297 research outputs found

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    LAAP: Lightweight anonymous authentication protocol for D2D-Aided fog computing paradigm

    Get PDF
    Fog computing is a new paradigm that extends cloud computing and services to the edge of the network. Although it has several distinct characteristics, however, the conventional fog computing model does not support some of the imperative features such as D2D communications, which can be useful for several critical IoT applications and services. Besides, fog computing faces numerous new security and privacy challenges apart from those inherited from cloud computing, however, security issues in fog computing have not been addressed properly. In this article, first we introduce a new privacy-preserving security architecture for fog computing model with the cooperative D2D communication support, which can be useful for various IoT applications. Subsequently, based on the underlying foundation of our proposed security architecture we design three lightweight anonymous authentication protocols (LAAPs) to support three distinct circumstances in D2D-Aided fog computing. In this regard, we utilize the lightweight cryptographic primitives like one-way function and EXCLUSIVE-OR operations, which will cause limited computational overhead for the resource limited edge devices

    Seamless connectivity architecture and methods for IoT and wearable devices

    Get PDF
    Wearable and Internet of Things (IoT) devices have the potential to improve lifestyle, personalize receiving treatments or introduce assisted living for elderly people. However, service delivery depends on maintaining and troubleshooting device connectivity to smartphones, where user engagement and technology proficiency represent a possible barrier that prevents a wider adoption, especially in the elderly and disabled population. Low-cost and low-power wearable and IoT devices face challenges when operating out of range of known home networks or pared devices. We propose an architecture and methods to provide seamless connectivity (Se-Co) between devices and wireless networks while maintaining low-power, low-cost and standards compatibility. Through Se-Co, the devices connect without user interaction both in home and in unknown roaming networks while maintaining anonymity, privacy and security. Roaming networks approve data limited connectivity to unknown devices that are able to provide a valid anonymized certificate of compliance and no harm through a home provider. Se-Co enables shifting data processing, such as pattern processing using artificial intelligence, from a wearable device or smartphone towards the cloud. The proposed Se-Co architecture could provide solutions to increase usability of wearable devices and improve their wider adoption, while keeping low the costs of devices, development and services

    Authentication Protocols for Internet of Things: A Comprehensive Survey

    Get PDF
    In this paper, a comprehensive survey of authentication protocols for Internet of Things (IoT) is presented. Specifically more than forty authentication protocols developed for or applied in the context of the IoT are selected and examined in detail. These protocols are categorized based on the target environment: (1) Machine to Machine Communications (M2M), (2) Internet of Vehicles (IoV), (3) Internet of Energy (IoE), and (4) Internet of Sensors (IoS). Threat models, countermeasures, and formal security verification techniques used in authentication protocols for the IoT are presented. In addition a taxonomy and comparison of authentication protocols that are developed for the IoT in terms of network model, specific security goals, main processes, computation complexity, and communication overhead are provided. Based on the current survey, open issues are identified and future research directions are proposed

    Security of IoT in 5G Cellular Networks: A Review of Current Status, Challenges and Future Directions

    Get PDF
    The Internet of Things (IoT) refers to a global network that integrates real life physical objects with the virtual world through the Internet for making intelligent decisions. In a pervasive computing environment, thousands of smart devices, that are constrained in storage, battery backup and computational capability, are connected with each other. In such an environment, cellular networks that are evolving from 4G to 5G, are set to play a crucial role. Distinctive features like high bandwidth, wider coverage, easy connectivity, in-built billing mechanism, interface for M2M communication, etc., makes 5G cellular network a perfect candidate to be adopted as a backbone network for the future IoT. However, due to resource constrained nature of the IoT devices, researchers have anticipated several security and privacy issues in IoT deployments over 5G cellular network. Off late, several schemes and protocols have been proposed to handle these issues. This paper performs a comprehensive review of such schemes and protocols proposed in recent times. Different open security issues, challenges and future research direction are also summarized in this review paper
    corecore