120 research outputs found

    Beam-searching and Transmission Scheduling in Millimeter Wave Communications

    Full text link
    Millimeter wave (mmW) wireless networks are capable to support multi-gigabit data rates, by using directional communications with narrow beams. However, existing mmW communications standards are hindered by two problems: deafness and single link scheduling. The deafness problem, that is, a misalignment between transmitter and receiver beams, demands a time consuming beam-searching operation, which leads to an alignment-throughput tradeoff. Moreover, the existing mmW standards schedule a single link in each time slot and hence do not fully exploit the potential of mmW communications, where directional communications allow multiple concurrent transmissions. These two problems are addressed in this paper, where a joint beamwidth selection and power allocation problem is formulated by an optimization problem for short range mmW networks with the objective of maximizing effective network throughput. This optimization problem allows establishing the fundamental alignment-throughput tradeoff, however it is computationally complex and requires exact knowledge of network topology, which may not be available in practice. Therefore, two standard-compliant approximation solution algorithms are developed, which rely on underestimation and overestimation of interference. The first one exploits directionality to maximize the reuse of available spectrum and thereby increases the network throughput, while imposing almost no computational complexity. The second one is a more conservative approach that protects all active links from harmful interference, yet enhances the network throughput by 100% compared to the existing standards. Extensive performance analysis provides useful insights on the directionality level and the number of concurrent transmissions that should be pursued. Interestingly, extremely narrow beams are in general not optimal.Comment: 5 figures, 7 pages, accepted in ICC 201

    Enabling Millimeter Wave Communication for 5G Cellular Networks: MAC-layer Perspective

    Get PDF
    Data traffic among mobile devices increases dramatically with emerging high-speed multimedia applications such as uncompressed video streaming. Many new applications beyond personal communications involve tens or even hundreds of billions wireless devices, such as wireless watch, e-health sensors, and wireless glass. The number of wireless devices and the data rates will continue to grow exponentially. Quantitative evidences forecast that total data rate by 2020 will be 1000 times of current 4G data rate. Next generation wireless networks need fundamental changes to satisfy the overwhelming capacity demands. Millimeter wave (mmWave) communication with huge available bandwidth is a very promising solution for next generation wireless networks to overcome the global bandwidth shortage at saturated microwave spectrum. The large available bandwidth can be directly translated into high capacity. mmWave communication has several propagation characteristics including strong pathloss, atmospheric and rain absorption, low diffraction around obstacles and penetration through objects. These propagation characteristics create challenges for next generation wireless networks to support various kinds of emerging applications with different QoS requirements. Our research focuses on how to effectively and efficiently exploit the large available mmWave bandwidth to achieve high capacity demand while overcoming these challenges on QoS provisioning for various kinds of applications. This thesis focuses on MAC protocol design and analysis for mmWave communication to provide required capacity and QoS to support various kinds of applications in next generation wireless networks. Specifically, from the transmitter/receiver perspective, multi-user beamforming based on codebook is conducted to determine best transmission/reception beams to increase network capacity considering the mutual interferences among concurrent links. From the channel perspective, both interfering and non-interfering concurrent links are scheduled to operate simultaneously to exploit spatial reuse and improve network capacity. Link outage problem resulting from the limited diffraction capability and low penetration capability of mmWave band is addressed for quality provisioning by enabling multi-hop transmission to replace the link in outage (for low-mobility scenarios) and buffer design with dynamic bandwidth allocation among all the users in the whole coverage area (for high-mobility scenarios). From the system perspective, system structure, network architecture, and candidate MAC are investigated and novel backoff mechanism for CSMA/CA is proposed to give more transmission opportunity to faraway nodes than nearby nodes in order to achieve better fairness and higher network capacity. In this thesis, we formulate each problem mentioned above as an optimization problem with the proposed algorithms to solve it. Extensive analytical and simulation results are provided to demonstrate the performance of the proposed algorithms in several aspects, such as network capacity, energy efficiency, link connectivity and so on

