136 research outputs found

    A virtual hand assessment system for efficient outcome measures of hand rehabilitation

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Social Robot Augmented Telepresence For Remote Assessment And Rehabilitation Of Patients With Upper Extremity Impairment

    Get PDF
    With the shortage of rehabilitation clinicians in rural areas and elsewhere, remote rehabilitation (telerehab) fills an important gap in access to rehabilitation. We have developed a first of its kind social robot augmented telepresence (SRAT) system --- Flo --- which consists of a humanoid robot mounted onto a mobile telepresence base, with the goal of improving the quality of telerehab. The humanoid has arms, a torso, and a face to play games with and guide patients under the supervision of a remote clinician. To understand the usability of this system, we conducted a survey of hundreds of rehab clinicians. We found that therapists in the United States believe Flo would improve communication, patient motivation, and patient compliance, compared to traditional telepresence for rehab. Therapists highlighted the importance of high-quality video to enable telerehab with their patients and were positive about the usefulness of features which make up the Flo system for enabling telerehab. To compare telepresence interactions with vs without the social robot, we conducted controlled studies, the first to rigorously compare SRAT to classical telepresence (CT). We found that for many SRAT is more enjoyable than and preferred over CT. The results varied by age, motor function, and cognitive function, a novel result. To understand how therapists and patients respond to and use SRAT in the wild over long-term use, we deployed Flo at an elder care facility. Therapists used Flo with their own patients however they deemed best. They developed new ways to use the system and highlighted challenges they faced. To ease the load of performing assessments via telepresence, I constructed a pipeline to predict the motor function of patients using RGBD video of them doing activities via telepresence. The pipeline extracts poses from the video, calculates kinematic features and reachable workspace, and predicts level of impairment using a random forest of decision trees. Finally, I have aggregated our findings over all these studies and provide a path forward to continue the evolution of SRAT

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Sensor based systems for quantification of sensorimotor function and rehabilitation of the upper limb

    No full text
    The thesis presents targeted sensor-based devices and methods for the training and assessment of upper extremity. These systems are all passive (non-actuated) thus intrinsically safe for (semi) independent use. An isometric assessment system is first presented, which uses a handle fixed on a force/torque sensor to investigate the force signal parameters and their relation to functional disability scales. The results from multiple sclerosis and healthy populations establish relation of isometric control and strength measures, its dependence on direction and how they are related to functional scales. The dissertation then introduces the novel platform MIMATE, Multimodal Interactive Motor Assessment and Training Environment, which is a wireless embedded platform for designing systems for training and assessing sensorimotor behaviour. MIMATE’s potential for designing clinically useful neurorehabilitation systems was demonstrated in a rehabilitation technology course. Based on MIMATE, intelligent objects (IObjects) are presented, which can measure position and force during training and assessing of manipulation tasks relevant to activities of daily living. A preliminary study with an IObject exhibits potential metrics and techniques that can be used to assess motor performance during fine manipulation tasks. The IObjects are part of the SITAR system, which is a novel sensor-based platform based on a force sensitive touchscreen and IObjects. It is used for training and assessment of sensorimotor deficits by focusing on meaningful functional tasks. Pilot assessment study with SITAR indicated a significant difference in performance of stroke and healthy populations during different sensorimotor tasks. Finally the thesis presents LOBSTER, a low cost, portable, bimanual self-trainer for exercising hand opening/closing, wrist flexion/extension or pronation/supination. The major novelty of the system relies on exploiting the movement of the unaffected limb to train the affected limb, making it safe for independent use. Study with LOBSTER will determine its usability for home based use.Open Acces

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197
    corecore