1,562 research outputs found

    A Practical Framework for Executing Complex Queries over Encrypted Multimedia Data

    Get PDF
    Over the last few years, data storage in cloud based services has been very popular due to easy management and monetary advantages of cloud computing. Recent developments showed that such data could be leaked due to various attacks. To address some of these attacks, encrypting sensitive data before sending to cloud emerged as an important protection mechanism. If the data is encrypted with traditional techniques, selective retrieval of encrypted data becomes challenging. To address this challenge, efficient searchable encryption schemes have been developed over the years. Almost all of the existing searchable encryption schemes are developed for keyword searches and require running some code on the cloud servers. However, many of the existing cloud storage services (e.g., Dropbox, Box, Google Drive, etc.) only allow simple data object retrieval and do not provide computational support needed to realize most of the searchable encryption schemes. In this paper, we address the problem of efficient execution of complex search queries over wide range of encrypted data types (e.g., image files) without requiring customized computational support from the cloud servers. To this end, we provide an extensible framework for supporting complex search queries over encrypted multimedia data. Before any data is uploaded to the cloud, important features are extracted to support different query types (e.g., extracting facial features to support face recognition queries) and complex queries are converted to series of object retrieval tasks for cloud service. Our results show that this framework may support wide range of image retrieval queries on encrypted data with little overhead and without any change to underlying data storage services

    Evaluation of Anonymized ONS Queries

    Full text link
    Electronic Product Code (EPC) is the basis of a pervasive infrastructure for the automatic identification of objects on supply chain applications (e.g., pharmaceutical or military applications). This infrastructure relies on the use of the (1) Radio Frequency Identification (RFID) technology to tag objects in motion and (2) distributed services providing information about objects via the Internet. A lookup service, called the Object Name Service (ONS) and based on the use of the Domain Name System (DNS), can be publicly accessed by EPC applications looking for information associated with tagged objects. Privacy issues may affect corporate infrastructures based on EPC technologies if their lookup service is not properly protected. A possible solution to mitigate these issues is the use of online anonymity. We present an evaluation experiment that compares the of use of Tor (The second generation Onion Router) on a global ONS/DNS setup, with respect to benefits, limitations, and latency.Comment: 14 page

    Privacy-preserving efficient searchable encryption

    Get PDF
    Data storage and computation outsourcing to third-party managed data centers, in environments such as Cloud Computing, is increasingly being adopted by individuals, organizations, and governments. However, as cloud-based outsourcing models expand to society-critical data and services, the lack of effective and independent control over security and privacy conditions in such settings presents significant challenges. An interesting solution to these issues is to perform computations on encrypted data, directly in the outsourcing servers. Such an approach benefits from not requiring major data transfers and decryptions, increasing performance and scalability of operations. Searching operations, an important application case when cloud-backed repositories increase in number and size, are good examples where security, efficiency, and precision are relevant requisites. Yet existing proposals for searching encrypted data are still limited from multiple perspectives, including usability, query expressiveness, and client-side performance and scalability. This thesis focuses on the design and evaluation of mechanisms for searching encrypted data with improved efficiency, scalability, and usability. There are two particular concerns addressed in the thesis: on one hand, the thesis aims at supporting multiple media formats, especially text, images, and multimodal data (i.e. data with multiple media formats simultaneously); on the other hand the thesis addresses client-side overhead, and how it can be minimized in order to support client applications executing in both high-performance desktop devices and resource-constrained mobile devices. From the research performed to address these issues, three core contributions were developed and are presented in the thesis: (i) CloudCryptoSearch, a middleware system for storing and searching text documents with privacy guarantees, while supporting multiple modes of deployment (user device, local proxy, or computational cloud) and exploring different tradeoffs between security, usability, and performance; (ii) a novel framework for efficiently searching encrypted images based on IES-CBIR, an Image Encryption Scheme with Content-Based Image Retrieval properties that we also propose and evaluate; (iii) MIE, a Multimodal Indexable Encryption distributed middleware that allows storing, sharing, and searching encrypted multimodal data while minimizing client-side overhead and supporting both desktop and mobile devices

    An In-Depth Analysis on Efficiency and Vulnerabilities on a Cloud-Based Searchable Symmetric Encryption Solution

    Get PDF
    Searchable Symmetric Encryption (SSE) has come to be as an integral cryptographic approach in a world where digital privacy is essential. The capacity to search through encrypted data whilst maintaining its integrity meets the most important demand for security and confidentiality in a society that is increasingly dependent on cloud-based services and data storage. SSE offers efficient processing of queries over encrypted datasets, allowing entities to comply with data privacy rules while preserving database usability. Our research goes into this need, concentrating on the development and thorough testing of an SSE system based on Curtmola’s architecture and employing Advanced Encryption Standard (AES) in Cypher Block Chaining (CBC) mode. A primary goal of the research is to conduct a thorough evaluation of the security and performance of the system. In order to assess search performance, a variety of database settings were extensively tested, and the system's security was tested by simulating intricate threat scenarios such as count attacks and leakage abuse. The efficiency of operation and cryptographic robustness of the SSE system are critically examined by these reviews

    Secure and Efficient Models for Retrieving Data from Encrypted Databases in Cloud

    Get PDF
    Recently, database users have begun to use cloud database services to outsource their databases. The reason for this is the high computation speed and the huge storage capacity that cloud owners provide at low prices. However, despite the attractiveness of the cloud computing environment to database users, privacy issues remain a cause for concern for database owners since data access is out of their control. Encryption is the only way of assuaging users’ fears surrounding data privacy, but executing Structured Query Language (SQL) queries over encrypted data is a challenging task, especially if the data are encrypted by a randomized encryption algorithm. Many researchers have addressed the privacy issues by encrypting the data using deterministic, onion layer, or homomorphic encryption. Nevertheless, even with these systems, the encrypted data can still be subjected to attack. In this research, we first propose an indexing scheme to encode the original table’s tuples into bit vectors (BVs) prior to the encryption. The resulting index is then used to narrow the range of retrieved encrypted records from the cloud to a small set of records that are candidates for the user’s query. Based on the indexing scheme, we then design three different models to execute SQL queries over the encrypted data. The data are encrypted by a single randomized encryption algorithm, namely the Advanced Encryption Standard AES-CBC. In each proposed scheme, we use a different (secure) method for storing and maintaining the index values (BVs) (i.e., either at user’s side or at the cloud server), and we extend each system to support most of relational algebra operators, such as select, join, etc. Implementation and evaluation of the proposed systems reveals that they are practical and efficient at reducing both the computation and space overhead when compared with state-of-the-art systems like CryptDB
    • …
    corecore