,+λ, { }} are called distribution rules and constitute a crucial aspect
of the system. Together with the rule Σ-Sub, these are the only rules that oper-
ate on logical assertions containing distribution terms. All distribution rules can
be understood probabilistically as (partially) evaluating the probability distri-
bution terms of the active logical assertions. The simplest rule δ just evaluates
a Dirac distribution to the corresponding process. In the rule +λ, each active
logical assertions (of the form di +λ ei :Fi for a fixed λ∈ [0, 1]) is evaluated to
the left (resp. right) sub-term in the left (resp. right) premise of the rule with
probability λ (resp. 1 − λ). Note that the evaluation steps of each active prob-
ability distribution are not independent of each other. To the contrary, useful
dependencies can be established by applications of the rule +λ. The rule { }
can be understood, by similar arguments, as a symbolic variant of the rule +λ.

Remark 2. Note that the distribution rules [+λ] and [{ }] may only be appli-
cable once the distribution terms have been rewritten. Consider for example the
sequent Σ ⊢ (d+ 1

3

e) : F, (d′ + 1

2

e) : G. The distribution rule {+λ} is not directly
applicable since the two distribution terms have a different outermost connec-
tive. However, by application of the rule Σ-Sub, the distribution term d + 1

3

e

can be rewritten as (d+ 2

3

e) + 1

2

e. This could be used as follows

Σ ⊢ (d+ 2

3

e) : F, d′ : G Σ ⊢ e : F, e : G
+ 1

2

Σ ⊢
(

(d+ 2

3

e) + 1

2

e
)

: F, (d′ + 1

2

e) : G
Σ-Sub

Σ ⊢ (d+ 1

3

e) : F, (d′ + 1

2

e) : G

to reduce the original problem to the verification of the two new subgoals.

Proposition 15. Let Σ ⊢ ∆ be derived by application of the rule +λ from the
two premises Σ ⊢ ∆1 and Σ ⊢ ∆2. Then, for every (M,γ) it holds that

JΣ ⊢ ∆KMγ ≥ λ · JΣ ⊢ ∆1KMγ + (1 − λ) · JΣ ⊢ ∆2KMγ .

Similarly, let Σ ⊢ ∆ be derived by application of the rule { } and let Σ ⊢ Σ1 be
its only premise, as depicted in Figure 2. Then, for every (M,γ), it holds that

JΣ ⊢ ∆KMγ ≥
∑

m∈M

γ(d)(m) · JΣ ⊢ ∆1KMγ[m/y]

where γ[m/y] updates γ by assigning to the fresh variable y the process m∈M .

Proof. Both points follow easily from the following arithmetical inequality (and
variants thereof): ⊕i∈I{xi +λ yi} ≥ (⊕{xi}i∈I) +λ (⊕{yi}i∈I) which is valid for
every index set I, reals xi, yi ∈ [0, 1], where x+λ y = λ · x+ (1 − λ) · y. ⊓⊔

4.1 Markov Proofs

As anticipated in the introduction, to enable the proof system to handle the fixed
points in the logic pLµ, we allow cyclic proof trees (cf. [15,21,3]) in which some
leaves of the tree are identified with sequents internal to the tree, with the proof
looping back to that point. Technically, it is convenient to view such cyclic trees
as the infinite trees they unfold to, and to work with general infinite trees, with
the finite cyclic ones corresponding exactly to the regular trees (those with only
finitely many subtrees). We call a (possibly infinite) tree of rule applications, in
which all leaves are instances of the axiom rule Σ-Axiom, a preproof. A preproof
is cut-free if it does not contain occurrences of the CUT rule. Since they may
have infinite branches, preproofs are not guaranteed to have valid endsequents
even though every rule is (strongly) sound.

