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Abstract 

 

Recently, database users have begun to use cloud database services to outsource their databases. 

The reason for this is the high computation speed and the huge storage capacity that cloud owners 

provide at low prices. However, despite the attractiveness of the cloud computing environment to 

database users, privacy issues remain a cause for concern for database owners since data access is 

out of their control. Encryption is the only way of assuaging users’ fears surrounding data privacy, 

but executing Structured Query Language (SQL) queries over encrypted data is a challenging task, 

especially if the data are encrypted by a randomized encryption algorithm. Many researchers have 

addressed the privacy issues by encrypting the data using deterministic, onion layer, or 

homomorphic encryption. Nevertheless, even with these systems, the encrypted data can still be 

subjected to attack. In this research, we first propose an indexing scheme to encode the original 

table’s tuples into bit vectors (BVs) prior to the encryption. The resulting index is then used to 

narrow the range of retrieved encrypted records from the cloud to a small set of records that are 

candidates for the user’s query. Based on the indexing scheme, we then design three different 

models to execute SQL queries over the encrypted data. The data are encrypted by a single 

randomized encryption algorithm, namely the Advanced Encryption Standard AES-CBC. In each 

proposed scheme, we use a different (secure) method for storing and maintaining the index values 

(BVs) (i.e., either at user’s side or at the cloud server), and we extend each system to support most 

of relational algebra operators, such as select, join, etc. Implementation and evaluation of the 

proposed systems reveals that they are practical and efficient at reducing both the computation and 

space overhead when compared with state-of-the-art systems like CryptDB.  
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1 Introduction 

In the contemporary electronic era, both individuals and organizations need scalable data storage 

and high-performance computing units to process and store their data. Historically, only large 

organizations/ companies have been able to own such units, as they were not affordable for most 

individuals and small companies. With the rise of cloud computing, however, this problem has 

been solved, as users can now rent storage and computational units as needed at an affordable 

price. Most cloud providers provide databases as a service, which allow individual users and 

companies to outsource their data and access them at any time, from any location. According to 

the report in [1], the compound annual growth rate (CAGR) of cloud database market is anticipated 

to be 46.78% in 2023 [Figure 1.1]. However, given that privacy breaches are one of the most 

common threats in the cloud computing environment, many people have expressed concerns about 

privacy when outsourcing sensitive data. For instance, untrustworthy cloud service providers 

might steal personal customer information—such as email addresses, mailing addresses, and phone 

numbers—and sell that information to third parties, who can then use it to send irritating 

advertisements to users via email, mail, and telephone.  

More importantly, attackers who target a cloud provider can gain access to customers’ 

sensitive personal information, such as social security numbers (SSNs). This has serious 

consequences, as criminals can use these data to impersonate customers in situations such as 

financial transactions (e.g., telephone banking). Thus, sensitive data are restricted from being 

processed or sold to a third party. Therefore, significant evolutions in the cloud computing 

environment could make such services unattractive to consumers if changes occur without also 

providing appropriate solutions for privacy breach issue. Such an issue must be tackled if cloud 



2 

 

providers are to gain the trust of users and organizations so that they will outsource sensitive data 

without worrying about data leakages. 

Data encryption effectively solves the problem of privacy breaches by ensuring that cloud 

providers cannot learn from the data they store. The easiest way is to encrypt the entire table and 

outsource it.  Then to process a query, the entire table must be retrieved and decrypted. However, 

the application of this technique conflicts with purpose of the databases and the critical 

functionalities of cloud environments (e.g., searching). Other researchers have used a proxy (i.e., 

a trusted third-party server), rather than the user, as an additional component to carry out the 

encryption and decryption processes. To make this approach practical, each datum must be 

encrypted with more than one encryption algorithm to support various query types [2]. However, 

in the case of very large data sets, this approach comes with the penalty of a significant 

computational burden, as each datum might be decrypted more than once. Various researchers  

Figure 1.1 Anticipated market growth in 2023 

Source: https://www.marketresearchfuture.com/reports/cloud-database-market-6847 
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have proposed numerous systems using different encryption techniques to protect data 

confidentiality. In the following subsection, we explore the common encryption algorithms that 

have been adopted in state-of-the-art research on cloud database security. 

1.1 Encryption Algorithms  

1.1.1 Order-Preserving Encryption 

Order-preserving encryption (OPE) is a functional encryption technique to encrypt data such that 

range queries (e.g., maximum, minimum, and inequality operators) can be implemented on 

encrypted data without encrypting the operands or decrypting the data [3], [4]. This type of 

encryption uses a function to compare the order of the ciphertexts to allow comparison operations 

of the encrypted numeric data. This type of algorithm preserves the original data order. For 

example, if c1 is the ciphertext of m1, and c2 is the ciphertext of m2, then the comparison of c1 and 

c2 is as follows: 

(c1 < c2  if  m1 < m2  ); (c1 > c2  if  m1 > m2 ); or (c1 = c2  if  m1 = m2) 

The security of this type of encryption is downgraded if the adversary infers the ciphertext of a 

certain plaintext. Also, this type of encryption is vulnerable to inference attacks as in [5], [6]. 

1.1.2 Deterministic Encryption 

In deterministic encryption (DE) schemes, given the encryption key k and the messages m, the 

ciphertext of m is always the same when encrypted with k, even in multiple executions of DE. 

While DE can be used in keyword searches, it does not preserve the order if used with numeric 

values. AES-SIV is an example of a deterministic algorithm. DE is widely used in securing cloud 

databases. However, privacy can be compromised in this scheme if the attacker is able to identify 

the ciphertext of a certain plaintext word (e.g., if he establishes the ciphertext of “Alice,” then he 

is able to determine which tuples contain “Alice”). 
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1.1.3 Homomorphic Encryption 

Homomorphic encryption (HOM) is a method of encryption that allows for the performance of 

certain arithmetic operations (i.e., addition and multiplication) on ciphertexts without the need to 

decrypt them. There are two types of HOM: partially HOM and fully HOM. Partially HOM 

supports either addition or multiplication, while fully HOM supports both operations. HOM can 

secure numeric data in cloud environments; however, encrypting with HOM produces long 

ciphertexts, since this type of encryption is based on an asymmetric encryption system. Also, 

computation performance on HOM ciphertexts is downgraded as the volume of ciphertexts 

increases [7]. 

1.1.4 Randomized Encryption  

Randomized encryption intends to produce different ciphertexts for each plaintext, i.e., no more 

than one ciphertext has the same plaintext. Essentially, in this scheme, in addition to the secret 

key, an initialization vector (IV) must be XORed with the first block of the plaintext, and a new 

ciphertext must therefore be obtained each time the algorithm is executed [8]. While this 

encryption technique provides the highest security level for outsourced databases, it has a major 

drawback in cloud databases—namely, the inability to execute SQL queries over ciphertexts. 

1.1.5 Onion Encryption 

The term “onion layers encryption” was first developed by the authors in [2]. In onion encryption, 

cloud servers are able to execute different SQL statements while data remain secret. In the onion 

encryption, each layer is a ciphertext of a specific encryption methodology (e.g., DET, OPE, HOM, 

or RAN). The inner layer is the ciphertext of the algorithm with the lowest security level, while 

the outer layer is the ciphertext with the highest security level (i.e., randomized). The main flaw 

of this approach is the intensive computation that results from decrypting all of the encryption 
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layers, which leads to slower query processing. In addition, the space required for the encrypted 

databases is about 3.75 times that required for the unencrypted databases [2]. 

1.2 Summary of Contributions  

In this dissertation, we first designed a novel indexing scheme for randomized encrypted databases, 

which is based on defining a partitioning tree (PT) for all domain partitions for sensitive columns 

in a table (i.e., dividing each column into sub-columns where each sub-column represents a set of 

values). The PT is then used to encode records into bit vectors (BVs), wherein each bit position is 

mapped to a specific partition and is only set to one if the value belongs to the set of values 

represented by that partition. The BVs are used to retrieve only part of the outsourced encrypted 

records. Second, we suggested three secure prototypes based on our proposed indexing technique. 

In each model, we use a different method of storing and handling the BVs (either on a private 

cloud server or on a third-party cloud server). Third, for each system, we proposed different 

algorithms to process most of the relational algebra operators on encrypted data without revealing 

the confidentiality of data. Fourth, we conducted several experiments to evaluate different aspects 

of the proposed systems—including, but not limited to, time overhead and space overhead—-

against three well-known approaches: CryptDB [2], columns-based fragmentation [9], and one 

block-based encryption [10]. Our experiments showed that the proposed systems outperformed 

most of the competing approaches in both time and space overhead. 

The rest of this document is organized as follow: in section 2, we explain different security 

enforcement schemes for the cloud databases, then we survey the state-of–the-art approaches to 

secure outsourced databases. Section 3 details the proposed systems in this dissertation, followed 

by the implementation and evaluation details in section 4. Finally, we provided a conclusion of 

this dissertation and discussed some of the future work in section 5.   
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2 Related Work 

The powerful features of the cloud computing environment—such as enormous capacity and high-

performance computing units—have attracted database owners in both small and large companies. 

These features have made it necessary to obtain and maintain the incredibly expensive storage and 

computation units to process vast databases at affordable prices. In spite of the advantages of cloud 

computing, data security is the main drawback of using cloud services to outsource databases. The 

work of securing databases began when networking and internet technology advanced and were 

adopted by major companies. This, in turn, fueled the need for databases as a service for 

individuals and entities requiring high storage capacity and computation. Data privacy, integrity, 

and confidentiality are in danger when databases are outsourced, since the database owner loses 

control over who can access and read their data.  

To address these issues, researchers began to develop various approaches to protect user data 

from unauthorized access and data breaches, using data access control, data encryption, or both 

[11], [12]. Data access control functions by regulating what object O a subject S can access and 

what operations Op that S can perform on O. Encryption, in contrast, works by encoding plaintext 

data into ciphertext (i.e., an unreadable format). Each method has its advantages and 

disadvantages. For example, access control is intended to increase computing performance, while 

encryption decreases it. In addition, encryption protects against data breaches from both internal 

and external attacks, whereas data privacy can be compromised in such cases when the access 

control mechanism is enforced, since adversaries might bypass predefined access roles to access 

data. Regardless of the heavy computational work required by encryption schemes, encryption is 

still the preferred security mechanism for most database users.  
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2.1 Security Issues in Cloud Computing  

Despite the powerful features of cloud computing, there are many issues and vulnerabilities that 

can be exploited by malicious actors against outsourced data. One type of security issues—

privileges abuse—involves the use of legitimate privileges for malicious purposes (e.g., a user in 

company A with the privilege to view company A’s sales records who uses their privileges to fetch 

sales tuples and pass them to competitor company B). Another vulnerability in the cloud 

environment occurs when a user is assigned privileges that exceed what is necessary to perform 

their job. This can create a potential threat if such privileges are abused, either by the user or an 

attacker compromising the user’s account. Cloud environments may also be vulnerable to SQL 

injection, i.e., injecting SQL queries to act against the objective of an application. The injected 

SQL statement is inserted into an executable statement which, in turn, can fetch data that the 

attacker wants to obtain (e.g., injecting a query to retrieve all of the records in a given table). 

Malicious insider attacks are a form of attacks that are performed from inside the cloud 

organization, with very little chance of detection. The attacker can access sensitive data and leak 

or maliciously process them in a way that violates system policies. 

A data breach is defined as the accessing or obtaining of sensitive information—such as 

medical records, student information, employees’ salaries, and so on—in an unauthorized manner. 

Such problems occur when data access is not restricted and when API access control is weak. 

Other cloud attacks may exploit the following: weak authentication; unpatched services; or 

insecure system architecture (e.g., keeping sensitive and non-sensitive data in the same database 

without implementing any form of encryption for the sensitive data).  

One solution to concerns about the above-mentioned vulnerabilities is applying data 

encryption to the sensitive data. For example, in an SQL injection attack, if the attacker injects a 
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query to fetch the entire set of the database, the attacker will learn nothing if the sensitive data are 

encrypted. However, security level differs by the type of encryption used. Weak encryption 

techniques can be compromised by cryptographic attacks, which exploit a vulnerability in the 

cryptographic, such as a weakness in a cipher, key management scheme, code, or cryptographic 

protocol. In this dissertation, we focus on encryption strategy as a method of protecting data from 

the cloud database vulnerabilities listed above. In the next sub-section, we survey the most popular 

encryption schemes that have been used by state-of-the-art database security systems in the field 

of cloud computing. 

2.2 Encryption-Based Solutions to Protect Cloud Databases 

Encryption is defined as encoding plaintext into unreadable formats, which preserves the 

confidentiality and privacy of the data. There are two types of encryptions: symmetric and 

asymmetric. In symmetric encryption, only one encryption key (i.e., the secret key sk) is used to 

encrypt and decrypt the data. The sk is known by both the encryptor and decryptor entities; 

however, it must be kept secret. The most popular symmetric encryption algorithms are the 

Advanced Encryption Standard (AES) and Blowfish algorithms. In [13], the authors conducted a 

comparative analysis of the AES and Blowfish algorithms and found that AES was faster than 

Blowfish by nearly 200 ms when used to encrypt or decrypt the same file. Asymmetric encryption, 

on the other hand, involves using two keys—a public key and a private key—to encrypt and 

decrypt the data. To guarantee confidentiality, the receiver’s public key is used to encrypt the data, 

while the private key, associated with the receiver’s public key, is the only key used in the 

decryption process and must be kept secret. Asymmetric encryption systems are computationally 

intensive and slow down the encryption and decryption processes [14]. Some examples of well-
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known asymmetric encryption systems include RSA, ElGamal, Diffie-Hellman, and ECC. For 

more details about asymmetric encryption algorithms, see [15], [16], and [17].  

When choosing an encryption system, a variety of factors must be considered, including 

security level, computation overhead, and complexity, among others. For instance, the 

computation overhead of asymmetric encryption is higher than that of symmetric encryption 

because, in an asymmetric system, the usage of CPU cycles is higher than in a symmetric scheme. 

Moreover, the security level in both systems differs based on the type of algorithm used (e.g., 

randomized algorithms are more secure than deterministic algorithms) and whether a strong sk was 

used to encrypt the data. In a symmetric system, the security level is high, and the chance of 

compromising the sk (for, e.g., a sk length of 256 bits in AES) is virtually nonexistent. Accordingly, 

symmetric algorithms are more widely used than asymmetric algorithms. 

Data encryption is the only solution for protecting outsourced databases that prevents data 

leakage resulting from any form of unauthorized data access in the cloud. However, it is 

challenging to execute SQL queries over encrypted databases. The existing literature on cloud 

database security offers a variety of techniques to overcome this problem and deal with outsourced 

encrypted databases. While most state-of-the-art systems aim to provide security, efficiency (i.e., 

time required to execute SQL queries) varies depending on the technique used; the higher security 

level provided, the lower performance level achieved. In the following subsection, we explore each 

strategy used to deal with outsourced encrypted databases. We then review the research offering 

solutions within each strategy.   

2.3 Current Approaches to Process SQL Queries over Encrypted Databases 

Early attempts to secure databases encrypted the whole database, with each record encrypted as 

one block (e.g., if a table has four sensitive columns before encryption, the encrypted table will 
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have just one column to store the encrypted values). However, as mentioned earlier, problems 

occur when SQL queries must be executed over the encrypted data. The simplest solution to this 

matter is to fetch the entire outsourced table and decrypt it, then execute the query. While this 

approach can work well for small databases, it suffers from higher computation costs when applied 

to larger databases (e.g., a table holding millions of records).   

