15 research outputs found

    Face morphing detection in the presence of printing/scanning and heterogeneous image sources

    Get PDF
    Face morphing represents nowadays a big security threat in the context of electronic identity documents as well as an interesting challenge for researchers in the field of face recognition. Despite of the good performance obtained by state-of-the-art approaches on digital images, no satisfactory solutions have been identified so far to deal with cross-database testing and printed-scanned images (typically used in many countries for document issuing). In this work, novel approaches are proposed to train Deep Neural Networks for morphing detection: in particular generation of simulated printed-scanned images together with other data augmentation strategies and pre-training on large face recognition datasets, allowed to reach state-of-the-art accuracy on challenging datasets from heterogeneous image sources

    Locality Regularized Robust-PCRC: A Novel Simultaneous Feature Extraction and Classification Framework for Hyperspectral Images

    Get PDF
    Despite the successful applications of probabilistic collaborative representation classification (PCRC) in pattern classification, it still suffers from two challenges when being applied on hyperspectral images (HSIs) classification: 1) ineffective feature extraction in HSIs under noisy situation; and 2) lack of prior information for HSIs classification. To tackle the first problem existed in PCRC, we impose the sparse representation to PCRC, i.e., to replace the 2-norm with 1-norm for effective feature extraction under noisy condition. In order to utilize the prior information in HSIs, we first introduce the Euclidean distance (ED) between the training samples and the testing samples for the PCRC to improve the performance of PCRC. Then, we bring the coordinate information (CI) of the HSIs into the proposed model, which finally leads to the proposed locality regularized robust PCRC (LRR-PCRC). Experimental results show the proposed LRR-PCRC outperformed PCRC and other state-of-the-art pattern recognition and machine learning algorithms

    Collaborative Sampling in Generative Adversarial Networks

    Get PDF
    The standard practice in Generative Adversarial Networks (GANs) discards the discriminator during sampling. However, this sampling method loses valuable information learned by the discriminator regarding the data distribution. In this work, we propose a collaborative sampling scheme between the generator and the discriminator for improved data generation. Guided by the discriminator, our approach refines the generated samples through gradient-based updates at a particular layer of the generator, shifting the generator distribution closer to the real data distribution. Additionally, we present a practical discriminator shaping method that can smoothen the loss landscape provided by the discriminator for effective sample refinement. Through extensive experiments on synthetic and image datasets, we demonstrate that our proposed method can improve generated samples both quantitatively and qualitatively, offering a new degree of freedom in GAN sampling
    corecore