In the literature on infinitary proof systems for fixed-point logics (see, e.g.,
[15,21,3]), valid proofs are defined as those preproofs whose infinite branches
all contain at least one legitimate sequence (called a valid trace) of fixed-point
unfoldings, along which a greatest fixed-point is unfolded infinitely often. This
can equivalently be reformulated in terms of a single player game. The aim of

the single player, Refuter, is to find an infinite branch along which all traces are
invalid. The preproof is then considered a valid proof just in case Refuter cannot
win his game.

For the proof system in this paper, we adopt a similar approach, except that
we now interpret Refuter’s game as a single-player stochastic game G(T) (i.e.,
a Markov Decision Process) over the preproof T , and we also need to constrain
applications of the CUT rule (see Remark 1 and those following Theorem 17).
Once again, in the game G(T), Refuter is trying to find an infinite branch in
T along which all traces are invalid. This time, however, instances of the rule
+λ in T are interpreted as probabilistic nodes under the choice of Nature, who
extends the branch thus far with the left (resp. right) premise with probability
λ (resp. 1− λ). At all other rules, Refuter has the choice of premise. A preproof
satisfies the game condition just in case Refuter almost surely fails in his goal;
that is, no matter what strategy Refuter adopts, the probability of him finding an
infinite branch with all traces invalid is 0. We now specify the collection of valid
derivations, which we call Markov proofs, by the following inductive definition.

Definition 16. A Markov proof is a preproof T satisfying the game condition
and such that, for that every occurrence of the CUT rule in T ,

T1
Σ ⊢ ∆,φ

T2
Σ ⊢ Γ,¬φ

CUT
Σ ⊢ ∆,Γ

either the sub-preproof T1 or T2 (or both) is a Markov proof.

Note that a Markov proof can contain infinite branches on which Refuter wins
as long as the set of such branches has probability 0 for every Refuter strategy
in G(T). We shall see an example of this kind of Markov proof in Section 5. We
remark also that the inductive definition could be replaced with a combinatorial
condition. A Markof proof could equivalently be defined as a preproof T satis-
fying the game condition, for which there exists an assignment of a privileged
premise (a ‘switching’) to every CUT rule such that no infinite path in the proof
runs through infinitely many privileged (‘switched’) CUT premises.

The set of rules of Figure 2 has been kept as small as possible to simplify the
proof of Theorem 17 below. Other expected rules are admissible, such as:

Ax(⊤)
Σ ⊢ ∆,x :⊤

Ax(¬)
Σ ⊢ ∆, x :F,x :¬F

Σ ⊢ ∆
Weak

Σ,Σ′ ⊢ ∆,Γ

The following result is the main technical contribution of this paper.

Theorem 17 (Soundness). The endsequent of every Markov proof is valid.

Proof Sketch. Our proof technique is based on the game semantics of pLµ and,
therefore, crucially exploits the equivalence result of [14]. The result is first
proved for cut-free Markov proofs and then extended to general Markov proofs.
The structure of a Markov proof Π with endsequent Σ ⊢ {φi}i∈I is seen as
providing strategies σi

1 for player Maximizer in the two-player stochastic games

associated with the assertions φi. On the other hand, a Markov play (i.e., a
Markov chain) PΠ in G(Π), resolving the choices corresponding to the occur-
rences of rules {∧, Σ-Rule} in Π , is seen as providing strategies σi

2 for Minimizer
as well as information about a counter-model M . This allows us to consider PΠ

as a coupling of Markov chains, i.e., as a non-independent product of the prob-
abilistic pLµ plays P i

σi

1
,σi

2

associated with φi, whose probabilistic dependencies

have been introduced by the rules [+λ, { }] in Π . Our proof is by reductio ad
absurdum. One assumes that M and σi

2’s constitute a counterexample to the
validity of the endsequent of Π , i.e., that the expected probability of victory
for Maximizer in the Markov plays P i