Researchers have proposed numerous solutions to avoid retrieving entire outsourced 

encrypted databases by classifying records into categories before proceeding to the encryption 

process. The encrypted table will have an additional column(s) to store the category of the record. 

By using these categories, the end-user is able to retrieve only part of the encrypted data. In 

addition, the amount of fetched encrypted tuples is impacted by how data are categorized in the 

cloud (i.e., the more data categories there are, the fewer data are fetched). To address the issue of 

categorizing data, many authors (e.g., [18]–[20]) have proposed approaches to dividing attributes 

into categories that can be used to query encrypted data. The techniques are based on dividing each 

attribute into ranges. The main encrypted table in the cloud will then have additional attributes—

as many as the number of partitions among all attributes—to hold numeric values. The whole 

record will then be encrypted as one block and stored as an attribute value in the cloud. The early 

attempts technique was developed by [10], who proposed different techniques to execute relational 

algebra operators over the encrypted records. Their solution assigned an identifier for each value 

in the tuple, then used those identifiers to retrieve only encrypted records whose identifiers 

matched the requested identifier. Nevertheless, there are several limitations to using such an 

approach, including vulnerability to statistical attacks, as mentioned in [21], and heavy client-side 

computation due to decrypting every retrieved record’s data (because all the fields of each record 

are encrypted as one block). The authors in [22] proposed a system to build an index for the plain 



11 

 

data, then encrypt each page of the index individually. To execute a query, the corresponding page 

is loaded and decrypted. However, since all pages are encrypted with one key, the security of this 

scheme is downgraded. In addition, the size of the index will continue to grow, which could impact 

performance. To improve the security level, a unique encryption key could be used to encrypt each 

page of the index. In [21], the researchers suggested building a B-tree index, maintained on the 

client-side, over the plaintext data. In [23], the authors introduced a single values level encrypted 

index and suggested splitting the index into sub-indexes, i.e., each sub-index is for encrypted 

values using the same key in the column. The authors in [24] proposed a none–order-preserving 

index for the encrypted database. This index does not require interaction with the user once the 

query is submitted. The security of this scheme is higher than that of models based on order-

preserving indexes, which may be vulnerable to statistical attacks. Hahn et al. [25]  propose a 

system to join encrypted databases. The idea is based on applying a selection operation first, then 

enforce the join over selected data. That only leaks the frequency of use and access patterns. This 

method is interesting; however, the delay is high because of the asymmetric cryptosystem they 

use.    

In [2], Popa et al. developed CryptDB as the first practical system for executing Standard 

Query Language (SQL) queries over encrypted databases. Two attack scenarios were addressed 

using onion layers encryption: cloud attack and proxy attack. Each datum is encrypted by more 

than one encryption algorithm in which the outer layer ciphertexts produced by a randomized 

encryption algorithm. CryptDB uses a proxy to perform the crypto operations for the user. One of 

the drawbacks of CryptDB is that, because of the excessive crypto operations and many layers of 

decryption, it introduces a high computational burden. In addition, because it is challenging to 

execute an analytical load to encrypted data on a server, CryptDB was improved in [26] to support 
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complex queries and large data sets. MONOMI solves this problem by splitting the execution into 

two sets:  a set of queries to outsourced encrypted data and a set to be executed on decrypted data 

on the user’s side. Authors in [27] proposed an enhanced version of CryptDB to accelerate query 

processing. Instead of using AES, they used AES-NI, which was reflected in the speed of the query 

processing time. They also suggested improvements to the hardware to accelerate query processing 

in CryptDB. There are many different systems proposed on top of CryptDB, such as the one 

presented in [28].  

Liu et al. [29] proposed a fully homomorphic order-preserving encryption system (FHOPE) 

to execute complex SQL queries over encrypted numeric data. This system allows cloud providers 

to run arithmetic and comparison operators over encrypted data without repeating the encryption, 

thus helping to resist homomorphic order-preserving attacks. The downside of that study is that 

the authors conducted their experiments using tables with less than 9,000 records. For improved 

measuarment of the efficiency and scalability of this system, the tables should have more records 

(e.g., 100,000 or more). A variety of studies related to this system are provided in references [30]–

[34]. 

Cui et al. proposed P-McDb [35], a privacy-preserving search approach that allows users 

to execute queries over encrypted data. To avoid inference attack, this system requires two cloud 

servers, one for database re-randomizing and shuffling and one for data storing and searching. 

Instead of a total search, P-McDb supports partial searches of encrypted records that are described 

as a sub-linear manner. Further, P-McDb is a multi-user system. In the case of a user revocation, 

the data cannot be re-encrypted. Another limitation of this system is that communication with two 

cloud providers will add more latency when compared to other systems such as those described in 

[2]. More proposed systems related to P-McDb are described in references [9], and [36]–[39]. 



13 

 

Osama et al., in [40], proposed different approaches for partitioning attributes of tables into 

multiple sub-columns based on the attribute’s domain values. The methods were tested and 

introduced various delays. They use an order-preserving mapping function, which enables cloud 

servers to run different types of SQL-queries. The major disadvantage of this research is that only 

attributes with numeric values but not with string values were considered. Moreover, such a system 

only supports select statements. 

In [41], the researchers proposed a secure database (SDB) approach, a system that divides 

data into sensitive and non-sensitive, with only sensitive data being encrypted. The initial idea was 

to split the sensitive data into two shares. The data owner (DO) keeps one share, and the second 

share is kept by the cloud service provider (CSP). Assuming the CSP is curious, the CSP can learn 

nothing from its share unless it obtains the DO’s share. Also, the SDB allows different operators 

to share the same encryption, thus providing secure query processing with data interoperability. 

Similar studies can be found in [26], [42], and [43]. 

As presented in [44], some researchers used a technique called “Bucketization,” in which 

the tuples are mapped to more than one bucket. This technique enables a “database as a service” 

(DAS) server to execute SQL-style queries over encrypted data. Each bucket contains a set of 

encrypted records ranging from the minimum to maximum value and assigned an identification 

(ID). Several studies based on this approach have been conducted [45]–[48]. 

Some researchers ([35], [49], [50]) have addressed cloud database privacy by adopting 

what is called a hybrid cloud. The technique is based on dividing data into sensitive and non-

sensitive. Then, the sensitive data or attributes are outsourced to the user’s private cloud while the 

non-sensitive data are migrated to the public cloud. The problem is that, because most users 
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consider their data to be sensitive, this scheme is not practical for users of non-sensitive data. Also, 

the complexity of integration for this solution is high.  

On the other hand, Amjad et al. [9] proposed a technique to prevent untrusted and 

suspicious cloud service providers from being able to learn from private data. This technique is 

based on vertical fragmentation, in which each sensitive encrypted column is outsourced to a 

different cloud server (slave cloud). In contrast, while the whole encrypted table is stored at the 

central server (master cloud). Because the encryption algorithms [2] and the proxy were used in 

this system, the proxy performed all the work of interpreting queries, encryption, and decryption. 

One of the limitations of this work is more communication delays, especially if the query condition 

contains more than one clause. Another example of research that uses this technique is [51].  

Bouganim et al. [52] introduced a hardware/software system to address the problem of 

confidentiality leakage in the outsourced databases. The idea is that the user maintains and controls 

a mediator smartcard that is plugged in on the side. This smartcard is responsible for encrypting 

the data before putting them into the database and decrypting data before sending them to the user. 

The major disadvantage of this technique is that the user is limited by the capacity of the smartcard 

and cannot benefit from the storage provided by the cloud services. Similar studies can be found 

in [52]–[54]. 

SafeBox [55] is a system based on an approach called access security broker (CASB). This 

approach allows users to search and share encrypted data while protecting sensitive information 

from being leaked if an attacker gains access to the cloud server (CS). This technique can be 

applied over encrypted databases or files and supports keyword-based searches within the 

encrypted contents. Several studies that use CASB can be found in [56] and [57]. Also, a detailed 

survey about the use of brokers in the Cloud can be found in [58].  
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3 Methodology 

3.1 Introduction 

The primary goal of this research is to address the significant drawbacks of some of the state-of-

the-art research in the field of cloud database security. They are described below. 

Onion layers encryption means encrypting each datum using different encryption 

algorithms. The inner layer is the ciphertext of the algorithm with the lowest security level, while 

the outer layer is the ciphertext of the algorithm with the highest security level (i.e., randomized 

encryption algorithm) [2]. When it comes to search for a value, the whole column’s values must 

be updated to the next layer (take off layers) This process might be executed more than once to 

achieve the desired result. For a large encrypted table, more excessive crypto operations are 

performed, leading to substantial computational overhead. To enable the cloud server to remove 

and adjust layers, the secret key is passed to the server, making the system vulnerable to an in-

session attack. Also, the trusted but curious cloud provider(s) could learn about the data if the 

security layer is adjusted to a low-security level layer. To overcome this limitation, our proposed 

approaches are designed to encrypt each datum in the table using only a randomized encryption 

algorithm (AES-CBC). Also, we fetch only those encrypted rows from the cloud server that are 

related to the query of the user, which reduces undesirable computations. We eliminate passing 

the secret keys to the cloud server to ensure that curious cloud provider(s) cannot learn from the 

outsourced database.  

In systems that use vertical fragmentation (i.e., column-based fragmentation), the table is 

fragmented throughout a multi-cloud. So, each column is outsourced to a different cloud to 

preserve privacy and speed up the query processing [9]. This approach might be practical for tables 

that have a few attributes but not for tables that have hundreds of attributes. The reason is because 
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the table owner must have multiple accounts with more than one cloud server. If two or more cloud 

providers collude, privacy will be compromised.  

Communication delay is another concern when using such systems. To address this issue, 

the developed systems require only one server to outsource the encrypted table, a feature that will 

minimize communication costs, improve privacy, and accelerate query processing.  

Homomorphic encryption (HE) is a technique in which SQL queries can be executed over 

the ciphertexts as if the data were not encrypted. HE is used to encrypt only numeric values and 

support arithmetic operators over encrypted numeric data. However, the space required to store 

the ciphertexts is too large. Also, the integrity of encrypted data is not preserved in such systems 

because the attacker can change the ciphertexts undetected. To date, this type of encryption 

supports only addition and multiplication over encrypted digital data. To overcome this, we use a 

symmetric randomized algorithm AES-CBC to preserve integrity because the modification of a 

ciphertext leads to an incorrect decryption result.  

3.2 Encryption Strategy  

To provide privacy and a high level of security, all of our approaches used AES-CBC to encrypt 

sensitive data. Only the query manager (QM) keeps and maintains the secret keys (SKs). We used 

a symmetric algorithm rather than an asymmetric algorithm to gain a higher level of security and 

faster crypto processing. 

3.3 The Query Manager (QM) 

In our work [59]–[61], we defined the query manager (QM) as a trusted server that resides in an 

organization’s or company’s private cloud. It works as an intermediary between users and the 

Cloud and is responsible for processing queries and encoding BVs for each table (we explain this 

step in detail in the discussion of partitioning trees). Also, the proposed prototypes support 
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individuals’ cases in which QM would be light software residing in the end user’s system. For an 

organization, it performs the same functions as the QM server. While we assume that the user can 

encrypt only columns that have sensitive data, the proposed approaches even support encrypting 

all of a table’s attributes.  

3.4 Partitioning Tree (PT) 

As stated in our previous studies [59-61], the PT is the primary element of all proposed systems in 

which the query is appropriately rewritten for execution by the cloud server. The owner of the 

table participates in the construction of the PT by specifying which columns are sensitive and 

should be encrypted. Then, the table owner defines the possible partitions for each column and 

indicates whether the partitions are ranges of values or non-ranges of values. Thus, the values in 

each column are partitioned into multi-partitions in which each partition includes a set of values. 

Then, the QM builds the PT based on these specifications. As shown in Figure 3.1., the name of 

the table is the root of the tree, and the second-level nodes are the sensitive columns that have to 

be encrypted. Nodes in the third level, each of which is assigned an ID, represent the partitions of 

all the sensitive columns.  

Table 3.1 The Students Table 

ID Name SSN VisaType Department 

01 Alice 12701 J-1 MATH 

02 Ryan 25678 F-2 BUSN 

03 Mark 46932 F-1 CSCI 

04 John 42213 J-2 PHYS 
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The second-level nodes are assigned a color of either white or gray. Gray nodes imply that the 

partitions of the column are ranges of values (e.g., the Name column must have range partitions 

based on the first letter of the name, while students Visa Type have non-range partitions, such as 

F-1, F-2, etc.). The PT is stored locally in the QM. We encourage the data owner to define as many 

as possible partitions for each SC, which can narrow the range of retrieved encrypted records from 

the outsourced table and, in turn, increase the performance of the proposed systems, and achieve 

faster query processing.  

We are not concerned about memory consumption in our solutions because the sensitive 

information in every row is encoded into bits (i.e., the smallest computation unit).  Based on the 

PT, this does not consume memory or searching time. In section 3.6, we explain in detail how and 

where to store bit vectors in each proposed system. Algorithm 1 shows how the QM constructs the 

PT of the students' table (Table 3.1) and Figure 3.1 shows the PT of the students’ table. 

 

 

 
 

Figure 3.1 An example of the partitioning tree (PT) of the students table (Table 3.1) 
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Algorithm1: PT construction 

1: Input: file.txt containing the name of the table, sensitive columns, and partitions. 

2: Create a tree and add a node, represent the table name (TN), as the root of the tree.  

3: Int Id=0 

4: For each sensitive column SCi  

5:        Nodei = TN.addchild (‘the name of the SCi’) 

6:        If SCi contains range of values 

7:               Nodei.AssignColor (‘Gray’) 

8:       Else 

9:               Nodei.AssignColor (‘White’) 

10:      While (partitions! = null) 

11:              Nodej = Nodei.addchild(‘partition value’) 

 

3.5 Encoding Approach 

The encoding process is an essential step in the proposed systems. The proposed scheme is used 

to encode records’ sensitive data into bit vectors (BVs), which can be exploited to retrieve the 

required encrypted records (i.e., candidate records for the user's query without the need for 

decrypting data). The QM parses each record to get the names of the sensitive columns and their 

values. It then uses the PT to encode the tuples before proceeding to the encryption process, to bit 

vectors (BVs). Each bit position in the BV is mapped to a partition node from the third level nodes 

(e.g., the first bit in the BV is mapped to the node having the ID =1). The encoding process is 

accomplished as follows: 

1) For each record Rj in the main table T, the QM creates a BV having a length equal to the 

number of nodes in the third level of the corresponding PT. It then initializes all its bits to 

zeroes (e.g., if the bit vector has 10 bits, the number of nodes at the third level of the PT is 

10).  
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2) For each record Rj, the bit bm that mapped to the partition node PNm under SCi is set to one 

if the datum equals the values represented by PNm. Then, the QM assigns an index to the 

newly created BV.  

For the sake of clarity, the encoded BVs of the records in Table 3.1 are as follows:  

 

How and where to store the BVs differs for each proposed system. In section 3.6, for each 

prototype, we present the details of how and where to store the BVs (i.e., either locally at the QM 

or by migrating them to the cloud server). We also discuss the security and the potential threats in 

each model and show how to solve them. Algorithm 2 delineates the process of the encoding step. 

