1,924 research outputs found

    A probabilistic linear solver based on a multilevel Monte Carlo Method

    Get PDF
    We describe a new Monte Carlo method based on a multilevel method for computing the action of the resolvent matrix over a vector. The method is based on the numerical evaluation of the Laplace transform of the matrix exponential, which is computed efficiently using a multilevel Monte Carlo method. Essentially, it requires generating suitable random paths which evolve through the indices of the matrix according to the probability law of a continuous-time Markov chain governed by the associated Laplacian matrix. The convergence of the proposed multilevel method has been discussed, and several numerical examples were run to test the performance of the algorithm. These examples concern the computation of some metrics of interest in the analysis of complex networks, and the numerical solution of a boundary-value problem for an elliptic partial differential equation. In addition, the algorithm was conveniently parallelized, and the scalability analyzed and compared with the results of other existing Monte Carlo method for solving linear algebra systems.info:eu-repo/semantics/acceptedVersio

    Hybrid PDE solver for data-driven problems and modern branching

    Full text link
    The numerical solution of large-scale PDEs, such as those occurring in data-driven applications, unavoidably require powerful parallel computers and tailored parallel algorithms to make the best possible use of them. In fact, considerations about the parallelization and scalability of realistic problems are often critical enough to warrant acknowledgement in the modelling phase. The purpose of this paper is to spread awareness of the Probabilistic Domain Decomposition (PDD) method, a fresh approach to the parallelization of PDEs with excellent scalability properties. The idea exploits the stochastic representation of the PDE and its approximation via Monte Carlo in combination with deterministic high-performance PDE solvers. We describe the ingredients of PDD and its applicability in the scope of data science. In particular, we highlight recent advances in stochastic representations for nonlinear PDEs using branching diffusions, which have significantly broadened the scope of PDD. We envision this work as a dictionary giving large-scale PDE practitioners references on the very latest algorithms and techniques of a non-standard, yet highly parallelizable, methodology at the interface of deterministic and probabilistic numerical methods. We close this work with an invitation to the fully nonlinear case and open research questions.Comment: 23 pages, 7 figures; Final SMUR version; To appear in the European Journal of Applied Mathematics (EJAM

    Computation of Electromagnetic Fields Scattered From Objects With Uncertain Shapes Using Multilevel Monte Carlo Method

    Full text link
    Computational tools for characterizing electromagnetic scattering from objects with uncertain shapes are needed in various applications ranging from remote sensing at microwave frequencies to Raman spectroscopy at optical frequencies. Often, such computational tools use the Monte Carlo (MC) method to sample a parametric space describing geometric uncertainties. For each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver computes the scattered fields. However, for an accurate statistical characterization the number of MC samples has to be large. In this work, to address this challenge, the continuation multilevel Monte Carlo (CMLMC) method is used together with a surface integral equation solver. The CMLMC method optimally balances statistical errors due to sampling of the parametric space, and numerical errors due to the discretization of the geometry using a hierarchy of discretizations, from coarse to fine. The number of realizations of finer discretizations can be kept low, with most samples computed on coarser discretizations to minimize computational cost. Consequently, the total execution time is significantly reduced, in comparison to the standard MC scheme.Comment: 25 pages, 10 Figure

    Stochastic turbulence modeling in RANS simulations via Multilevel Monte Carlo

    Get PDF
    A multilevel Monte Carlo (MLMC) method for quantifying model-form uncertainties associated with the Reynolds-Averaged Navier-Stokes (RANS) simulations is presented. Two, high-dimensional, stochastic extensions of the RANS equations are considered to demonstrate the applicability of the MLMC method. The first approach is based on global perturbation of the baseline eddy viscosity field using a lognormal random field. A more general second extension is considered based on the work of [Xiao et al.(2017)], where the entire Reynolds Stress Tensor (RST) is perturbed while maintaining realizability. For two fundamental flows, we show that the MLMC method based on a hierarchy of meshes is asymptotically faster than plain Monte Carlo. Additionally, we demonstrate that for some flows an optimal multilevel estimator can be obtained for which the cost scales with the same order as a single CFD solve on the finest grid level.Comment: 40 page

    Sparse approximation of multilinear problems with applications to kernel-based methods in UQ

    Full text link
    We provide a framework for the sparse approximation of multilinear problems and show that several problems in uncertainty quantification fit within this framework. In these problems, the value of a multilinear map has to be approximated using approximations of different accuracy and computational work of the arguments of this map. We propose and analyze a generalized version of Smolyak's algorithm, which provides sparse approximation formulas with convergence rates that mitigate the curse of dimension that appears in multilinear approximation problems with a large number of arguments. We apply the general framework to response surface approximation and optimization under uncertainty for parametric partial differential equations using kernel-based approximation. The theoretical results are supplemented by numerical experiments

    Optimization of mesh hierarchies in Multilevel Monte Carlo samplers

    Full text link
    We perform a general optimization of the parameters in the Multilevel Monte Carlo (MLMC) discretization hierarchy based on uniform discretization methods with general approximation orders and computational costs. We optimize hierarchies with geometric and non-geometric sequences of mesh sizes and show that geometric hierarchies, when optimized, are nearly optimal and have the same asymptotic computational complexity as non-geometric optimal hierarchies. We discuss how enforcing constraints on parameters of MLMC hierarchies affects the optimality of these hierarchies. These constraints include an upper and a lower bound on the mesh size or enforcing that the number of samples and the number of discretization elements are integers. We also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymptotic behavior. To provide numerical grounds for our theoretical results, we apply these optimized hierarchies together with the Continuation MLMC Algorithm. The first example considers a three-dimensional elliptic partial differential equation with random inputs. Its space discretization is based on continuous piecewise trilinear finite elements and the corresponding linear system is solved by either a direct or an iterative solver. The second example considers a one-dimensional It\^o stochastic differential equation discretized by a Milstein scheme

    Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    Full text link
    We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner
    • …
    corecore