σi

1
,σi

2

sum up to a value λ < 1. We show

that this implies that PΠ must assign at least probability 1 − λ (i.e., positive
measure) to the set of branches in Π corresponding to plays losing for Maximizer
in the pLµ game associated with φi, for all i∈ I. These are precisely branches
without valid traces. From these assumption it follows that Refuter can win in
the game G(Π) with positive probability. Thus Π cannot be a Markov proof, a
contradiction. ⊓⊔

The following theorem shows that regular (cyclic) Markov proofs do indeed
form an effective proof system. This is essential for the potential applicability of
the approach. It is proved along the lines of similar results for non-probabilistic
cyclic proofs (see, e.g., [15], [21] and [3]), using decidability results for one-player
stochastic parity games established in [5].

Theorem 18. It is decidable if a regular preproof T is a Markov proof.

5 Examples of Markov proofs

In this section we provide Markov proofs of the sequents Seq3 and Seq4 dis-
cussed in Example 9. Despite the simplicity of the process algebra considered in
this paper, these small examples illustrate nontrivial instances of compositional
reasoning and verification of infinite state systems. However, due to the space
limits, some important features of our proof system, such as the possibility of
recombining distribution terms (see Remark 2) and the capability of handling
more realistic process algebras (such as those including, e.g, a communicating
parallel operator), are not illustrated in this paper.

The validity of Seq3 is proved by the (cut-free) Markov proof Π3 depicted in
Figure 3 (top), where the proviso of Σ-Rule, expressing a case analysis, is as in
Example 11. The left sub-Markov proof ΠL, itself containing Π3 as sub-Markov
proof, is depicted as in Figure 3, and ΠR is the similar Markov proof of the
sequent y

a
−→ β, α ≃ {β y′}δ(x|y′) ⊢ α : F, x : ¬F, y : ¬F . Each infinite play (i.e.,

branch in Π3 since there are no probabilistic vertices in G(Π3), see Section 4),
has a valid trace because the greatest fixed point operators are unfolded infinitely
many times. Thus Π3 is a Markov proof as desired.

Compositional reasoning is supported in our system by the CUT rule (cf.
[19]). For instance, as we have established the validity of Seq3, we can reduce
the problem of verifying the validity of the sequent ∅ ⊢ p|q :F (i.e., prove that

ΠL ΠR
Σ-Rule: x|y

a
−→ α ⊲ {ΣL, ΣR}

x|y
a

−→ α ⊢ α : F, x : ¬F , y : ¬F
[a]

∅ ⊢ x|y : [a]F, x : ¬F , y : ¬F
µ

∅ ⊢ x|y : µZ. [a]Z, x : νX.〈a〉X, y : νY.〈a〉Y

Π3

∅ ⊢ x|y : F, x : ¬F , y : ¬F
P-SUB: [x/x′]

∅ ⊢ x′|y : F, x′ : ¬F , y : ¬F
δ, δ

∅ ⊢ δ(x′|y) : F, δ(x′) : ¬F , y : ¬F
{ }

∅ ⊢ {β x′}δ(x′|y) : F, {β x′}δ(x′) : ¬F , y : ¬F
Σ-Sub

∅ ⊢ {β x′}δ(x′|y) : F, β : ¬F , y : ¬F
〈a〉: x

a
−→ β ⊲ x

a
−→ β

x
a

−→ β ⊢ {β x′}δ(x′|y) : F, x : 〈a〉¬F, y : ¬F
ν

x
a

−→ β ⊢ {β x′}δ(x′|y) : F, x : ¬F , y : ¬F
Σ-Sub

x
a

−→ β, α ≃ {β x′}δ(x′|y) ⊢ α : F, x : ¬F , y : ¬F

Π3

∅ ⊢ x :¬F, y :¬F, x|y :F
P-SUB

∅ ⊢ p :¬F, q :¬F, p|q :F ∅ ⊢ p :F
CUT

∅ ⊢ p :¬F, p|q :F ∅ ⊢ q :F
CUT

∅ ⊢ p|q :F
Π3

∅ ⊢ x′|z : ¬F, x′ :¬F, z :¬F
P-SUB [(x|y)/x′]