Algorithm 2:  Encoding algorithm 

1: Define a vector V 

2: For each record Rj in Table T 

 Parse Rj to get the value(s) of the sensitive columns SCs 

3: Define a bit vector BVj of length n where n = the number of nodes in the 3rd  

level of the T 

4: For each SCi in Rj 

5: If value v = value of the nth sub-node of the SCi OR v ∈ value of the nth 

sub-node of SCi 

6:           Set nth bit in BVj to 1 

7:                 Else  

8:           Set nth bit in BVj to 0 

9:      End for 

 

1 <100100010010000> 

2 <001010100001000> 

3 <010101000100000> 

4 <010100010000010> 

 
Figure 3.2  The BVs of Records in Table 3.1 
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3.6 Developed Prototypes  

3.6.1 Bit Vectors as a Matrix (BVM) 

In this section, we discuss the model that uses bit verctors as a matrix. Some passages, figures, 

tables, and algorithms presented in subsections (3.6.1.1 and 3.6.1.2) have been quoted verbatim 

from our published work in  [59]. 

3.6.1.1 System Description 

In this prototype, we store and process the BVs of each outsourced table locally at the QM. We 

assume that the QM is a trusted server residing in either the end user’s machine as an application 

or in the private cloud (Figure 3.3). Because the only thing outsourced in this prototype is the 

encrypted table, the highest level of security is provided. The outsourced encrypted table preserves 

the structure of the original table. However, we add a column (used as a foreign key) to store the 

rows’ indices (during the encoding process, the QM assigns a unique index number to every 

encrypted row and its BV). Further, we need these indices to fetch the encrypted records. To 

process a query, the QM needs to load the BVs to the main memory from the hard disk drive 

(HDD) and perform a rapid look-up to find which records are candidates for the user’s query. 

Then, it pushes their indices into a list and rewrites the query to fetch any record whose index is 

on the list.  In the following sub-sections, we present the supported statements for the relational 

algebraic operations. 

3.6.1.2 Basic Operations  

The basic operations in database applications are insert, select, update, alter, and delete 

statements. We extended this prototype to support these operations, as explained below.  
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Insertion statements are straightforward. The QM receives the insert query, creates a new 

BV for the newly inserted record, appends it to the corresponding bit vectors matrix (BVM), and 

then encrypts sensitive data and sends it to the Cloud. 

Select is an essential statement in all database applications. In our approach, it is also part 

of the execution of other statements like update and delete. In the QM, the process of executing 

the select statement algorithm is to check which of the following cases is applicable and then 

enforce it.  

Case 1: None of the column(s) in the query condition is sensitive, so they are not stored in 

encrypted form in the Cloud. In this case, the QM directly searches and retrieves the data 

corresponding to the query condition from the Cloud. For example, in Table 3.1, Figure 3.1, and 

Figure 3.2,  if the query condition is “WHERE ID = 03”, the QM retrieves the records directly 

from the Cloud that satisfy this condition.  

 Case 2: All column(s) in the query condition are sensitive, so they are stored in encrypted 

form in the Cloud. In this case, for each column that appears in the query condition, the QM 

retrieves the indices of corresponding bit vector(s) (BVs) from the BVM. Then it performs logical 

 

Figure 3.3 BVM Architecture. 
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AND/OR operations based on conditions among indexes returned for each column. For example, 

if the query condition is “Name = Mark AND visa type = F1”, the QM will find any BV having 

the bit that mapped to the node representing the values of the PD “Q-Z.” Because “Mark” belongs 

to this group (i.e., PD “Q-Z”), any BV has the bit mapped to this partition is set to one will be 

added to a list L[].  The QM will do the same for visa type, then perform the logical operation 

AND between the two lists and rewrite the query accordingly to fetch the candidate records.    

Algorithm 3: select  

1: Receive user query < Table name, List of columns {c1, c2, c3 …}, list of values {v1, 

v2, v3 …}> 

2: Check query columns used in search condition  

3: CASE 1: 

4: If none of columns mentioned in query is sensitive 

5:         Search the corresponding table in cloud 

6: Return data. 

7: CASE 2: 

8: If each column Ci is sensitive  

9:  For each value v being searched for under column Ci 

10: Search the column representing that domain value in PT then for each BVj 

entry under domain value in Ci  

11: If bit =1 

12: Add the index of BVj to List Li [ ] 

13: Define list F where F [ ] is the final list that contains the indices from the lists ( L1 [ 

], L2 [ ],…, Li [ ])  after performing AND or OR (based on query conditions) 

operations between them. 

14: Return F 

15: Retrieve encrypted records from the cloud based on the list F [ ]. 

16: Decrypt and return data  

17: CASE 3: 

18: If mixed columns (Sensitive and Non-sensitive)   

19:      Do Case 1 AND   Case 2    

20:      Remove duplication if found 

21: Return data 
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The update process is one of the functions provided by the QM. Through this function, the 

user issues a query to update record(s). The QM identifies record(s) using our select algorithm. 

Then based on the results of select algorithm, the QM issues a query to retrieve encrypted record(s) 

from the Cloud, decrypts them to find the exact records that match the query conditions, and issues 

a query to update the encrypted record and its BV. The steps are shown in Algorithm 4. 

 

Algorithm 4: update  

1: Receive user query < Table name, List of columns {c1, c2, c3 …}, List of values {v1, 

v2, v3 …}> 

2: Use search Algorithm (Algorithm 3) to find the candidate record(s) 

3: Fetch the record(s) from the encrypted table 

4: Decrypt and find the exact record(s) 

5: For each update value uv in record Rj  

6:        If uv falls under non-sensitive column 

7: Update the old value with uv in the outsourced table 

8: If uv falls under a sensitive column SCi 

9: For each SCi in the update query 

10: If the uv falls under a PD other than the previous PD  

11: Set the bit that mapped to this PD to 1 and unset the 

rest of bits that mapped to other PDs for this SCi.. 

12: Encrypted the updated values  

13: Send data back to the cloud 

 

 

The delete process is used to delete a record from a table. In this case, the QM uses the 

search algorithm to find the candidate record(s), then removes the record(s) from the outsourced 

encrypted table and deletes the corresponding BVs from the BVM. Algorithm 5 outlines the steps 

in the deletion process. 
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Algorithm 5: delete  

1: Use Algorithm 3 (select algorithm) to find the required record.  

2: Add the index of each fetched record satisfying the delete condition into list L []. 

3: Generate a delete query to delete any record from the outsourced encrypted table its 

index is in L []. 

3: Delete the BVs of the deleted records from the corresponding BVM.  

 

Alter is one of the fundamental operations in any database that allows users to drop/add 

columns from/to relations. However, in this model, the QM first determines whether the dropped 

or added column is a sensitive column. In the case of “drop,” the QM will look at the corresponding 

partitioning tree (PT) and drop all partition nodes of the predecessor node that represents the 

dropped column. It then deletes all bits mapped to the deleted nodes from the BVM. The QM then 

forwards the alter query to the Cloud, which will execute the query to drop the encrypted column. 

In the “add column” case, the QM asks the user if the column is sensitive. If it is sensitive, then it 

will add it with its partitions to the PT after receiving information from the user. 

3.6.1.3 Relational Algebra Operators 

3.6.1.3.1 Join  

Most current research in database security does not support the join operator because dealing with 

encrypted databases it is not a straightforward task, especially if AES-CBC is the encryption 

algorithm. The simple solution for such a task is to retrieve all encrypted tables from the Cloud 

and perform the join operator after decrypting them. However, this is not the optimal choice when 

it comes to massive tables. In this model, to avoid unnecessary computation, we need to move as 

much of the join computation as possible to the cloud site without decrypting data, leaving minimal 

work for the QM. To make BVM both practical and efficient in the join operator, we need to 

consider the following cases for the join condition:  
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1) The join condition has only non-sensitive columns. 

2) The join condition involves only sensitive columns having limited distinct value partitions 

such as USA visa types. 

3) The join condition contains only sensitive columns that have range partitions such as salary. 

4) The join condition has at least two of the previous cases. So, we design an algorithm to 

enable the cloud provider to implement a join operator over encrypted tuples without 

decrypting the encrypted attributes.  

To solve the first case, in which the join condition involves only non-sensitive attributes (i.e., 

unencrypted attributes), the QM will first determine if the attributes are sensitive or not. If they are 

non-sensitive, it will forward the query to the cloud database, which will implement the join query 

and return the join result to the QM. The QM then decrypts the join result and removes duplication 

if found. In the second case, the join condition contains only sensitive attributes that are not ranges 

of values. In this case, the QM creates a list Li [ ] for every partition of the attribute mentioned in 

the join condition, where Li [ ] will have the index of any record having its bit that mapped to 

partition node i is set to 1, before searching the BVM. Then the QM will rewrite the query to join 

all the tuples from both tables based on the indices of these lists. For example, there are two tables, 

A and B, both having the same attributes: ID, name, rank, department, salary. Now, assume that 

the query was to join them where A.rank = B.rank. Then let us say that the partition domains for 

rank attributes are manager, secretary, and employee. Now, the QM will create three lists for each 

table. The first list will contain the indices of the bit vectors in the corresponding BVM that have 

their bits mapped to the PD “manager” set to 1. The second list will hold the indices that have the 

bits mapped to the PD “secretary” set to 1, and the third list will contain the indices that have the 

bits mapped to the PD “employee” set to 1. In the next step, the QM rewrites the query to join the 
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tuples that have their indices in list Li [ ] from Table A with the tuples that have their indices in 

list Li [ ] from Table B. In the third step, the Cloud will execute the query and return the result to 

the QM, which will decrypt and remove any duplications before sending the result back to the 

user.  

In the third case, the join condition contains only sensitive columns that are ranges of values. 

This case is similar to the second case. However, in this case, the mapping between joined 

partitioning lists can be one too many. To illustrate this, consider Figure 3.4. Assume we want to 

join tables A and B by equality of salary. The salary column in Table A has three PDs that are 

[(10,000 to 20,000), (20,001 to 30,000), (30,001 to 40,000)], and the salary column has two PDs 

that are [(10,000 to 25,000), (25,001 to 40,000)]. We need to make sure that the QM rewrites the 

join query in a way that it maps the PDs from Table A to the corresponding PDs from Table B. To 

do that, the QM will create n lists for each table where n is the number of PDs in the table that has 

the fewest PDs in the joining column. So, in the above example, n =2 since Table B has the least 

PDs. In the first list L1[ ] in table A, the QM adds indices with bits that represent PD1, or  PD2 is 

1. In the second list L2[ ] of table A,  the QM adds indices with bits that represent PD2 or PD3 as 

1. The following figure, Figure 3.4, shows how the PDs are mapped. The QM rewrites the query 

before forwarding it to the Cloud. After getting the join result back from the Cloud for each tuple, 

the QM decrypts only the encrypted column’s value (only the encrypted columns involved in the 

join condition) and enforces the join condition. If the join condition is satisfied, the QM proceeds 

to decrypt all of the tuple’s values before moving to the next tuple. If the join condition is not met, 

the QM will not decrypt the entire tuple’s values and will move to the next tuple. We do so to 

avoid unnecessary decryption processes for those tuples that do not meet the join condition. The  
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last case is when the join condition involves two or more of the previous cases. In that case, the 

QM might rewrite the query. Algorithm 6 below shows how the QM performs the join. 

Algorithm 6: Join  

1: Input: the QM Parses user’s query to get tables’ names, attributes, and values. 

2: QM checks the PT of each table in the join and performs the following: 

3: Case 1 

4: If join column(s) is non-sensitive (not present in the PT) THEN 

5: Forward the query to the cloud server (CS) 

6: Define LinkedHashSet s 

7: For every fetched record i 

8: decrypt all values in i 

9: push i to s 

10: send s to the user 

11: Case 2 

12: If join column(s) is a sensitive AND not ranges, THEN 

13: For each PDj under the node that represent a SCi in PT of Table x 

14: Create a list Lxj [ ] 

15: For each BV in BVMx  

16: If the bit mapped to PDj is not 0 

17: Push the BV’ index to Lxj [ ] 

18: For each PDj under the node that represent a SCi in the PT of Table x1 

19: If the value v of PDj of SCi from table x1 equals to the v of PDj of SCi from 

Table x2  

20: PDj  of  x1 ⋈ PDj of x2 

21: Rewrite the query and send it to the cloud 

22: Define LinkedHashSet s 

 

Figure 3.4  An example of joining two tables by the equality of salary values 

Table B 

Partitions of salary  

10,000 to 25,000 

25,001 to 40,000 

 

Table A 

Partitions of salary  

10,000 to 20,000 

20,001 to 30,000 

30,001 to 40,000 
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23: For every fetched record i 

24: decrypt all values in i 

25: push i to s 

26: Send s to the user 

27: Case 3 

28: If join column(s) is a sensitive AND ranges, THEN 

29: For each PDj under the node that represent the SCi in PT of Table x 

30: Create a list Lxj [ ] 

31: For each BV in BVMx  

32: If the bit mapped to PDj is not 0 

33: Push the BV’ index to Lxj [ ] 

34: For each PDj under the node that represent the SCi in PT of Table x1 

35: If the PDj of SCi from table x1 contains at least one value v where v ∈ PDj from 

table x2 

36: PDj  of  x1 ⋈ PDj of x2 

37: Rewrite the query and send it to the cloud 

38: Define LinkedHashSet s 

39: For each fetched record i 

40: Decrypt only the join columns’ values  

41: If the join condition satisfied 

42: Decrypt the whole tuple’s values 

43: Push i to s 

44: Else  

45: Proceed to the next encrypted tuple  

46: Send s to the user 

47: Case 4 

48: The query involves two or more of the above cases. 

 

3.6.1.3.2 Union  

Union is one of the widely used operations in database systems in which tuples from two or more 

tables are merged. However, to execute a union operator, the number of attributes and datatype of 

both tables must be compatible. Even though the union operation removes the duplication from 

the union results, dealing with encrypted data complicates this step. To accomplish this, we could 

enable the cloud server to execute the union operator over encrypted tables and then send the result 

back to the QM. Doing so will move the union computation to the cloud server leaving only 
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decryption and duplication removal to the QM. The QM will decrypt each tuple in the union result 

set and add it into a LinkedHashSet as soon as it receives it from the Cloud. Note that both tables 

must be encrypted with the same secret key to execute the union algorithm. Algorithm 7 delineates 

the processes. 

Algorithm 7: union  

1: Forward the user’s query to the cloud server 

2: Define a vector v 

3: For each fetched record i in the union result set 

4: Decrypt i 

5: Add i to v 

6: v.distinct() 

7: Send v to the user. 

8: v.clear() 

 

3.6.1.3.3 Intersection  

Intersection is the process of finding the common subset out of two or more sets. However, 

executing intersection over encrypted databases is not easy without decrypting the data. If the 

tables to be intersected have a large number of records, the user is going to add a significant 

computational overhead by decrypting the whole set of the encrypted tuples from the intersected 

tables before executing the intersection operator. As a result, we cannot benefit from the cloud 

services because the computation is moved to the user’s side rather than on the cloud side. Some 

of the previously proposed systems in [2], [9], [10] can process queries over encrypted databases 

but will experience delays if the tables to be intersected have large numbers of tuples.  

In this model, our goal is to move the computation as much as possible to the cloud side 

while eliminating unnecessary decryption processes at the QM. Moreover, we want to execute the 

intersection operator partially in the cloud database server leaving only the elimination of 

duplication at the QM. In this way, we exploit the high computational speed provided by a cloud 
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database server to accelerate the query processing time. We explain the simulation of intersection 

as follows:  

• The user sends the query to the QM, which is going to parse it to remove the headers of 

tables and columns.  

• If the intersect operation involves k columns out of n columns, where n denotes the total 

number of columns in a table, the QM uses our join algorithm to join both tables by k -

columns and then rewrites the query. Otherwise, the QM chooses all SCs that are not in 

ranges to join the tables using our join algorithm before rewriting the query.   

