8,569 research outputs found

    A Probabilistic Temporal Logic with Frequency Operators and Its Model Checking

    Full text link
    Probabilistic Computation Tree Logic (PCTL) and Continuous Stochastic Logic (CSL) are often used to describe specifications of probabilistic properties for discrete time and continuous time, respectively. In PCTL and CSL, the possibility of executions satisfying some temporal properties can be quantitatively represented by the probabilistic extension of the path quantifiers in their basic Computation Tree Logic (CTL), however, path formulae of them are expressed via the same operators in CTL. For this reason, both of them cannot represent formulae with quantitative temporal properties, such as those of the form "some properties hold to more than 80% of time points (in a certain bounded interval) on the path." In this paper, we introduce a new temporal operator which expressed the notion of frequency of events, and define probabilistic frequency temporal logic (PFTL) based on CTL\star. As a result, we can easily represent the temporal properties of behavior in probabilistic systems. However, it is difficult to develop a model checker for the full PFTL, due to rich expressiveness. Accordingly, we develop a model-checking algorithm for the CTL-like fragment of PFTL against finite-state Markov chains, and an approximate model-checking algorithm for the bounded Linear Temporal Logic (LTL) -like fragment of PFTL against countable-state Markov chains.Comment: In Proceedings INFINITY 2011, arXiv:1111.267

    On Frequency LTL in Probabilistic Systems

    Get PDF
    We study frequency linear-time temporal logic (fLTL) which extends the linear-time temporal logic (LTL) with a path operator GpG^p expressing that on a path, certain formula holds with at least a given frequency p, thus relaxing the semantics of the usual G operator of LTL. Such logic is particularly useful in probabilistic systems, where some undesirable events such as random failures may occur and are acceptable if they are rare enough. Frequency-related extensions of LTL have been previously studied by several authors, where mostly the logic is equipped with an extended "until" and "globally" operator, leading to undecidability of most interesting problems. For the variant we study, we are able to establish fundamental decidability results. We show that for Markov chains, the problem of computing the probability with which a given fLTL formula holds has the same complexity as the analogous problem for LTL. We also show that for Markov decision processes the problem becomes more delicate, but when restricting the frequency bound pp to be 1 and negations not to be outside any GpG^p operator, we can compute the maximum probability of satisfying the fLTL formula. This can be again performed with the same time complexity as for the ordinary LTL formulas.Comment: A paper presented at CONCUR 2015, with appendi

    Statistical Model Checking : An Overview

    Full text link
    Quantitative properties of stochastic systems are usually specified in logics that allow one to compare the measure of executions satisfying certain temporal properties with thresholds. The model checking problem for stochastic systems with respect to such logics is typically solved by a numerical approach that iteratively computes (or approximates) the exact measure of paths satisfying relevant subformulas; the algorithms themselves depend on the class of systems being analyzed as well as the logic used for specifying the properties. Another approach to solve the model checking problem is to \emph{simulate} the system for finitely many runs, and use \emph{hypothesis testing} to infer whether the samples provide a \emph{statistical} evidence for the satisfaction or violation of the specification. In this short paper, we survey the statistical approach, and outline its main advantages in terms of efficiency, uniformity, and simplicity.Comment: non

    On Formal Methods for Collective Adaptive System Engineering. {Scalable Approximated, Spatial} Analysis Techniques. Extended Abstract

    Full text link
    In this extended abstract a view on the role of Formal Methods in System Engineering is briefly presented. Then two examples of useful analysis techniques based on solid mathematical theories are discussed as well as the software tools which have been built for supporting such techniques. The first technique is Scalable Approximated Population DTMC Model-checking. The second one is Spatial Model-checking for Closure Spaces. Both techniques have been developed in the context of the EU funded project QUANTICOL.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200

    Technical Report: Distribution Temporal Logic: Combining Correctness with Quality of Estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach.Comment: More expanded version of "Distribution Temporal Logic: Combining Correctness with Quality of Estimation" to appear in IEEE CDC 201

    Efficient Parallel Statistical Model Checking of Biochemical Networks

    Full text link
    We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture

    Technical report: Distribution Temporal Logic: combining correctness with quality of estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach
    corecore