∅ ⊢ (x|y)|z :F,x|y :¬F, z :¬F

Π3

∅ ⊢ x|y : F, x : ¬F, y : ¬F
CUT

∅ ⊢ (x|y)|z :F,x :¬F, y :¬F, z :¬F

ΠA

p
a

−→ β ⊢ β :F

Π4

∅ ⊢!
1

2 p :F

ΠB

p
a

−→ β ⊢ {β y}δ(y|!
1

2 p) :F, !
1

2 p :¬F
CUT

p
a

−→ β ⊢ {β y}δ(y|
1

2 p} :F
+ 1

2

p
a

−→ β ⊢ β + 1

2

{β y}δ(y|!
1

2 p} :F
Σ-Sub

p
a

−→ β, α ≃ β + 1

2

{β y}δ(y|!
1

2 p} ⊢ α :F
Σ-Rule: P

!
1

2 p
a

−→ α ⊢ α :F
[a]

∅ ⊢!
1

2 p : [a]F
µ

∅ ⊢!
1

2 p :µX. [a]X

Fig. 3. Examples of Markov proofs.

the compound system p|q almost surely terminates) to the verification of the
two smaller goals ∅ ⊢ p :F and ∅ ⊢ q :F by means of the Markov proof depicted
in Figure 3. Furthermore, other useful results can be proved, without searching
for direct proofs, by using already proved lemmas. For example, the validity of
the sequent ∅ ⊢ (x|y)|z :F, x :¬F, y :¬F, z :¬F can be proved as in Figure 3.

Πp

∅ ⊢ p :F

p
a

−→ β ⊢ β : F, β : ¬F
ν, 〈a〉

p
a

−→ β ⊢ β :F, p :¬F
CUT

p
a

−→ β ⊢ β :F

Π3

⊢ y|x :F,x :¬F, y :¬F
P-SUB [!

1

2 p/x]
⊢ y|!

1

2 p :F, !
1

2 p :¬F, y :¬F
{ }, δ

⊢ {β y}δ(y|!
1

2 p) :F, !
1

2 p :¬F, {β y}δ(y) :¬F
ν, 〈a〉

p
a

−→ β ⊢ {β y}δ(y|!
1

2 p) :F, !
1

2 p :¬F, p :¬F

Πp

∅ ⊢ p :F
CUT

p
a

−→ β ⊢ {β y}δ(y|!
1

2 p) :F, !
1

2 p :¬F

Fig. 4. Sub-Markov proofs ΠA and ΠB of Π4.

Compositional reasoning is the key to the verification of infinite state systems.
Consider, for example, a process p that almost surely terminates, i.e., such that
the validity of Sp = ∅ ⊢ p : F has been proven by a Markov proof Πp. It is

simple to verify that !
1

2 p is an infinite state system, even when p is a finite state
process such as a.0. Nevertheless, it is possible to prove that !

1

2 p almost surely
terminates. This is expressed (for p=a.0) by the sequent Seq4 whose validity is
witnessed by the regular Markov proof Π4 depicted in Figure 3 (bottom) where

the operational judgment P
def
= !

1

2 p
a

−→ α⊲
{

{p
a

−→ β, α ≃ β+ 1

2

{β y}δ(y|!
1

2 p)}
}

used in the rule Σ-Rule is defined is valid, and the Markov proofs ΠA and ΠB

can be depicted as in Figure 4. Note how the use of the CUT rule in ΠB allows
us to make use of the result already proved by the Markov proof Π3. This
time Π4 contains probabilistic vertices: at occurrences of the rule + 1

2

the game
probabilistically branches. The only infinite branch in Π4 without valid traces is
the one never joining one of the the two sub-Markov proofs ΠA or ΠB. However,
the probability that this branch is the outcome of the game G(Π4) is easily seen
to be an event of probability 0. Thus Π4 satisfies the proof condition and is a
Markov proof, as desired.