• The QM sends the translated query to the cloud database server, which will execute the 

query and send back the join result to the QM. 

• Before returning the intersecting result to the user, the QM decrypts the encrypted join set 

and pushes it to a hash list to remove duplicates, if found.  

To illustrate the process, consider this example. Suppose we have two tables, A and B, and we 

want to carry out an intersection between them. Assume both tables have the same columns and 

the same PT as those shown in Figure 3.5. 

 

The translation process of the intersection query is accomplished as follows: 

 

Figure 3.5  An example of a PT for Table A and Table B. 
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1: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 1st, 4th , and 7th positions are set to 1. 

 

2: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 1st, 4th , and 8th positions are set to 1. 

3: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 1st, 4th , and 9th positions are set to 1. 

 

4: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 1st, 5th , and 7th positions are set to 1. 

 

5: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 1st, 5th , and 8th positions are set to 1. 

 

6: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 1st, 5th , and 9th positions are set to 1. 

 

7: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 1st, 6th , and 7th positions are set to 1. 

 

8: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 1st, 6th , and 8th positions are set to 1. 

 

9: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 1st, 6th , and 9th positions are set to 1. 

 

10: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 2nd, 4th , and 7th positions are set to 1. 

 

11: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 2nd, 4th , and 8th positions are set to 1. 

 

12: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 2nd, 4th , and 9th positions are set to 1. 

 

13: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 2nd, 5th , and 7th positions are set to 1. 

 

14: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 2nd, 5th , and 8th positions are set to 1. 

 

15: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 2nd, 5th , and 9th positions are set to 1. 

 

16: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 2nd, 6th , and 7th positions are set to 1. 

 

17: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 2nd, 6th , and 8th positions are set to 1. 
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18: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 2nd, 6th, and 9th positions are set to 1. 

 

19: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 3rd, 4th , and 7th positions are set to 1. 

20: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 3rd, 4th , and 8th positions are set to 1. 

 

21: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 3rd, 4th , and 9th positions are set to 1. 

 

22: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 3rd, 5th, and 7th positions are set to 1. 

 

23: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 3rd, 5th , and 8th positions are set to 1. 

 

24: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 3rd, 5th , and 9th positions are set to 1. 

 

25: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 3rd, 6th , and 7th positions are set to 1. 

 

26: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 3rd, 6th , and 8th positions are set to 1. 

 

27: Join any record from table A with any record from table B if and only if the BVs of both records have 

the 3rd, 6th, and 9th positions are set to 1. 

  

 

3.6.1.3.4 Difference 

To execute the difference in this prototype, the intersection is first enforced between the tables to 

find the common tuples. Second, the QM sends a query to retrieve all tuples except the join result 

set. Third, the QM decrypts the result and sends back the result.  

3.6.1.3.5 Duplication Removal  

Enforcing duplication removal over a query result (encrypted tuples) at the Cloud is impossible 

because we use a non-deterministic encryption algorithm (AES-CBC). Therefore, we leave the 

execution of this operator to be accomplished at the QM before sending back the user’s result. 

That means the QM will decrypt the encrypted tuples retrieved from the Cloud. If the query 
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contains the duplication elimination keyword “distinct,” the QM will define a LinkedHashSet data 

structure that does not allow duplicated elements in the set. It will then add each decrypted tuple 

to the set. Note that the translated query to be executed by the cloud server will not have the 

“distinct” keyword. Further, the keyword “distinct” usually appears in select queries, in which case 

the algorithm to eliminate duplication is the select algorithm, and we add three more steps to 

execute the distinct operator. See algorithm 8 below. 

Algorithm 8: duplication removal 

1: execute steps 1-9 of select algorithm 

2: if distinct keyword is present in the original query 

3: define LinkedHashSet s 

4: for each fetched tuple i 

5: decrypt values of i 

6: push i to s 

7: send s to the user. 

 

3.6.1.3.6 Aggregation and Sort  

To implement the aggregation and sort operators (max, min, and count) over encrypted tables in 

the Cloud, we consider two cases for sensitive columns, ranges, and non-range columns. In non-

range columns, we can process the query locally at the QM with no need to communicate with the 

Cloud. In such a case, we avoid the decryption computation that results from retrieving encrypted 

records from the Cloud. Consequently, we will achieve faster query processing. Specifically, the 

QM searches the BVM after looking up the corresponding PT using our search algorithm to obtain 

a list of all BVs’ indices that satisfy the query condition. Note that the QM might not need to do 

further computations such as decryption processes and will, therefore, send the query result back 

to the user. For the sake of clarity, consider Table 3.1, Figure 3.1, and Figure 3.2, suppose a user 

send the following query: 

select count(name) from students where department = ‘computer science’; 
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then, the query is processed as below: 

• The QM will search the PT and find that Dept is a non-range column (node’s color is gray). 

Then it will search the BVM (Figure 3.2) and push the index of any BV having the bit 

representing the PD “computer science” is not zero into a list L []. 

• The QM counts the number of the elements in L [] and returns the number to the user.  

     On the other hand, the query process is divided into two phases. The first phase is accomplished 

at the QM, while the second phase is handled in the Cloud. The QM executes the aggregation or 

sort operators over decrypted records after the QM processes the query to retrieve only candidate 

encrypted tuples that are related to the query. For example, the query 

Select count (‘name’) from student where the name =’Alice’; 

is processed as follows: 

• The QM looks up the PT and will find the name is a range column (node’s color is not 

gray). It will then search the corresponding BVM and add to the list L [] the indices of all 

BVs that have the bit assigned to the PD “A-F” is one. 

• The QM then looks for any encrypted record in which its index is present in L[] from the 

Cloud using this query syntax:  

select name from the student where index in (“elements of L [] separated by commas “). 

• The QM decrypts every fetched tuple’s name and increments the count value only if the 

decrypted name value equals ‘Alice.’ 

• The QM returns the value of the count variable to the user.  

The SUM and AVERAGE functions are processed similarly as a count, but we sum the decrypted 

numbers. If the operation is average, we divide the sum over the number of decrypted values that 

meets the query conditions. The sorting operator can be executed similarly to the aggregation 
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operator. However, we need to run the sort operator over decrypted data before sending the result 

back to the user. Algorithm 9 shows the process. 

Algorithm 9:  aggregate functions 

1: Do steps 1 to 6 of select algorithm. 

2: If all SCs are non-ranges 

3: If the operator is count  

4: Do steps 9 to 12 of select algorithm 

5: Let x = Count the number of Li [] 

6: Return x 

7: If the operator is max 

8:  Let m = the value of right most PD of the SC predecessor node in the PT 

9: Return m 

10: If the operator is min 

11:  Let n = the value of left most PD of the SC predecessor node in the PT 

12: Return n 

13: If all SCs are ranges 

14: If the operator is count  

15: Do steps 9 to 15 of select algorithm 

16: Define List Lk[] 

17: For each fetched record i 

18: Decrypt i 

19: If i meets the query condition 

20: Add it to Lk [] 

21: Return size of Lk [] to the user. 

22: If the operator is max 

23: For the right most PD of the SC 

24: Do steps 10 to 15 of select algorithm 

25: Define a variable x 

26: For each fetched record i 

27: Decrypt i 

28: If i > x  then 

29: x= i 

30: Return x to the user 

31: If the operator is min 

32: For the left most PD of the SC 

33: Do steps 10 to 15 of select algorithm 

34: Define a variable x 

35: For each fetched record i 
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36: Decrypt i 

37: If i < x  then 

38: x= i 

39: Return x to the user. 

 

3.6.1.3.7 Project 

In project queries, the QM does a column-based retrieval; it will select all tuples for specific 

column(s). Further, we do not need to perform a PT lookup in the project. However, we need to 

decrypt the whole set of retrieved tuples at the QM. We do not need to remove duplication of doing 

any filtration at the QM. 
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3.6.2 Bit Vectors as Column(n) (BVSAC) 

In this section, we discuss the model that stores bit verctors as an additional column in the main 

encrypted table. Some passages, figures, tables, and algorithms presented in this section  have been 

quoted verbatim from our published work in [60]. 

3.6.2.1  System Description 

We designed this model to execute different relational algebraic queries over encrypted data. In 

addition, we divided the computation into two sides: a client-side and cloud provider (CP) side, in 

which we shift the majority of the computation to the CP site by rewriting the queries into ways 

that enable the CP to execute them over encrypted data. The architecture of this model is shown 

in Figure 3.6. We developed an algorithm for each query category (e.g., select, join, union, 

intersection, etc.) to allow the CPs to execute such query categories over encrypted tuples. We 

used our encoding scheme, presented in section 3.5, to create BVs. However, instead of storing 

the BVs locally at the QM, we migrated them to the CP. On the CP side, the encrypted table 

 

Figure 3.6  BVSAC Architecture. 
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contains an additional column (reference column) to store a BV for each tuple. The data in the 

reference column is a BIT(n), where n is the number of bits. We are not concerned about the growth 

of the BVs because they are in bits stored in the Cloud. Because the maximum number of bits that 

can be stored in an attribute of type BIT is 64 bits, we need more than one attribute to store bits. 

Later, when it comes to translating the query, the QM can take the bits position and find the 

remainder of the modulo 64. So, when the bit position is 91, then 91 mod 64 =27, which implies 

that the new bit is located in the second bit’s attributes at position 27.  

Even though it is difficult for an adversary to infer the data distribution or the possible 

values of a column from the BVs, we encrypt the tables’ names and the headers’ sensitive columns 

using a deterministic encryption algorithm (AES) in which the ciphertexts for each plaintext are 

always identical. For example, the attribute “Students-Rank” contains a limited range of values 

like senior, grad, junior, etc. An attacker might be able to infer possible values, although they are 

randomly encrypted with AES-CBC (which always produces different ciphertexts for a plaintext). 

Having more than one ciphertext share the same prefix is not a concern because the adversary 

cannot get the plaintext unless he obtains the secrete key (sk). In this case, the sk is not passed to 

the cloud server.  

For example, we want to encrypt the table of graduate students, as shown in Table 3.2. Using the 

owner’s sk, the QM encrypts the table name and the names of sensitive columns using AES-DET. 

It then creates a new table at the cloud server. Using the PT presented in Figure 3.7 and our 

encoding algorithm described in section 3.5, the QM encodes the tuples into bit vectors (BVs).  

The outsourced encrypted table is similar to Table 3.3. Note that the encrypted table has an index 

column in which each index number is a part of each row’s initialization vector (iv)). To show 

how a query is processed using this system, assume a user submits the following query:  
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Table 3.2 Graduate students 

ID Name Rank Visa type Department 

110 Alice freshman F1 Computer science 

111 Sara senior J1 Computer engineering 

112 John junior None Information system 

113 Ryan Sophomore J2 Math 

 

“select name from Graduate_students where Department = “Computer Science” 

The QM handles the query as follows: 

1) The QM encrypts the name of the table and the sensitive columns’ headers using the sk of 

the table’s owner and obtains the ciphertexts as below: 

CTA =  EAES-DET (“Graduate students”, sk) 

CTB =  EAES-DET (“Name”, sk) 

2) The QM searches the PT to find the bits’ positions, then rewrites the query as:  

                    “select CTB from CTA where reference&32 > 0” 

3) The cloud server returns only the encrypted tuples that have the bit at position 32 (25) = 1.  

 

 

Figure 3.7  The PT of Table 3.2 
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Table 3.3 The encrypted graduate students table 

EAES-DET (“Graduate students”, sk), encrypted version of the outsourced graduate students table. 

Note that the headers of the columns are encrypted using AES-DET where ctn= EAES-DET (“Name”, 

sk), ctr= EAES- DET (“Rank”, sk), ctvt= EAES- DET (“Visa type”, sk), ctd= EAES- DET (“Department”, SK). 

Index ID ctn ctr ctvt ctd Reference 

01 110 *&^ *_^% */d ^%^H 10001000010000100000 

02 111 %^& /+$ &^/ &&%$ 00010100000100010000 

03 112 )(# %$/* +-*& )*#R 01000010000001001000 

04 113 $#! !@~K */f @$%* 00100001000010000010 

 

3.6.2.2 Condition Rewriting 

To allow the cloud server (CS) to search encrypted data, the QM must rewrite the query conditions 

in ways that allow the CS to execute the queries over encrypted tables. This translation process is 

a mandatory step before executing any query in any category. The QM rewrites the queries based 

on the stored (PT) of the table(s) involved in the query. As in [10], there are three conditions: 

1) A condition is containing a column and a value. 

2) A condition is containing only columns. 

3) Both 1 and 2.  

In both Type 1 and Type 2, we have five possible operators {>, <, =, ≥, ≤ } while in Type 3, we 

have three operators {V, ⌐, ꓥ}. In Type 1, the QM parses the query to get the table name, attribute 

headers, and values. After that, the QM finds the bit’s positions that represent the PDi under which 

value v falls. If the operation is “=,” the QM replaces values with its corresponding bit position. If 

the operator is “≥” or “>,” the QM locates the positions of all PDs that are less than v. Hence, the 

QM rewrites the query by replacing v with the positions separated by OR, removes ( “>” or “≥”), 

and adds “=” instead. For example, we have a table T, and it has a salary column attribute 

partitioned into three PDs as {(1000-5000), (5001-9000), and (9001-12000)}. Let us say that the 

partitions are mapped to the 32, 16, and 8, respectively. Assume that the user sends a query to fetch 
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any tuple in which “salary > 8000.” Then, the condition of the query after translation is “reference 

&16=1 OR reference &8=1.” We address the operations (“≤” or “<”) in a similar way as with “>” 

or” ≥.” However, we take the PDs ≤ v.  

In Type 2, for every table involved in the condition, the QM identifies the bits’ positions 

mapped to all PDs of the attributes A. If the operator is “ =,”  the QM rewrites the query by 

substituting the attributes’ headers with pairs of the PDs’ separated by the OR operation (pair1 ˅ 

pair2 ˅ pair3 …). For example, (PDi from attribute A, ꓥ PDi from attribute B, where PDi=PDj). 

To illustrate this, review Table 3.2 and assume that we have another table called (students info 

table), and both tables share the same PT as in Figure 3.8. Suppose the condition is “where 

GraduateStudents.name = students_info.name”. Then, let us say that: 

CTA=  EAES-DET (“graduate students”, sk)  

CTB =  EAES-DET (“students_info”, sk)  

Assuming that both tables were encrypted using the same sk, the translated query condition is as 

follows:  

“WHERE ((CTA.Reference&524288>0 AND CTB.Reference&262144>0) OR  

(CTA.Reference&262144>0 AND CTB.Reference&131072>0) OR 

(CTA.Reference&131072>0 AND CTB.Reference &65536>0)  OR 

(CTA.Reference&65536>0 AND CTB.Reference &32768>0))” 

We follow the same procedures if the columns are numeric, and the operators are in {>, <,  ≥,  

≤}. In Type 3, each condition can be one or more of the above two types separated by AND/ OR 

logical operators.  
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3.6.2.3 Basic Operations 

Insert statements, as in the previous model, enable this model to insert encrypted record(s). 

To perform the insertion, we follow the same steps in the BVM system. However, instead of 

appending the BV to the BVs matrix locally at the QM, we insert it as a value for the reference 

column. 

Select statements execution in this model is accomplished as follows:  

The QM gets the user’s query, rewrites it according to the tables’ PT, and sends the translated 

select query to the cloud server (note that the QM translates the clauses that involve only sensitive 

columns). Then, the cloud server executes the translated query and sends back the result (encrypted 

tuples for all candidate records). Now, the QM decrypts and applies the selection operation to filter 

unrelated data before returning the result to the user. We illustrated the process in the example in 

the previous sub-section. Algorithm 10 outlines the steps to be performed by the QM to execute 

the select statement. 

