16 research outputs found

    Probabilistic Analysis of Binary Sessions

    Get PDF
    We study a probabilistic variant of binary session types that relate to a class of Finite-State Markov Chains. The probability annotations in session types enable the reasoning on the probability that a session terminates successfully, for some user-definable notion of successful termination. We develop a type system for a simple session calculus featuring probabilistic choices and show that the success probability of well-typed processes agrees with that of the sessions they use. To this aim, the type system needs to track the propagation of probabilistic choices across different sessions

    Probabilistic Analysis of Binary Sessions

    Get PDF

    A Categorical Approach to DIBI Models

    Full text link
    The logic of Dependence and Independence Bunched Implications (DIBI) is a logic to reason about conditional independence (CI); for instance, DIBI formulas can characterise CI in probability distributions and relational databases, using the probabilistic and relational DIBI models, respectively. Despite the similarity of the probabilistic and relational models, a uniform, more abstract account remains unsolved. The laborious case-by-case verification of the frame conditions required for constructing new models also calls for such a treatment. In this paper, we develop an abstract framework for systematically constructing DIBI models, using category theory as the unifying mathematical language. In particular, we use string diagrams -- a graphical presentation of monoidal categories -- to give a uniform definition of the parallel composition and subkernel relation in DIBI models. Our approach not only generalises known models, but also yields new models of interest and reduces properties of DIBI models to structures in the underlying categories. Furthermore, our categorical framework enables a logical notion of CI, in terms of the satisfaction of specific DIBI formulas. We compare it with string diagrammatic approaches to CI and show that it is an extension of string diagrammatic CI under reasonable conditions.Comment: 33 page

    Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties (extended version)

    Full text link
    Hoare logics are proof systems that allow one to formally establish properties of computer programs. Traditional Hoare logics prove properties of individual program executions (so-called trace properties, such as functional correctness). Hoare logic has been generalized to prove also properties of multiple executions of a program (so-called hyperproperties, such as determinism or non-interference). These program logics prove the absence of (bad combinations of) executions. On the other hand, program logics similar to Hoare logic have been proposed to disprove program properties (e.g., Incorrectness Logic), by proving the existence of (bad combinations of) executions. All of these logics have in common that they specify program properties using assertions over a fixed number of states, for instance, a single pre- and post-state for functional properties or pairs of pre- and post-states for non-interference. In this paper, we present Hyper Hoare Logic, a generalization of Hoare logic that lifts assertions to properties of arbitrary sets of states. The resulting logic is simple yet expressive: its judgments can express arbitrary trace- and hyperproperties over the terminating executions of a program. By allowing assertions to reason about sets of states, Hyper Hoare Logic can reason about both the absence and the existence of (combinations of) executions, and, thereby, supports both proving and disproving program (hyper-)properties within the same logic. In fact, we prove that Hyper Hoare Logic subsumes the properties handled by numerous existing correctness and incorrectness logics, and can express hyperproperties that no existing Hoare logic can. We also prove that Hyper Hoare Logic is sound and complete, and admits powerful compositionality rules. All our technical results have been proved in Isabelle/HOL

    Asynchronous Probabilistic Couplings in Higher-Order Separation Logic

    Full text link
    Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when relating random sampling statements across two programs. In relational program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value. However, this approach fundamentally requires aligning or "synchronizing" the sampling statements of the two programs which is not always possible. In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed logical relational to reason about contextual refinement and equivalence of higher-order programs written in a rich language with higher-order local state and impredicative polymorphism. Finally, we demonstrate the usefulness of our approach on a number of case studies. All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot library and the Iris separation logic framework

    Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning

    Full text link
    Program logics for bug-finding (such as the recently introduced Incorrectness Logic) have framed correctness and incorrectness as dual concepts requiring different logical foundations. In this paper, we argue that a single unified theory can be used for both correctness and incorrectness reasoning. We present Outcome Logic (OL), a novel generalization of Hoare Logic that is both monadic (to capture computational effects) and monoidal (to reason about outcomes and reachability). OL expresses true positive bugs, while retaining correctness reasoning abilities as well. To formalize the applicability of OL to both correctness and incorrectness, we prove that any false OL specification can be disproven in OL itself. We also use our framework to reason about new types of incorrectness in nondeterministic and probabilistic programs. Given these advances, we advocate for OL as a new foundational theory of correctness and incorrectness
    corecore