6 Further directions

There are numerous directions for improvement to the approach of this paper.
One is relax the restrictions on applications of CUT. Is it possible to reconfigure
the proof system and soundness proof so that an unrestricted CUT rule is avail-
able? Another is to address completeness issues, which we have ignored entirely.
Are completeness results available for restricted classes of processes (e.g., finite
state)? Yet another is to attempt to extend the proof system to deal with ex-
tensions of the probabilistic µ-calculus with other operators, for example those
considered in [13], allowing the full expressivity of PCTL to be captured.

It is unclear to us whether or not the approach of this paper is able to scale
up to establish useful properties of real-world systems. Nevertheless, we see the
main value of our paper as contributing novel techniques towards the challenging
problem of compositional verification for concurrent probabilistic systems. In
particular, we believe that the use of proofs containing probabilistic branching
will generalise to other proof systems for other probabilistic logics.

Acknowledgements We thank the anonymous referees for helpful suggestions.

References

1. C. Baier and J. P. Katoen. Principles of Model Checking. The MIT Press, 2008.
2. F. Bartels. GSOS for probabilistic transition systems. In Electronic Notes in

Theoretical Computer Science, Volume 65, Issue 1, 2002.
3. J. Brotherston and A. Simpson. Sequent calculi for induction and infinite descent.

Journal of Logic and Computation, 21(6):1177–1216, 2011.
4. L. Cardelli, K. Larsen, and M. Radu. Modular Markovian Logic, volume 6756 of

Lecture Notes in Computer Science, pages 380–391. Springer Berlin, 2011.
5. K. Chatterjee. Stochastic ω-Regular Games. PhD thesis, University of California,

Berkeley, 2007.
6. B. Delahaye, J. P. Katoen, K. Larsen, A. Legay, M. Pedersen, F. Sher, and A. Wa-

sowski. Abstract probabilistic automata. In Proc. of 12th VMCAI, 2011.
7. V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative multi-

objective verification for probabilistic systems. In Proc. of 14th TACAS, 2011.
8. P. Hájek. Metamathematics of Fuzzy Logic. Trends in Logic. Springer, 2001.
9. T. A. Henzinger and J. Sifakis. The embedded systems design challenge. In Proc.

14th International Symposium on Formal Methods (FM), 2006.
10. M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In Proc.

of 12th LICS, 1997.
11. M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Assume-guarantee verification

for probabilistic systems. In Proc. of 16th TACAS, 2010.
12. A. McIver and C. Morgan. Results on the quantitative µ-calculus qMµ. ACM

Transactions on Computational Logic, 8(1), 2007.
13. M. Mio. Game Semantics for Probabilistic µ-Calculi. PhD thesis, School of Infor-

matics, University of Edinburgh, 2012.
14. M. Mio. On the equivalence of denotational and game semantics for the proba-

bilistic µ-calculus. Logical Methods in Computer Science, 8(2), 2012.
15. D. Niwinski and I. Walukiewicz. Games for the µ-calculus. Theoretical Computer

Science, 163:99–116, 1997.
16. P. Panangaden. Labelled Markov processes. Imperial College Press, 2009.
17. A. Pnueli. The temporal logic of programs. In Proc. of 19th FOCS, 1977.
18. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, Laboratory for Computer Science, M.I.T., 1995.
19. A. Simpson. Sequent calculi for process verification: Hennessy-Milner logic for an

arbitrary GSOS. Journal of Logic and Algebraic Programming, 60-61:287, 2004.
20. C. Stirling. Modal and temporal logics for processes. Springer, 2001.
21. T. Studer. On the proof theory of the modal mu-calculus. In Studia Logica, Volume

89, Number 3. Springer Netherlands, 2007.

	 A Proof System for Compositional Verification of Probabilistic Concurrent Processes