Algorithm 10: select 

1: Input < Table name, List of all columns, List of all data items di(s) > 

2: If none of columns ci mentioned in the query are sensitive 

3:     Forward the query to CSP 

4:       Decrypt encrypted data 

      Send result back to the user 

5: If all column(s) ci mentioned in the query are sensitive 

6:     For each data item di / value v being searched for under column ci 

7: Find the bit’s position that mapped to the partition domain PD that di falls under 

in the table’s PT. 

8: Rewrite the query and substitute values by bits’ positions. 

9: Send the translated query to CSP to retrieve candidate tuples (CTs) 

10: Decrypt CTs then implement select again to filter out unrelated records. 

11: Send result back to the user 
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To execute update statements, we use the select algorithm that is presented in Algorithm 

10 to fetch candidate encrypted records from the Cloud. Then, if the new updated value(s) belong 

to a different partition domain, the QM finds the exact record(s) and sends an updated query to the 

Cloud to update the encrypted record(s) and the bits.  

In delete statements, the QM uses Algorithm 10 to obtain the encrypted records from the 

Cloud. It then identifies the exact record(s) after decrypting the candidate records. Immediately, a 

delete query is issued by the QM to the Cloud to delete the encrypted records. 

The process for the alter query is similar to the first model. We use the partitioning tree 

(PT) to determine whether or not a column is sensitive. If the column is sensitive, the QM will 

identify the node and its children nodes. In other words, the QM finds the node numbers that 

represent bits positions of the encrypted column. Then, the QM issues an alter query to delete the 

bit positions from the reference column and the encrypted table. The QM then removes the node 

of this column and its children nodes from the PT. If a sensitive column is added, the process is 

reversed. The QM adds a node to the second level and adds its partitions as children nodes in the 

third level. It will then add n bits where n equals the number of new children nodes added to the 

reference column.  

3.6.2.4 Relational Algebra Operators 

3.6.2.4.1 Join  

To enable the proposed model to support the join operator, we must consider different cases for 

the join condition: 1) the join condition involves only non-sensitive columns, 2) the join condition 

involves only sensitive columns that have limited distinct values, and 3) the join condition involves 

sensitive columns that may have too many distinct values. The first case is straightforward because 
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the QM is required only to forward the query to the cloud database server (CDBS). Then, it 

decrypts the result and removes the duplication. 

In the second case, the QM uses the data structure DSs of the tables in the join condition 

to match the PDs of the tables. For example, we have two tables, T1 and T2. In Table T1, each PDj 

under a sensitive column SCi is joined with each PDj under a sensitive column SCi in T2 if and 

only if the PDj from T1 equals the PDj from T2. Note that the QM does this only for columns that 

are involved in the join condition.  

The third case is based on the range of PDs. If PDi has at least one common element, the 

QM joins the PDs from both tables and ensures that each PDi of the SC from Table T1 is joined 

with each PDi of the SC from Table T2. For example, assume the salary PDs in Tables  T1 are [PD1 

(10,000–15,000), PD2 (15,001–20,000), PD3 (20,001–25,000), and PD4 (25,001–30,000)], and in 

T2 are [PD1 (10,000–20,000), and PD2 (20,001–30,000)]. The QM joins PD1 from Table T2 with 

PD1, PD2 from Table T1 because PD1 of Table T2 contains elements from both PD1 and PD2 of 

Table T1, and so on. The QM then rewrites the query and sends it to the Cloud. The Cloud returns 

the join result to the QM, which decrypts only the columns involved in the join condition and 

checks whether the plaintexts satisfy the join condition. The QM decrypts the whole tuple only if 

the two values satisfy the join condition. Otherwise, the QM skips to the next tuple. We do so to 

eliminate unnecessary decryption processes. The QM eliminates duplicates after decrypting the 

whole result. Algorithm 11 shows the steps of the join operation. 

Algorithm 11: join  
1: Input < Tables names, List of all columns, List of all data items di(s) > 
2: If none of columns mentioned in the join condition are sensitive 
3:       Forward the query to CDBS 
4:        Decrypt encrypted data and Remove duplication 

       Send result back to the user 
5: If all columns mentioned in the query are sensitive 
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6: If the SCs have limited distinct values  
7: Join the bit’s position of each partition domain PDi of a SCk from table Tm with 

the equivalent PDi of a SCx from table Tn  
8:      If the SCs have range values  
9: Join the bit’s position of each partition domain PDi of a SCk from table Tm with 

each PDi of a SCx from table Tn if it has at least 1 common value. 
10: Rewrite the query and substitute columns’ names by bits’ positions separated by 

OR operation. 
11: Send the translated query to CDBS to retrieve candidate tuples (CTs) 
12: Decrypt CTs and remove duplication 
13: Send result back to the user 

 

3.6.2.4.2 Union 

To process union queries, we follow the same processes presented in the previous system for BVM.  

3.6.2.4.3 Intersection 

The intersection operation uses the same two conditions as the union operation. However, instead 

of retrieving all encrypted tuples of both tables, we extract only the tuples that are common to both 

tables. We must simulate the intersection operation because it is impossible to apply it over 

encrypted tuples. To do that, in the CDBS, we use the inner join between the two tables. The join 

condition is based on PDs that are not ranges because range-based PDs return more candidate 

tuples. The CDBS then executes a query to choose the tuples from Table A that exist in the join 

result. After that, the CDBS returns the joining result to the QM, which eliminates duplicates after 

the decryption process. For example, Table A and Table B have attributes (Name, Visa type, 

Rank). Then we perform the inner join operation in which the condition is visa type = visa type 

AND Rank= Rank). Note that, in the condition, we substitute the columns’ names with the 

positions of the corresponding bits to enable the CDBS to execute the operation. This substitution 

filters out too many uncommon tuples in the Cloud, resulting in fewer decryption operations by 

the QM. Algorithm 8 illustrates that processes. 
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Algorithm 12: intersection  

1: Input < Tables names> 

2: Find all common sensitive columns that are not ranges between the tables  

3: For each table Ti 

4: Find bits’ positions of PDs  

5: Initiates an inner join query where the joining condition is based on the equivalence 

of the bits obtained from step 4 for each table. 

6: Send the query to CDBS 

7: Decrypt the result of join. 

8: Implement distinct over decrypted data to Remove duplication 

9: Send result back to the user 

 

3.6.2.4.4 Difference 

To invoke the difference operator, we follow the same procedures as in the BVM system.  

3.6.2.4.5 Duplication Removal 

To remove the duplication, we follow the same steps as the BVM system.  

3.6.2.4.6 Aggregate and Sort 

In this operation, we have two cases. First, the condition clause is based on column(s) in which its 

partitions domain PD values are not ranges. In this case, the CDBS efficiently implements the 

aggregation operation over encrypted data and sends back the result to the QM, which needs only 

to decrypt the result and send it back to the user. Note that the QM may not implement the 

aggregation operator again over the decrypted data because the candidate tuples retrieved from the 

CDBS are the exact query result.  

For example, consider Table 3.2,  Table 3.3, and Figure 3.7.  A query select count(*) from 

GraduateStudents where department = “Computer science”;  is translated to “select count(*) from 

EAES-DET(“Graduate students”, SK) where reference &32 >0”. It returns only the number of tuples 

that satisfy the condition because the condition is based on the partition domain “computer 
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science” that is not a range of values. The second case is the condition clause, which is based on 

column(s) in which its partitions domains’ values are ranges. In addition to the operations in the 

first case, the QM implements the aggregation operator again over decrypted candidate tuples. The 

reason is that candidate tuples have tuples unrelated to the query because the PDs are ranges. In 

the normal operation, the whole calculation is done at the QM. However, we minimize the range 

of encrypted records retrieved from the CDBS by only those that satisfy the condition clause of 

the average query. Algorithm 13 illustrates these steps. 

 

To enforce sort operators over encrypted data, we can first make the cloud server filters 

out unrelated records according to the PDs of the PT. Then the QM decrypts the returned sorted 

result from the Cloud and executes the sort operator over them again. The sorting computation 

performed at the QM before returning the final result to the user and after retrieving candidate 

tuples is significantly small because the CDBS sends back only those candidate records that fall 

under a specific partition domain(s). However, the CDBS will return a group of records that are 

Algorithm 13: Aggregation operator 

1: Input < Tables names, List of all columns, List of all data items di(s) > 

2: If none of columns mentioned in the aggregation query are sensitive 

3:          Forward the query to CDBS 

4:               Decrypt encrypted data and Remove duplication 

              Send result back to the user 

5: If all columns mentioned in the query are sensitive 

6: Reconstruct the query by substituting data items/ values by the bits’ positions that 

mapped to the PDs that contain data items.  

7:    Send the query to CDBS 

8: If the SCs in the aggregation query are not ranges 

9:        Decrypt the result  

10:        Send result back to the user 

11: If the SCs in the aggregation query are ranges 

12:        Decrypt the result  

13:        Execute aggregation operator again over the result 

14:        Send result back to the user 
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not sorted except by the partition domain. For example, to retrieve tuples that have an income 

ranging from 50k to 60k, the cloud server returns all encrypted records that have income within 

this range unsorted. Therefore, the QM sorts them after the decryption process.  

3.6.2.4.7 Project  

To execute the project operator, we follow the steps for the BVM system.  
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3.6.3 Bit Vectors as an Independent Table (BVSIT) 

In this section, we discuss the model that uses bit verctors as a separate table. Some passages, 

figures, tables, and algorithms presented in subsections (3.6.3.1 and 3.6.3.2) have been quoted 

verbatim from our published work in [61]. 

3.6.3.1 Model Description 

In this prototype, we store the bit vectors (BVs) in an independent table in the cloud server. We 

add an index column to both the encrypted table and the independent table (i.e., the bits table), in 

which the index of each record in the encrypted table equals the index of the corresponding record 

in the bits table. To ensure that the bits table does not leak any data from bits representations, we 

encrypt the indices in the bits table to ensure that an attacker cannot determine what record in the 

bits table is intended for the encrypted record x in the encrypted table. Furthermore, we perform 

record-based shuffling in the bits table so that the records will not have the same order as the main 

encrypted table. Figure 3.6 shows the architecture of the proposed model. 

For security in the BVSIT, data in all sensitive columns are encrypted with a symmetric 

encryption algorithm (AES-CBC). This version is a randomized encryption algorithm in which the 

plaintexts have different ciphertexts. By doing this, we enforce maximum security and make this 

model resistant to various attacks such as chosen plaintext attacks and inference attacks. In 

addition, having the bits table stored in the Cloud without index encryption could lead to data 

leakage and enable the attacker to identify which record in the bits table represents a specific 

encrypted record in the main encrypted table(i.e., record linkage attack). The attacker could do this 

by matching the indices in both tables. To avoid this scenario, we encrypt the index column in the 

bits table using AES-DET and perform record-based shuffling in the bits table. This encryption  
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ensures that the attacker cannot infer which record in the bits table represents the encrypted record 

x. 

3.6.3.2 Basic Operations 

Before explaining how to support basic SQL operations in this model, consider the employees’ 

table presented in Table 3.6. Given the PT (shown in Figure 3.10), the bits table is shown in Table 

3.4, and the encrypted table is shown in Table 3.5.  

In select statements, we use the PT to rewrite the select queries appropriately so that the 

cloud server can execute SQL queries over the encrypted data with no need to modify the 

functionality of the database system. Because the PT is stored locally in the QM, the QM will 

conduct a quick lookup to determine whether the attributes in the select conditions are sensitive. 

Then, the QM will issue two queries. The first query retrieves the encrypted indices of all candidate 

tuples for the  select query from  the bits table.  The second query retrieves the encrypted tuples  

 

Figure 3.9  BVSIT Architecture. 
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Table 3.4 Bits table of Table 3.5 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 

CT(3) 0 1 0 1 0 0 1 0 0 1 0 0 0 

CT(4) 0 1 0 1 0 1 0 0 0 0 0 1 0 

CT(1) 1 0 0 1 0 0 1 0 0 0 1 0 0 

CT(2) 0 0 1 0 1 0 0 1 0 0 0 1 0 
 

Table 3.5 Encrypted employees table 

 

Index ID Name SSN Rank Salary 

1 ^%# )@( $@^# @^#S FS^@ 

2 (#* ^#* )@H2 +_@ %@*& 

3 (#( (#& $@% @^#@ @%TW 

4 )^@ )^#H !@M *@^# +_)#FQ 

 

Table 3.6 The employees' table 

ID Name SSN Rank Salary 

01 Alice 12701 Secretary 30,000 

02 Ryan 25678 Admin 60,000 

03 Mark 46932 Secretary 29,000 

04 John 42213 Manager 55,000 
 

 

(whose indices were decrypted after being retrieved from the previous query) from the encrypted 

table. For clarity, consider Table 3.4, Table 3.5, and Figure 3.10 for the following query:  

select name from employees where rank = “manager” or salary = “60,000”. 

Then, the query is processed as follows:  

 

Figure 3.10 The Partitioning Tree (PT) of the employees table. 
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1) The QM uses the PT of the employee table to locate the nodes representing the partitions 

under which the values fall (i.e., “manager” and “60,000”). 

2) According to the PT, “manager” is mapped to the node of ID = 6, and “60,000” falls under 

the values represented by the node ID = 12.  

3) The query is translated to another query to select the index from the bits table, where “6” = 

1 or “12” =1; this enables the CSP to return any index that has a value of 1 in either column 

6 or column 12.  

4) The QM will retrieve the encrypted indices (CT (4) and CT (2)) and decrypt them to obtain 

the plain indices (2,4). 

5) A new query is issued to retrieve the encrypted tuples from the main encrypted table. The 

query is: 

select name from encrypted_employees where index in (2,4). 

6) The QM will decrypt the data and ensure that rank = “manager” and salary = ‘60,000’ before 

returning the result to the user.  

The same process is followed if the condition has either more or fewer clauses. As in step three, 

the operation “AND” and “OR” remain unchanged in the query condition. 

To make this model sufficiently flexible and practical for all types of users, insert is 

enabled to support insert queries. Before the encryption process begins, the QM uses Algorithm 1 

to encode the inserted record(s) to the bit vector(s). The insert query leads to the sending of two 

insert queries to the Cloud, one to insert the encrypted record into the encrypted table and the other 

to insert the bits in the bit vector into the independent bits table. To do the shuffling, the system 

will occasionally and automatically retrieve the entire bits table, re-encrypt the indices, and 

perform a column-based, then record-based, shuffling before outsourcing the table once again. The 
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reason to re-encrypt the indices is that if they are not re-encrypted, the cloud provider can easily 

find the recently inserted record(s).  

In update queries, the QM determines if the new value is intended for a sensitive column 

by conducting a lookup of the PT. The select rewriting method is used to accomplish this step so 

that only the candidate-encrypted tuples of the update query are retrieved. Following this, the QM 

finds the exact record(s) after the decryption process and issues two queries to update both tables 

in the Cloud (i.e., the encrypted table and the bits table). For example, we want to update Mark’s 

salary (the third record in Table I) to 50,000. The QM uses a select operation to retrieve Mark’s 

record and finds that the new salary falls under the node “12” that is mapped to column “12” in 

the bits table. The QM will then issue two queries to update the new salary (i.e., the ciphertext of 

the new salary value) in the encrypted table and update the value of column “10” to 0 and column 

“12” to 1. 