    Low-Complexity Multi-User MIMO Algorithms for mmWave WLANs

    Get PDF
    Very high throughput and high-efficiency wireless local area networks (WLANs) have become essential for today's significant global Internet traffic and the expected significant global increase of public WiFi hotspots. Total Internet traffic is predicted to expand 3.7-fold from 2017 to 2022. In 2017, 53% of overall Internet traffic used by WiFi networks, and that number is expected to increase to 56.8% by 2022. Furthermore, 80% of overall Internet traffic is expected to be video traffic by 2022, up from 70% in 2017. WiFi networks are also expected to move towards denser deployment scenarios, such as stadiums, large office buildings, and airports, with very high data rate applications, such as ultra-high definition video wireless streaming. Thus, in order to meet the predicted growth of wireless traffic and the number of WiFi networks in the world, an efficient Internet access solution is required for the current IEEE 802.11 standards. Millimeter wave (mmWave) communication technology is expected to play a crucial role in future wireless networks with large user populations because of the large spectrum band it can provide. To further improve spectrum efficiency over mmWave bands in WLANs with large numbers of users, the IEEE 802.11ay standard was developed from the traditional IEEE 802.11ad standard, aiming to support multi-user MIMO. Propagation challenges associated with mmWave bands necessitate the use of analog beamforming (BF) technologies that employ directional transmissions to determine the optimal sector beam between a transmitter and a receiver. However, the multi-user MIMO is not exploited, since analog BF is limited to a single-user, single-transmission. The computational complexity of achieving traditional multi-user MIMO BF methods, such as full digital BF, in the mmWave systems becomes significant due to the hardware constraints. Our research focuses on how to effectively and efficiently realize multi-user MIMO transmission to improve spectrum efficiency over the IEEE 802.11ay mmWave band system while also resolving the computational complexity challenges for achieving a multi-user MIMO in mmWave systems. This thesis focuses on MAC protocol algorithms and analysis of the IEEE 802.11ay mmWave WLANs to provide multi-user MIMO support in various scenarios to improve the spectrum efficiency and system throughput. Specifically, from a downlink single-hop scenario perspective, a VG algorithm is proposed to schedule simultaneous downlink transmission links while mitigating the multi-user interference with no additional computational complexity. From a downlink multi-hop scenario perspective, a low-complexity MHVG algorithm is conducted to realize simultaneous transmissions and improve the network performance by taking advantage of the spatial reuse in a dense network. The proposed MHVG algorithm permits simultaneous links scheduling and mitigates both the multi-user interference and co-channel interference based only on analog BF information, without the necessity for feedback overhead, such as channel state information (CSI). From an uplink scenario perspective, a low-complexity user selection algorithm, HBF-VG, incorporates user selection with the HBF algorithm to achieve simultaneous uplink transmissions for IEEE 802.11ay mmWave WLANs. With the HBF-VG algorithm, the users can be selected based on an orthogonality criterion instead of collecting CSI from all potential users. We optimize the digital BF to mitigate the residual interference among selected users. Extensive analytical and simulation evaluations are provided to validate the performance of the proposed algorithms with respect to average throughput per time slot, average network throughput, average sum-rate, energy efficiency, signal-to-interference-plus-noise ratio (SINR), and spatial multiplexing gain

    Multi-hop Transmission in Millimeter Wave WPAN with Directional Antenna

    Get PDF
    Millimeter-wave (mmWave) communications is a promising enabling technology for high rate (Giga-bit) multimedia applications. However, because oxygen absorption peaks at 60 GHz, mmWave signal power degrades significantly over long distances. Therefore, a traffic flow transmitting over multiple short hops is preferred to improve the flow throughput. In this thesis, we first design a hop selection metric for the piconet controller (PNC) to select appropriate relay hops for a traffic flow, aiming to improve the flow throughput and balance the traffic loads across the network. We then propose a multi-hop concurrent transmission (MHCT) scheme to exploit the spatial diversity of the mmWave WPAN by allowing multiple communication links to transmit simultaneously. By deriving the probability that two links can transmit simultaneously as a function of link length, the MHCT scheme is capable of improving spatial multiplexing gain in comparison with the single hop concurrent transmission (SHCT) scheme. We theoretically demonstrate that by properly breaking a single long hop into multiple short hops, the time resource can be utilized more efficiently, thus supporting more traffic flows in the network within the same time interval. In addition, the per-flow throughput is obtained analytically. Extensive simulations are conducted to validate the analysis and demonstrate that the proposed MHCT scheme can significantly improve the average traffic flow throughput
    corecore