1,628 research outputs found

    A Practical Method to Estimate Information Content in the Context of 4D-Var Data Assimilation. I: Methodology

    Get PDF
    Data assimilation obtains improved estimates of the state of a physical system by combining imperfect model results with sparse and noisy observations of reality. Not all observations used in data assimilation are equally valuable. The ability to characterize the usefulness of different data points is important for analyzing the effectiveness of the assimilation system, for data pruning, and for the design of future sensor systems. This paper focuses on the four dimensional variational (4D-Var) data assimilation framework. Metrics from information theory are used to quantify the contribution of observations to decreasing the uncertainty with which the system state is known. We establish an interesting relationship between different information-theoretic metrics and the variational cost function/gradient under Gaussian linear assumptions. Based on this insight we derive an ensemble-based computational procedure to estimate the information content of various observations in the context of 4D-Var. The approach is illustrated on linear and nonlinear test problems. In the companion paper [Singh et al.(2011)] the methodology is applied to a global chemical data assimilation problem

    A Practical Method to Estimate Information Content in the Context of 4D-Var Data Assimilation. II: Application to Global Ozone Assimilation

    Get PDF
    Data assimilation obtains improved estimates of the state of a physical system by combining imperfect model results with sparse and noisy observations of reality. Not all observations used in data assimilation are equally valuable. The ability to characterize the usefulness of different data points is important for analyzing the effectiveness of the assimilation system, for data pruning, and for the design of future sensor systems. In the companion paper (Sandu et al., 2012) we derive an ensemble-based computational procedure to estimate the information content of various observations in the context of 4D-Var. Here we apply this methodology to quantify the signal and degrees of freedom for signal information metrics of satellite observations used in a global chemical data assimilation problem with the GEOS-Chem chemical transport model. The assimilation of a subset of data points characterized by the highest information content yields an analysis comparable in quality with the one obtained using the entire data set

    Content in the Context of 4D-Var Data Assimilation. II: Application to Global Ozone Assimilation

    Get PDF
    Data assimilation obtains improved estimates of the state of a physical system by combining imperfect model results with sparse and noisy observations of reality. Not all observations used in data assimilation are equally valuable. The ability to characterize the usefulness of different data points is important for analyzing the effectiveness of the assimilation system, for data pruning, and for the design of future sensor systems. In the companion paper [Sandu et al.(2011)] we derived an ensemble-based computational procedure to estimate the information content of various observations in the context of 4D-Var. Here we apply this methodology to quantify two information metrics (the signal and degrees of freedom for signal) for satellite observations used in a global chemical data assimilation problem with the GEOS-Chem chemical transport model. The assimilation of a subset of data points characterized by the highest information content, gives analyses that are comparable in quality with the one obtained using the entire data set

    Variational Data Assimilation via Sparse Regularization

    Get PDF
    This paper studies the role of sparse regularization in a properly chosen basis for variational data assimilation (VDA) problems. Specifically, it focuses on data assimilation of noisy and down-sampled observations while the state variable of interest exhibits sparsity in the real or transformed domain. We show that in the presence of sparsity, the 1\ell_{1}-norm regularization produces more accurate and stable solutions than the classic data assimilation methods. To motivate further developments of the proposed methodology, assimilation experiments are conducted in the wavelet and spectral domain using the linear advection-diffusion equation

    Estimating model evidence using data assimilation

    Get PDF
    We review the field of data assimilation (DA) from a Bayesian perspective and show that, in addition to its by now common application to state estimation, DA may be used for model selection. An important special case of the latter is the discrimination between a factual model–which corresponds, to the best of the modeller's knowledge, to the situation in the actual world in which a sequence of events has occurred–and a counterfactual model, in which a particular forcing or process might be absent or just quantitatively different from the actual world. Three different ensemble‐DA methods are reviewed for this purpose: the ensemble Kalman filter (EnKF), the ensemble four‐dimensional variational smoother (En‐4D‐Var), and the iterative ensemble Kalman smoother (IEnKS). An original contextual formulation of model evidence (CME) is introduced. It is shown how to apply these three methods to compute CME, using the approximated time‐dependent probability distribution functions (pdfs) each of them provide in the process of state estimation. The theoretical formulae so derived are applied to two simplified nonlinear and chaotic models: (i) the Lorenz three‐variable convection model (L63), and (ii) the Lorenz 40‐variable midlatitude atmospheric dynamics model (L95). The numerical results of these three DA‐based methods and those of an integration based on importance sampling are compared. It is found that better CME estimates are obtained by using DA, and the IEnKS method appears to be best among the DA methods. Differences among the performance of the three DA‐based methods are discussed as a function of model properties. Finally, the methodology is implemented for parameter estimation and for event attribution

    Beyond Gaussian Statistical Modeling in Geophysical Data Assimilation

    Get PDF
    International audienceThis review discusses recent advances in geophysical data assimilation beyond Gaussian statistical modeling, in the fields of meteorology, oceanography, as well as atmospheric chemistry. The non-Gaussian features are stressed rather than the nonlinearity of the dynamical models, although both aspects are entangled. Ideas recently proposed to deal with these non-Gaussian issues, in order to improve the state or parameter estimation, are emphasized. The general Bayesian solution to the estimation problem and the techniques to solve it are first presented, as well as the obstacles that hinder their use in high-dimensional and complex systems. Approximations to the Bayesian solution relying on Gaussian, or on second-order moment closure, have been wholly adopted in geophysical data assimilation (e.g., Kalman filters and quadratic variational solutions). Yet, nonlinear and non-Gaussian effects remain. They essentially originate in the nonlinear models and in the non-Gaussian priors. How these effects are handled within algorithms based on Gaussian assumptions is then described. Statistical tools that can diagnose them and measure deviations from Gaussianity are recalled. The following advanced techniques that seek to handle the estimation problem beyond Gaussianity are reviewed: maximum entropy filter, Gaussian anamorphosis, non-Gaussian priors, particle filter with an ensemble Kalman filter as a proposal distribution, maximum entropy on the mean, or strictly Bayesian inferences for large linear models, etc. Several ideas are illustrated with recent or original examples that possess some features of high-dimensional systems. Many of the new approaches are well understood only in special cases and have difficulties that remain to be circumvented. Some of the suggested approaches are quite promising, and sometimes already successful for moderately large though specific geophysical applications. Hints are given as to where progress might come from
    corecore