For the delete query, the QM uses the select method described earlier to retrieve the 

candidate-encrypted records from the Cloud, decrypt them, and then find the required record(s). 

The query is processed as follows: 1) The QM sends a select query to obtain the encrypted indices 

of the candidate records from the bits table that is outsourced to the Cloud. 2) The QM decrypts 

the encrypted indices and issues another query to retrieve the encrypted tuples from the main 

encrypted table; the query will be a select query based on the indices obtained from the first query. 

3) The QM will decrypt the encrypted tuples and filter the tuples that are unrelated to the query. 

4) The index of any record related to the delete query will be kept by the QM, which will then 

issue two deletion queries, one to delete the record from the encrypted table and the other to delete 

the corresponding record from the bits table. 
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The alter query is applied in the following process. When deleting a column, we first search 

the second level of the corresponding PT to determine whether the column is sensitive (this step 

occurs locally at the QM). In essence, the query is forwarded to the Cloud if the column is non-

sensitive. Otherwise, the QM finds the IDs of all children nodes (i.e., sub-nodes at level 3) of the 

node that represents the sensitive column. Then, the node and its children nodes are deleted. 

Following this, the QM issues a query to delete all columns that represent the deleted partitions 

from the bits table in the Cloud. It then sends another query to delete the encrypted column from 

the Cloud. Note that we do not focus on updating the IDs of the level-three nodes at the PT. We 

can keep their IDs, and we eliminate any unnecessary computations that could result from updating 

them. To add a column, we follow the same deleting procedure but in the opposite way. We add a 

node at the second level of the PT and then add sub-nodes that represent the partition domains of 

the column. The n columns are then added to the bits table at the Cloud where n = the number of 

sub-nodes recently added to level three of the PT. We also add a column to the encrypted table to 

store the encrypted data of the newly added column. 

3.6.3.3 Relational Algebra Operations 

3.6.3.3.1 Join  

As with the BVM system, implementing join over encrypted data without decrypting data or 

modifying the functionality of the DBMS is a difficult task, particularly in our case where we use 

a randomized encryption algorithm to encrypt sensitive data. However, to enable the cloud 

provider to execute join without decrypting the data, we developed a strategy to accomplish this 

while leaving most of the computation to the Cloud. In the following section, we explain how we 

process the join operator.  
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The QM gets the join query and parses it to obtain the name of the tables and the sensitive columns. 

Note that we have the same cases as the previous model. If the join condition involves only non-

sensitive columns, the query is simply forwarded to the Cloud without any modification. 

Otherwise, the QM must perform a quick search to the partitioning trees (PTs) of the tables 

involved in the join query to find which partitions of the joining columns from both tables can be 

joined. To accomplish that, the QM rewrites the join query in a way to enable the CP to join any 

partition pi of the SC from Table A with any partition pj of the SC from Table B if and only if the 

pi equals pj or has common elements with pj. We do not want to miss any record. However, we 

want to eliminate any unrelated records from both tables. After that, the QM rewrites the query 

accordingly to fetch the encrypted indices from the outsourced bits tables of the joined tables. The 

QM then issues n queries where n is the total number of partitions in the joining SCs from both 

tables. So, if the joining SC in Table A has three partitions and joining SC in Table B has five 

partitions, the QM issues eight queries to the Cloud to retrieve the encrypted indices from the 

corresponding bits tables. After that, the QM decrypts the encrypted indices retrieved by each 

query and adds them to lists. Based on the lists obtained from the previous step, the final join query 

is then formed to fetch the candidate encrypted tuples from the main encrypted tables and send it 

to the cloud server.  

For example, we want to joint two tables, A and B, by Visa Type. For simplicity, we assume 

the two tables have the same PT and that the partitions of the Visa Type attribute are (F1, F2, J1, 

J2). In the bits table of Table A, named BOA (bits of A), the columns that represent Visa Type 

partitions are 5, 6, 7, and 8. In the bits table of Table B (named BOB), the columns are 2, 3, 4, and 

5. To execute the join query, the following queries are sent to the Cloud to retrieve the encrypted 

indices from bits tables:   
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  Select indx AS A from BOA where ‘5’ =1;   Select indx AS B from BOB where ‘2’ =1.  

Select indx AS C from BOA where ‘6’ =1; Select indx AS D from BOB where ‘3’ =1. 

Select indx AS E from BOA where ‘7’ =1; Select indx AS F from BOB where ‘4’ =1. 

Select indx AS C from BOA where ‘8’ =1; Select indx AS D from BOB where ‘5’ =1. 

Note that we avoid the joining query (e.g., select BOA.indx AS A, BOB.indx AS B from BOA, 

and BOB where BOA.5 = 1 & BOB.2= 1) because it will slow the process. Our goal is to speed 

up the query processing time. However, to minimize the impact of the communication delay, we 

can send all the queries together as one string (i.e., as one prepared statement) to the Cloud. 

Therefore, the best way to achieve our goal (fast query processing) is by using the queries 

presented above. After completing this step, the QM defines eight lists, each of which contains the 

decrypted indices from a specific query (i.e., list 1 will have the decrypted indices retrieved from 

A, list 2 will include indices from B, and so on). The QM then rewrites the query in the following 

format: 

 

 

 

 

After the join is completed in the Cloud, the QM decrypts the result (only decrypting the joining 

columns and enforcing the condition, if satisfied; then proceeding to decrypt the remaining fields, 

otherwise skipping to the next tuple). The QM then removes any duplication before sending the 

result back to the user (using the same process followed in the previous two models). 

 

SELECT A.Name, B.name from (A inner join B on (A.indx in (elements of list 1) and 

B.indx in (element of list 2) OR A.indx in (elements of list 3) and B.indx in (element of list 

4) OR A.indx in (elements of list 5) and B.indx in (element of list 6) OR A.indx in (elements 

of list 7) and B.indx in (element of list 8)); 
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3.6.3.3.2 Union  

To implement the union operation between two or more tables, we need to fetch all encrypted 

tuples from all the unionid encrypted tables, then decrypt them and apply the distinct operator to 

remove the duplication. Note that we assume both tables were encrypted using the same secret key 

(sk). We follow the same processes as in the previous model (BVM) using an algorithm similar to 

that in the BVM model. 

3.6.3.3.3 Intersection 

The intersection operation is similar to the intersection operation in the BVM model. However, we 

intersect the bits tables before proceeding to intersect the encrypted tables in the Cloud. We use 

the join operation to simulate the intersection process and filter out uncommon tuples from the 

tables involved in the intersection operation. We follow the same procedures used for the 

intersection operation, as in the previous model.  

3.6.3.3.4 Duplication Elimination, Aggregation Functions, and Project 

These operators are treated similarly to those in the BVM model. 
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4 Experiments and Evaluation 

In the previous chapter, we explained in detail the proposed models, and for each model, we 

presented the developed algorithms to execute different relational algebra operators. As stated 

earlier, this dissertation aims to implement, evaluate, and compare the performance of the proposed 

prototypes for different types of statements using various metrics (e.g., the execution delay of 

queries, space requirements at both the QM and the cloud server, and the percentage of the 

computation overhead at the QM versus at the cloud server).  

Furthermore, we compare our proposed prototypes to three systems: CryptDB [2], the one 

block-based technique (OBT; i.e., each row is encrypted as one block) [10], and the column-based 

fragmentation technique (CBF; i.e., each sensitive column is migrated to a cloud; read [9] for more 

details). In the discussion subsection, we make a comprehensive comparison between the proposed 

systems and the competing systems used in the evaluation. In addition, we recommend which 

model is suitable for single users and which model is ideal for multi-user systems after 

investigating the results of all the models.  

4.1 Experimental Setup  

We used a PC with 6GB of RAM, 1TB HDD, and a Core i5 processor with 2.8 GHz to conduct all 

the experiments for all the systems (BVM, BVSAC, BVSIT, OBT, CBF, and CryptDB). To 

implement the functions of the QM in the proposed models, we used Java to simulate each task as 

a java class or method. MySQL server was used on the user’s machine and we used Java Database 

Connectivity (JDBC) as a connector from Java to the MySQL engine. All the experiments were 

performed on the local machine; therefore, the communication delay variable was removed from 

all the reported delays.  
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We implemented the OBT and CBF because their implementations are not available online 

unlike CryptDB, which is available for public use on GitHub [62]. While implementing the CBF, 

we adopted the implementation in [63] to encrypt numerical values in a way that preserves the 

order (OPE) and in [64] to support the additive homomorphic property. In our models, we used 

the randomized version of the AES-CBC to encrypt sensitive data. In our systems, each tuple’s 

data are transmitted to the encryptor class as soon as the encoding step has been accomplished. 

The encryptor and decryptor classes call numerous cryptographic packages, including the 

“javax.crypto” package offering the classes and interfaces for crypto tasks; more information can 

be found in [65], and the table owner’s secret key (SK) and the pre-generated initialization vectors 

(IVs) can be used to encrypt or decrypt each tuple (each tuple needs a unique IV as explained in 

Chapter 3). The SK is 256 bits, and each IV is 128 bits (the IV size equals the block size in the 

AES). To store the bit vectors (BVs), we stored them locally at the QM in the first model, and we 

wrote them in a text file for future use (in the future, the QM just reads the BVs set from the file.txt 

and loads them to the data structure). In the other two models, we migrated the set of BVs to the 

cloud. 

4.2 Datasets and Partitioning Tree 

We randomly generated four tables. We defined a list of values for each attribute and let a java 

program constructs tuples by randomly picking values from the lists. The sizes of the tables (i.e., 

the number of records) were 10k, 20k, 50k, and 100k records. We had 24 attributes in total for all 

tables, and we considered all of them, except ID attributes, as sensitive attributes. In our study, 

although we could use the proposed models with small tables, we focused on the large tables since 

it is easier to test the penalties introduced by each scheme. Table 4.1 presents the structure of the 

main tables. For each table, we created a table in the cloud according to the created algorithm for 
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each model. We built a partitioning tree (PT) for all the tables based on Table 4.2. We generated 

the tables so that they were fairly distributed to the PT. For example, for the attribute (Name), not 

all the records were mapped to the first partition (node #1) under the name predecessor; instead, 

approximately 33% of the records were mapped to the first node, 33% assigned to the second node, 

and 34% assigned to the third node. We considered the same technique for the rest of the attribute 

partitions. 

 

Table 4.1 The structure of the original (plain) students' table 

Name of the Attribute Datatype Storage Required (bytes) 

ID int 4 

Name varchar 20 

SSN int 4 

Visa_Type varchar 6 

Salary int 4 

Department varchar 20 

 

 

Table 4.2 The sensitive attributes and the number of partitions for students table 

Attribute Sensitive? 
Number of 

Partitions 

ID No 0 

Name Yes 3 

SSN Yes 2 

Visa_Type Yes 4 

Salary Yes 5 

Department Yes 6 

Total number of partitions 20 



62 

 

4.3 Evaluation  

The evaluation consisted of the following:  

1) Testing and evaluating basic database operations (create, select, insert, update, and delete 

statements) execution cost  

2) Testing and evaluating aggregation operations (sum, average, count, max, and min) 

execution cost  

3) Testing and evaluating joining and setting operations (join, union, and intersection) 

execution cost 

4) Identifying space requirements for each system 

For each part, we considered different factors that play a role in the efficiency, such as the 

number of clauses in the query conditions, what the logic operation (AND/OR) is in the condition, 

and what encrypted attributes to retrieve for the tuples. In the discussion, we explore the factors 

that make the proposed models more efficient and what makes them inefficient. In addition, we 

discuss the impact of the PT size on the efficiency of the proposed models.  

4.3.1 Execution Delay Comparison  

4.3.1.1 Original Database Encryption and Insert Statements 

 In the proposed models, the original database encryption step involves parsing records, generating 

indices, building BVs, encrypting sensitive data, and inserting the encrypted data into the 

encrypted table in the cloud server. In Table 4.3, we compare the time taken by each system to 

encrypt each table. As seen in Table 4.3 and Figure 4.1, the BVSAC experienced the least 

encryption and insertion delays among all systems because the QM does not need to store nor 

manage the BVs locally at the QM as in the BVM, which is why we see that the delay in the BVM 

is higher than the BVSAC. The second fastest model is the OBT, which encrypts every tuple as 

one block and adds M columns, where M is the number of sensitive columns, to store the integer 
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values of the identifiers. On the other hand, the CBF experienced the highest delay since the 

encryption process required N insertion (N = number of columns + 1) into N different tables in 

different cloud servers. The second slowest model is CryptDB in both the creation and insertion 

processes due to heavy computation results from the onion layer encryption. In summary, the 

proposed models are faster than the CryptDB and CBF models in both the creation and insertion 

processes.  

 

Table 4.3 The delay of the original database encryption comparison among all systems in 

minutes 

N.R BVM BVSAC BVSIT CryptDB CBF  OBT 

10k 12 11 25 44 55 13 

20k 26 23 48 66 112 24 

50k 65 54 115 158 291 55 

100k 147 112 223 308 578 113 
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Figure 4.1 The delay comparison of insert statements for all systems, in milliseconds 
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4.3.1.2 Basic Statements 

In this section, we examine the delay in executing different basic statements (select, update, and 

delete) for all systems. Furthermore, we focus more on the select statements because they are the 

main operations in most database applications. In addition, most state-of-the-art research focuses 

on select for the same reason.  

4.3.1.2.1 Experiment 1  

In this experiment, we calculated the average percentage of fetched encrypted tuples from the 

encrypted tables for the proposed models. We also studied how the number of clauses in the query 

condition can contribute to narrowing the range of the fetched set. Figure 4.2 illustrates how our 

models dramatically drop the average retrieved encrypted candidate records for select statements 

to about 31% when only one clause is present in the query condition, while all the models fetched 

the least percentage when the condition clause had three clauses. On the other hand, without using 

any of the proposed prototypes to manage the randomized encrypted database (i.e., no indexing), 

we must retrieve the entire outsourced encrypted table.    

 
 

Figure 4.2  The percentage of retrieved encrypted tuples for all proposed models 
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4.3.1.2.2 Experiment 2 

As mentioned in Chapter 3, we aimed to reduce the crypto computation at the QM when possible 

to avoid computation overhead, which speeds up the query execution time. To accomplish this, we 

only decrypted the column values that were present in the query condition before proceeding to 

decrypt the encrypted values of the whole record. For the sake of clarity, we have, for example, 

the following select statement: 

select * from students WHERE name = ’Alice’ 

Using any of our proposed models, as depicted in Figure 4.3, we only fetch less than 35% of the 

entire set of the outsourced encrypted records. This depends on how the name column was 

partitioned beforehand; in our case, we had three partitions, and the more partitions that are 

defined, the lower percentage we obtain and vice versa. However, we do not immediately decrypt 

all the encrypted data of the fetched set. Instead, we decrypt only the name values to determine if 

the name is equal to “Alice” (i.e., we start by decrypting the column mentioned in the query 

condition). If the name equals “Alice,” then we decrypt the entire record; otherwise, we skip to the 

next one and so on. In Figure 4.3, we can see that from the whole fetched encrypted set, the average 

of the entirely decrypted rows was less than 24% of the fetched rows. Accordingly, our models are 

efficient since we are not only narrowing the range of retrieved outsourced data, but we are also 

eliminating the unnecessary computation (crypto computation) whenever possible. 
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Figure 4.3  Average percent of entirely decrypted tuples 

 

4.3.1.2.3 Experiment 3 

4.3.1.2.3.1 Select (*) Latency 

In this study, we focused on select statements since they are the widely used statements in the 

database systems. As explained in the previous chapter, the select statement is also part of the most 

proposed relational algebra algorithms (e.g., delete and update). Therefore, we deeply examined, 

tested, and evaluated the select statements with a different number of clauses and both cases of 

select single column values, such as, select name and select all (i.e., select *). Furthermore, as a 

part of this experiment, we compared the performance of the proposed models against the 

CryptDB, OBT, and CBF systems.   

Table 4.4 presents the total runtime for all systems when executing select statements to 

retrieve single column values. The runtime we measured was the time from query parsing until the 
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final query result was formed in milliseconds (ms). In the first case, we measured the average 

runtime when the condition clause of the queries features only one clause. The delay is the average 

delay of executing a select statement on each sensitive column. Furthermore, we tested select * 

statements when the condition had two and three clauses. Figure 4.4, Figure 4.5, and Figure 4.6 

present the total execution time of select * statements for each model. As seen in the figures, the 

BVSAC averaged the shortest runtime of all the proposed models for all cases (i.e., single clause 

and multiple clauses) when the database sizes were 50k records or more. This result means that 

the BVSAC performs better, in term of execution time, with larger databases and has a higher 

start-up time than the other proposed models, which is why it is slower than some other systems 

for processing databases with 20k and 10k. Another factor that speeds up query processing is that 

we benefit from the bitwise operations, provided by MySQL, in the cloud because we store the 

bits as an independent column along with each encrypted record. Furthermore, we eliminated the 

manipulation of the indices at the QM in contrast to the BVM and BVSIT. For smaller databases 

(10k or less), the BVSIT experienced the fastest execution time of the proposed systems because 

the bitwise operations were performed in a column-based manner, allowing for rapid searching 

over the bits table; however, when databases grew, the performance of the BVSIT downgraded as 

the amount of the decrypted indices at the QM grew (i.e., the indices fetched from the bit table). 

The BVM model is the second fastest for databases with more than 50k rows, and the main factor 

that affects the performance of the BVM is the time for loading the BVs from the hard drive to the 

main memory and then searching them. Forming the final lists of the candidate record indices is 

another factor that affects the delay in this model.   

In terms of comparing the proposed prototypes with the other approaches, as seen in Table 

4.4, Figure 4.4, Figure 4.5, and Figure 4.6, the proposed models were faster than all the competing 
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systems except for the OBT for select statements with two or three clauses. The OBT experienced 

the least delay since the amount of decrypted data was less than in our approaches (all values are 

stored as one block leading to fewer bytes to decrypt for each row). Cell-based encryption produces 

longer ciphertexts (i.e., the blocks less than 16 bytes will be padded) and then higher decryption 

overhead. However, when the select query is not to select all (select *), our models perform better 

than the OBT because we eliminate decrypting whole rows in our models, whereas the OBT does 

not. When the query condition involved a single clause, the CBF system experienced delays 

comparable to our systems, but when the number of clauses in the select statements was two or 

three, its delay was almost double that of our system’s delays since two or three tables are searched 

to form the final select query (the query that retrieves the records from the main encrypted table in 

the master cloud). Finally, the CryptDB incurs the highest delay among the systems as a result of 

the decryption of the onion layers overhead. The delay also increases when the statement condition 

has two or three clauses because more onion layers are required to be slipped off in different 

columns. 

Table 4.4 Delays in milliseconds of executing (select *). 

The average required records are 8% for one clause, 5% for two clauses, and 3% for three 

clauses. 
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(a) Average total processing time for all models, including CryptDB. 

 

 

(b) Average total processing time for all models, excluding CryptDB. 

 

Figure 4.4 The delay comparison of executing select all statements (select *) for all models 

in ms when the query condition contains only one clause. 
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(a) Average total processing time for all models, including CryptDB. 

 

 

(b) Average total processing time for all models, excluding CryptDB. 

Figure 4.5 The delay comparison of executing select all statements (select *) for all models 

in ms when the query condition contains two clauses. 
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(a) Average total processing time for all models, including CryptDB. 

 

 

 

(b) Average total processing time for all models, excluding CryptDB. 

 Figure 4.6 The delay comparison of executing select all statements (select *) for all models 

in ms when the query condition contains three clauses. 
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4.3.1.2.3.2 Select (col) Latency 

Table 4.5 presents the total query processing time of implementing select statements with one, 

two, and three clauses in the WHERE condition to retrieve a single column’s values instead of 

select *. To make a simpler comparison, in Figure 4.7, Figure 4.8, and Figure 4.9, we plotted the 

numbers from Table 4.5. Examining the figures reveals that the performance of the proposed 

models increased in the same order as implementing select *. However, our models tend to be 

slower than the OBT for executing select * over different database sizes, but with single-column 

selection, our models except the BVSIT beat the OBT when executed over different dataset sizes. 

The BVSIT performs better than the OBT for the database of 20k or fewer records but not for more 

extensive databases (i.e., 50k and 100k records) because the number of decrypted indices fetched 

from the bits table grows, which adds more computation overhead to the QM.  

Table 4.5 Delays in milliseconds of executing (select single column). 

The average required records are 8% for one clause, 5% for two clauses, and 3% for three clauses. 
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(a) Average total processing time for all models, including CryptDB. 

 

 

 

(a) Average total processing time for all models, excluding CryptDB. 

Figure 4.7 The delay comparison of executing select statements to retrieve a single column’s 

value for all models in ms when the query condition contains only one clause 
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(a) Average total processing time for all models, including CryptDB. 

 

 

 

(b) Average total processing time for all models, excluding CryptDB. 

Figure 4.8 The delay comparison of executing select statements to retrieve only one 

column’s value for all models in ms when the query condition contains two clauses. 
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(a) Average total processing time for all models, including CryptDB. 

 

 

 

(b) Average total processing time for all models, excluding CryptDB. 

Figure 4.9 The delay comparison of executing select statements to retrieve only one 

column’s value for all models in ms when the query condition contains three clauses. 
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4.3.1.2.3.3 Throughput  

Throughput is defined as the amount of data transferred at a given time. By measuring the 

throughput, we can tell which system is more responsive to user’s queries when the requested data 

are increased since the end user is the one who will be affected by the system slowdown. To 

measure the throughput, we executed a set of queries to retrieve % 25 then %50 of the records 

from a table holding 100,000 records. Then, we measure the amount of plain data (records’ data 

after decryption) and divide it by the time taken by each system to deliver the required data to the 

user [66].  

Throughput =  
∑ unencrypted record′s size (in bytes)

n

k=0

Total time taken to deliver the data (MS)
 , where n= the total number of required 

records. 

As seen in Table 4.6, the proposed systems achieved a higher throughput when compared 

with CryptDB and CBF systems. Further, BVSAC achieved a higher throughput among the 

proposed systems in this research which makes it the best choice for end users who seek a faster 

responsive system. OBT has the highest throughput and that is because it requires the least bytes 

requirements among all systems to encrypt data.  

In Figure 4.10, we show the percent of the throughput for each system and we compare the 

systems with the throughput of MySQL when dealing with unencrypted data. To calculate the 

percent, we multiply the system throughput by 100 and divide it by the unencrypted throughput.  

 

Throughput percent = 
System′s throughput ∗ 100

Unencrypted throughput
 

By examining Figure 4.10, we can say that our systems achieved a reasonable throughput 

percent and as the amount of required data increased (up to 50% of the rows), the throughput 

dropped slightly and still outperform CryptDB and CBF.  
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Table 4.6 The amount of plain data in kB that each system can deliver to the user per 

second.  

 kilobytes per second (kB/s) 

BVM BVSAC BVSIT OBT CBF CryptDB MySql 

Requested rows = 25% 794 1083 778 1440 727 66 4720 

Requested rows = 50% 971 1221 947 1447 816 57 10114 

 

 

 

 

 

Figure 4.10 The percent of throughput of all systems compared with the throughput of 

MySQL when requesting unencrypted data. Note, the requested data are fetched by a select 

query from a table with 100,000 records.  
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which means selecting the required data and then issuing 100 insert statements in the first case, 

200 insert statements in the second, and so on. The BVSAC and OBT systems have a close update 

delay, 6,812 and 7,130 ms, respectively. However, in the OBT, the update process is risky when 

two or more substrings in the decrypted block match the updated value (i.e., any substring from 

the updated record that matches the new substring will be updated to the new substring). Thus, 

update in the OBT is not recommended. By zooming to the delays of the proposed models, the 

BVSIT is the slowest system because the update must be done in both the main encrypted table 

and the bits table, and it is the second slowest model. In addition, the BVM experienced a slightly 

higher delay than the BVSAC but still performed faster than the CBF, which is the third slowest 

model in this comparison. In CryptDB, the update cost is the highest of the compared systems. In 

summary, the BVSAC is the most efficient model for update statements.  

Figure 4.12 demonstrates the time taken by each model to delete different numbers of 

records (100, 200, 500, and 1,000 tuples) when the delete condition has only one clause. The delete 

process selects the required rows and then deletes them. The delete is efficient in all the proposed 

models because the delete is performed after executing the select operation to retrieve the needed 

tuples. Instead of sending a single query to delete each record, we maintain the index of the record 

and then issue one query at the end to delete any record of its index in the delete query, that is, 

delete from TABLE_NAME where index in ( ).  On the other hand, CryptDB is the slowest system 

to execute delete statements for the same reasons we mentioned earlier (i.e., onion layers 

decryption). 
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Figure 4.11  Comparison of the average delay of update statements for all models to 

update a number of existing tuples (100, 200, 500, and 1,000 tuples). 

 

 

Figure 4.12   Comparison of the average delay of delete statements for all models to 

delete a different number of tuples (100, 200, 500, and 1,000 tuples). 
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4.3.1.1 Aggregation Functions 

4.3.1.1.1 Experiment 5  

Table 4.7 and Table 4.8 list the average execution times of the aggregation operators’ (sum, 

average, count, max, and min) queries for the proposed prototypes along with the competing 

systems. All the aggregate queries executed in this comparison have one predicate (i.e., we did not 

execute the aggregate functions on the entire column’s values), and the average number of records 

that meet the aggregate condition in all the queries is approximately 6%. The cost resulted from 

the aggregate functions relying on the cost of select statements in the proposed models because 

first, the query is rewritten to fetch the required rows (e.g., “select rows where department = 

Business”), then while decrypting the result, the QM enforces the aggregate function if the query 

condition is met (refer to the aggregate algorithms of the proposed systems in Chapter 3). In the 

OBT system, the procedures we followed in the proposed systems were followed, but the whole 

encrypted rows were fetched, which results in heavier computation overhead at the QM. In the 

CBF and CryptDB, the encryption algorithm used to encrypt the numerical field to support the 

addition operation over the encrypted values is homomorphic encryption (i.e., the Paillier 

algorithm). The Paillier algorithm relies on multiplying the modular to produce the encrypted sum, 

which requires heavier computation than the proposed models. In the implementation of the CBF, 

we adopted the Paillier algorithm in [64] to encrypt the extended salary column; however, to 

execute the aggregate function, the indices of the rows in column A that meet the aggregate 

condition must first be retrieved from the corresponding table at cloud x that maintains the 

extended column A. Then, the aggregate query was rewritten to apply the aggregate function over 

the encrypted values of the records that their indices are in the query predicate. From both tables 

(Table 4.7 and Table 4.8), we can conclude that the proposed models achieved a faster execution 
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delay than the others for smaller databases, but for larger databases, the BVSAC is the winner, 

while the BVSIT starts to experience heavier computations, as stated in the previous experiment. 

CryptDB is the slowest model in all database sizes due to the intensive decryption operations.  

Table 4.7 Delay comparison in milliseconds of executing SUM, AVERAGE, AND COUNT 

functions. (only one predicate in the queries) 

 

 

 

Table 4.8 Delay comparison in milliseconds of executing MAX and MIN functions. (only 

one predicate in the queries) 

 
Average delay of MAX and MIN 

BVM BVSAC BVSIT OBT CBF CryptDB 

10k 112 123 109 208 147 878 

20k 201 217 237 289 208 1714 

50k 447 311 480 532 363 10762 

100k 741 468 858 815 647 20185 

 

4.3.1.2 Join, Union, and Intersection  

4.3.1.2.1 Experiment 6 

In this study, we compared the delay of the proposed prototypes for join and union queries. In join 

queries, we did not include the competing systems in this experiment because the join has not been 

implemented in CryptDB (as the author stated in [62]) and the CBF. Therefore, we excluded all 

the competing systems from this experiment, and we performed the experiment on tables with the 

specifications displayed in Table 4.9. 
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Table 4.9 Specifications of the joined tables 

Table size (number 

of rows) 

Number of rows matching 

the join condition  

500 100 

1000 200 

10000 1000 

 

We joined two tables by the equality of the encrypted ID, and their structures are in Table 

4.11 and Table 4.10 below. The ID column in both tables is partitioned into 10 partitions based on 

the last digit in the ID as (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9). Figure 4.13 demonstrates that the delay of 

the BVSAC is the highest, followed by the BVSIT, and the BVM has the least delay. The high 

delays in the join queries in all the proposed models are due to the nature of the join calculation 

and the amount of the decrypted data. Then, after enforcing the join condition (at the QM), the 

decrypted tuples were pushed into a LinkedHashSet to remove the duplication. In conclusion, 

although we experienced high join delays, we executed the join statements using the proposed 

systems over databases that were encrypted with a randomized encryption algorithm, such as AES-

CBC.  

Figure 4.14 demonstrates the average total time of processing the union queries of all the 

proposed systems. In all the proposed prototypes, the QM intercepts the union query and forwards 

it to the server without modification. Therefore, the cost presented in Figure 4.14 is the average 

delay of processing the union statements taken by all the models (we took the average execution 

time of all the systems since the delay of the union queries is roughly close for all the models). 

The delay we measured is from the time the QM intercepts the query until the final query result is 

formed. To remove the duplications, we pushed the decrypted tuples from both tables to a 

LinkedHashSet, which ensures no duplicated records exist. As seen in Figure 4.14, our models 

experienced a linear delay growth as the sizes of the tables increased. 
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In Figure 4.15, we show the latency, in milliseconds, of the intersection operator when 

executed on different tables with a different number of records.  To perform this experiment, we 

reduced the tables’ sizes because we experienced execution failures due to the lake of memory. 

Moreover, the leading cause to get this kind of error is the massive join computations that result 

from implementing the intersection operator. Note that the intersection queries were to intersecting 

tables based on all columns (i.e., not a partial intersection).  As seen in Figure 4.15, The BVM 

system is the most efficient in performing the interaction, while the BVSAC is the least efficient 

in terms of latency. The factors that cause the variation in the delay are the same factors that affect 

delays in join queries.  

Table 4.11 The structure of TA students table. 

Name of the 

Attribute 
Data type 

Is 

sensitive? 

ID int Yes 

Name varchar Yes 

SSN int Yes 

Visa_Type varchar Yes 

Salary int Yes 

Department varchar Yes 

 

Table 4.10 The structure of original international students 

table 

Name of the 

Attribute 
Data type 

Is 

sensitive? 

ID int Yes 

Name varchar Yes 

Address int Yes 

Citizenship varchar Yes 
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Figure 4.13 Join delay comparison among the proposed systems 
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Figure 4.14 Union delay comparison among the proposed systems 
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Figure 4.15 Intersection latency comparison among the proposed systems 

 

4.3.1.3 Query Rewriting at the QM 

4.3.1.3.1 Experiment 7 

Figure 4.16 depicts the average time taken by each model to rewrite a query. The processes 

required to rewrite a query are presented in Table 4.12. 

Table 4.12 Query rewriting stages 

 Query parsing PT search 
BVs store and 

search (at QM) 

Indices 

decryption 

BVM ✔ ✔ ✔ x 

BVSAC ✔ ✔ x x 

BVSIT ✔ ✔ x ✔ 
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To calculate the average, we executed a set of queries for different cases of select statements with 

one, two, and three clauses. We focused on the select statements because they are part of the update 

and delete statements, so examining the select statement is enough to measure the cost of 

translating queries in each model; we excluded the crypto operations from this percentage.  

In Figure 4.16, the pie chart represents the total average delay taken by all the proposed 

prototypes in translating a query. According to this chart, the BVM has the largest portion of delay 

(about 52%), followed by BVSIT (about 38%), leaving only 10 % of the total cost to the BVSAC. 

The BVM presents the highest percentage because of the BV preparation and processing. 

Afterward, the QM needs to prepare a list containing the indices of the candidate records to be 

fetched from the cloud. This step is mandatory before the translation process. In the BVSIT, 

although the QM does not maintain the BVs, which we migrated to the cloud, the main reason for 

the delay is the decryption processes of the fetched BV indices. Another factor contributing to this 

delay is that the QM must communicate twice with the MySQL engine to process a query. In the 

BVSAC, the QM searches the PT then rewrites the query; therefore, it has the least delay 

percentage.  

 
 

Figure 4.16  The average query translation cost at the QM for each model 
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4.3.1.4 Cloud Server Computation versus QM Computation 

Figure 4.17 illustrates the average percentage of the computation time at the QM compared to the 

server when a query is executed by the proposed prototypes and by the other systems. The figure 

demonstrates that the CryptDB has succeeded in moving over 90% of the query processing 

computation delay to the server, leaving less than 10% of the computation delay to the QM (the 

QM is equivalent to the proxy in both the CryptDB and CBF). Despite this, the penalty is the 

higher query processing delay, as demonstrated in the previous experiments.  

  In our proposed prototypes, we can see that BVM has most of the computation overhead 

at the QM because in addition to the crypto operation, the BVs are processed locally at the QM. 

About 60% of the computation is at the QM in the BVSIT due to decrypting the BVs’ encrypted 

indices after fetching them from the server. The OBT has about 53% of the computation at the QM 

because the QM is entirely decrypting the fetched records, even for queries not based on select * 

statements.  

 On the other hand, the BVSAC and CBF experienced a close percentage of overhead at the 

QM and cloud (about 50% of the computation moved to the server) because in the BVSAC, the 

BVs are searched at the server, and we avoid processing them at the QM, as explained earlier. 

Furthermore, in the CBF, the arrangements of different sets of indices and the rewriting of the 

query after performing conjunctive operations between the set of indices are the leading causes of 

obtaining a higher computation percentage at the QM.  
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Figure 4.17  The percentage of the computation at the QM versus at the cloud server 
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server) needs 257 bytes for Paillier ciphertexts plus 9 bytes for OPE ciphertexts plus 17 bytes for 

the randomized ciphertext at the main encrypted table that will be at the master server. For string 

columns, only deterministic ciphertexts are migrated to the extended columns and randomized 

ciphertexts at the main encrypted table at the master cloud. For the index column, we need 28 bytes 

(4 bytes for each extended table, which is six + the main table). On the other side, in CryptDB, 

each numerical column is extended to three columns (iv [17 bytes], Onion Ord [17 bytes], and 

Onion Add [257 bytes]), while the string column is extended to two columns (iv [17 bytes] and 

Onion Eq [17 ~ 33 bytes]).  

As seen in Table 4.13 and Figure 4.18, the OBT has the lowest storage requirement at the 

server side, followed by the BVM then the BVSAC. The BVSIT requires a higher space 

requirement than the BVSAC since we store the BVs as an independent table rather than a column 

in the same encrypted table, as in the BVSAC. The CBF needs about 1,046 bytes for each record, 

which is the highest space requirement among the systems. CryptDB scores the second-highest 

space requirements, about 1,023 bytes/record.  

Table 4.14 indicates the space requirements to store the BVs of the students’ table (Table 

4.1) at the QM for different sizes. We can conclude that the BVM requires 25,000 bytes to store 

the BVs of the table that holds 10,000 records, while other systems require no hard drive space to 

store any data to process a query. According to this, the space overhead is high in the BVM for 

executing a query because the whole set of the BVs is loaded from the hard drive into the data 

structures in the main memory.  
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Table 4.13 Storage requirement per record at the server (cloud) of the encrypted student 

table (Table 4.1) in all the systems 

Name of the 

Attribute 
Data type BVM (bytes) 

BVSAC 

(bytes) 

BVSIT 

(bytes) 
OBT CBF CryptDB 

index int 4 4 4 

65 

+ 

24 

28 0 

ID varbinary 17 17 17 284 291  

Name varbinary 33 33 33 66 50 

SSN varbinary 17 17 17 284 291 

Visa_Type varbinary 17 17 17 34 50 

Salary varbinary 17 17 17 284 291 

Department varbinary 33 33 33 66 50  

Bit vectors storages  0 4 37* 0 0 0 

Total Space required 202 206 239 89 1046 1023 

*37 = 20 bytes for storing bits as individual columns (we have 20 bits that require 20 columns of 

bit datatype) + 17 bytes for the encrypted index column 

 

 

Table 4.14 Bits’ storage requirements at the QM when the students’ table has a different 

number of tuples 

Model 

Bits’ storage requirement in bytes at the QM 

10,000 records 20,000 

records 

50,000 

records 

100,000 

records 

BVM 25,000 50,000 125,000 250,000 

BVSAC 0 0 0 0 

BVSIT 0 0 0 0 
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Figure 4.18 Comparison of the increase factor of encrypted table space among all systems. 

The increase factor (IF) =  (x-y) /y ,  where x= the space required to store the encrypted table, y= 

the space required to store the original (unencrypted) table.  

 

4.3.3 Factors that Increase the Efficiency of the Proposed Systems 

The number of partitions of a column plays a significant role in the efficiency of our proposed 

models. The more partitions there are, the fewer records are fetched from the cloud, and the 

efficiency of the models are influenced by the number of fetched encrypted records from the cloud. 

Since we encoded the tuples data into bits based on attribute partitioning, the bits searching is 

quick, and we are not concerned about the length of the PT, as this contributes to the reduction of 

the retrieved encrypted tuples from the cloud.  

Having a balanced tuples distribution among the partitions of every sensitive attribute is 

another challenge the data owner must account for. For illustration, one can suppose column A is 

partitioned into A1, A2, and A3; 50% of the records have their values of A fall under partition A1, 

30% fall under A2, and 20% are mapped to A3. If a select query executed to retrieve a record falls 

under A1, then 50% of the encrypted records are retrieved, while if the query result exists in the 

records mapped to A3, 20% of the encrypted records are fetched from the cloud. How to partition 
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the columns of a table exceeds the scope of this dissertation; however, there is a penalty that studies 

have proposed to partition the columns, such as in [18], [20]. In [40], four methods can be used by 

the data owner to partition the columns into different partition domains, and each method works 

differently to divide each column into partitions based on its values. In future work, we will study 

this issue to design a partitioning algorithm to perform a fair partitioning for a table’s columns.  

4.4 Discussion 

As observed in the conducted experiments, we evaluated each proposed model; then, we compared 

the models in terms of query processing speed, computation overhead, storage requirements at the 

QM, and the cloud server. In the terms of the speed, the main cause of the delay was the amount 

of data to be decrypted; however, all the proposed prototypes intended to reduce the amount of 

retrieved encrypted data from the cloud to less than 35%. The cause of having a variation in a 

query processing speed is linked to how and where the BVs are stored. The delay of the BVM is 

mainly affected by the BV transportation from the hard drive HDD to the memory, while in the 

BVSIT, we avoided this matter by storing the BVs as an independent relational table in the cloud. 

In the BVSAC, the BVs were stored as an additional column in the same encrypted table in the 

cloud. For single users restricted by the allowed cloud space, the BVM is the optimal model 

because it requires the minimum additional space to manage and process the encrypted relational 

tables. However, the computation overhead and the memory consumption at the QM will likely be 

a problem if more than a user shares the same computation resource since the whole set of BVs of 

the table must be loaded to the main memory to execute a query. Thus, the BVM is not 

recommended for a multi-user system, and the optimal model is the BVSAC, followed by the 

BVSIT. The BVSAC experienced the shortest execution time, the second-lowest space 
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requirement in the cloud, and the lowest storage requirements at the QM, meaning it is suitable for 

both single- and multi-user systems.  

In terms of security, all the proposed models were at the highest security level. In the CBF, 

if the cloud providers did not collude, the security was high; however, it is not guaranteed, which 

downgrades the security level. In CryptDB, the authors suggested not putting back layers, which 

also reduces the security level. The OBT was secure if a randomized encryption algorithm was 

used; otherwise, the security level was reduced. For tables with excessive columns, such as 

thousands, the performance of the OBT would be jeopardized since the data of all the fields for 

each row are concatenated in one block. In the CBF, thousands of clouds were needed to store the 

extended columns, which makes this system impractical. In contrast, the proposed systems avoided 

such a problem because we performed cell-based encryption. We stored all the data on the same 

cloud server, which accelerated the query processing time for scalable databases. In Table 4.15, 

we  provide a summary of the advantages and disadvantages of the proposed systems in this 

research and the systems we compared our systems with. 
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Table 4.15 Summary of the advantages and disadvantages of the schemes evaluated in this dissertation. 

 Advantages Disadvantages 

B
V

M
 

✓ High security level. 

✓ Has the least cloud space requirements among the 

proposed systems and the second-least among all systems. 

✓ Faster query processing with smaller databases. 

✓ Can support both single- and multi-key encryption. 

✓ Keeps the same structure of the original table. 

✓ Uses one cloud to outsource the encrypted data. 

✓ The optimal choice for individual users who are limited by 

the space in the cloud and seek a faster execution time. 

 Higher overhead (in terms of computation and space) at the 

QM because of query translation. 

 Most of the computations are performed at the QM, which 

makes it unsuitable for multi-user systems.  

 Does not support addition and multiplication (+,*). 

B
V

S
A

C
 

✓ High security level. 

✓ Has the least overhead (in terms of computation and space) 

at the QM. 

✓ Processes queries over larger databases faster than others. 

✓ Can support both single- and multi-key encryption. 

✓ Keeps the same structure as the original table. 

✓ Uses one cloud to outsource the data. 

✓ Moves about 50% of the computation to the cloud server. 

✓ Is the optimal choice for dealing with huge databases in 

both single- and multi-user systems that are not limited by 

the space in the cloud and seek a faster execution time. 

✓ Has the least insertion and update latency, which makes it 

the best option for applications that might experience a 

high volume of these two operations.  

 Experiences a higher delay than other proposed systems when 

dealing with smaller databases.  

 Higher delay than other proposed systems in the join and 

intersection operators. 

 Does not support addition and multiplication (+,*). 
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Table 4.15 (Cont.) 

 Advantages Disadvantages 

B
V

S
IT

 

✓ High security level. 

✓ Works better with smaller databases. 

✓ Moves about 39% of the computation to the cloud server. 

✓ Can support both single- and multi-key encryption. 

✓ Keeps the same structure as the original table. 

✓ Is the optimal choice for dealing with small databases in 

both single- and multi-user systems that are not limited by 

the space in the cloud and seek a faster execution time. 

 Experiences the highest delay in comparison to the other 

proposed systems when applied over large databases.  

 Has the highest insert and update delay. 

 Has the highest space requirement for the outsourced table 

among the other proposed systems. 

 Needs to communicate with the cloud server twice to process 

each query.  

 Does not support addition and multiplication (+,*). 

O
B

T
 ✓ Requires the minimum space requirement among all 

systems. 

✓ Secure if a randomized encryption algorithm is used. 

✓ Uses one cloud to outsource the encrypted data. 

 Loses the main table structure. 

 Does not support multi-key-based encryption.  

 Works only for databases that have a small number of 

attributes. 

 An inaccurate update could happen if the value to be updated 

matches two or more sub-strings in the same row.  

 Does not support the intersection operator. 

 Does not support addition and multiplication (+,*). 

 Supports only select * but not select (column). 

C
B

F
 ✓ Enables the cloud server to execute SQL operators over 

encrypted data. 

✓ Supports the functions of CryptDB and achieves processes 

queries faster than CryptDB. 

 Not practical for single users since N accounts in N different 

clouds need to be maintained. 

 Experiences an exponential delay growth as the number of 

predicates in a query increase. 

 The security level is downgraded if more than one cloud 

provider colludes. 

 Works only for tables with a small number of attributes.  

 Requires the most space among all the systems to outsource 

the encrypted table. 
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Table 4.15 (Cont.) 
 Advantages Disadvantages 

C
ry

p
tD

B
 ✓ Moves over 91% of the computation overhead to the cloud 

server. 

✓ Supports most relational algebra operators.  

✓ Can support both single- and multi-key encryption. 

✓ Supports single- and multi-user systems.  

 The security level is low because the secret key (sk) is 

passed to the cloud server. Although the server provider is 

trusted, they might be curious.  

 It is vulnerable to in-session attacks and inference attacks. 

 Authors suggest not to put back layers since that will cause 

computation overhead; however, that will downgrade the 

security level. 

 Requires the second-most amount of space among all the 

systems to outsource the encrypted table. 

 Works for small tables only, because if it is applied to larger 

tables, the computation delay will be incredibly high.  

 The data owner needs to install their own user-defined 

functions (UDFs) as an extension to the MySQL server in the 

cloud server; however, most cloud providers do not allow 

clients to install their own software in the cloud server. 

Therefore, CryptDB is not currently applicable in the real 

cloud environment.  
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5 Conclusion and Future Work 

5.1 Summary 

Cloud computing is an attractive computing environment for all kinds of users and companies. 

But, privacy breaches, not only by malicious attackers but also by curious providers, is the 

downside of this type of service, because users lose access control over outsourced data. There are 

many solution for this problem and data encryption is the effective one. However, executing SQL 

queries over encrypted data is challenging, especially if a randomized encryption algorithm, like 

AES-CBC, is used for the encryption. In this research, we first introduce the QM, a trusted server, 

which works as an intermediate between the cloud server and user(s) and performs all the crypto 

processes. In addition, we design a novel indexing technique based on predefining partitions for 

each sensitive attribute, and then encode each tuple to bits, accordingly. The bits are used to 

retrieve candidate tuples for a specific query that minimize the range of the retrieved encrypted 

tuples. Based on this encoding scheme, we proposed three different secure systems that each use 

a different way to store and maintain the index data (i.e., the bit vectors [BVs]) either locally at 

the QM or by migrating the BVs to the cloud sever. For each proposed prototype, we design 

different algorithms to accomplish query execution of different SQL relational algebra operators, 

and we make it resistant to attack scenarios, such as inference attacks. We test our models by 

implementing them and comparing their performance with state-of-the-art systems like CryptDB. 

We evaluate them in terms of their execution time requirement and space requirements. We find 

that the proposed systems require both less execution time and space when compared with most 

other competing systems. 
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5.2 Future work 

As a future work, we aim to extend the proposed prototypes to support addition and multiplication 

operations. That could be achieved by using a different secure algorithm to encrypt the numeric 

attributes. Also, since the number of nodes (number of partitions) in the PT used by proposed 

systems in this dissertation impacts the efficiency of the developed systems, we aim to develop a 

fair partitioning algorithm that can divide sensitive attributes into n partitions where n is a threshold 

defined by system administrator. This would allow faster query processing speed by restricting the 

number of encrypted tuples retrieval from the cloud.   
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