248 research outputs found

    A practical attack on the fixed RC4 in the wep mode

    Get PDF
    Abstract. In this paper we revisit a known but ignored weakness of the RC4 keystream generator, where secret state info leaks to the generated keystream, and show that this leakage, also known as Jenkins’ correlation or the RC4 glimpse, can be used to attack RC4 in several modes. Our main result is a practical key recovery attack on RC4 when an IV modifier is concatenated to the beginning of a secret root key to generate a session key. As opposed to the WEP attack from [FMS01] the new attack is applicable even in the case where the first 256 bytes of the keystream are thrown and its complexity grows only linearly with the length of the key. In an exemplifying parameter setting the attack recoversa16-bytekeyin2 48 steps using 2 17 short keystreams generated from different chosen IVs. A second attacked mode is when the IV succeeds the secret root key. We mount a key recovery attack that recovers the secret root key by analyzing a single word from 2 22 keystreams generated from different IVs, improving the attack from [FMS01] on this mode. A third result is an attack on RC4 that is applicable when the attacker can inject faults to the execution of RC4. The attacker derives the internal state and the secret key by analyzing 2 14 faulted keystreams generated from this key

    Wi-Fi Security Analysis

    Get PDF
    AbstractIn recent years, a significant increasing in development of Wireless networks is noticed; they become an entire part of the Internet and demonstrate effectiveness in handling communication for reduced public LAN and military applications. This is mainly due to their mobility and low cost solutions; nevertheless, they are also prone to several attacks related to data integrity, Deni of Service and eavesdropping. This paper discusses wireless security protocols, their limitations and weakness. We present also an overview of the FMS (Fluhrer, Mantin, Shamir), a recovery key attack and demonstrate its effectiveness in reducing the average number of intercept packets based on a well choice of IV (initialization vectors). Some comparative experiments on ciphertext-only attacks were performed in order to study the efficiency of such technique and underline encountered difficulties

    Is Your Wireless Network Being Hacked?

    Get PDF
    Wireless networks provide vulnerable gateways for unauthorised entry to networks or even a standalone wireless computer. The independent radio signals that constitute wireless communications have no physical boundary to keep them in check. This allows a third party to easily eavesdrop on communications sessions and by capturing the data packets, they can break the encryption keys and access the data within the network. The public awareness of the insecurity of wireless networks is surprisingly poor despite frequent news media reports of the vulnerabilities of the equipment and the activities of the criminals prepare to exploit it. In this paper we review the security protocols commonly used on wireless networks and investigate their weaknesses by showing how easy it is to crack the codes using tools freely available on the Internet

    Energy Efficient Security Framework for Wireless Local Area Networks

    Get PDF
    Wireless networks are susceptible to network attacks due to their inherentvulnerabilities. The radio signal used in wireless transmission canarbitrarily propagate through walls and windows; thus a wireless networkperimeter is not exactly known. This leads them to be more vulnerable toattacks such as eavesdropping, message interception and modifications comparedto wired-line networks. Security services have been used as countermeasures toprevent such attacks, but they are used at the expense of resources that arescarce especially, where wireless devices have a very limited power budget.Hence, there is a need to provide security services that are energy efficient.In this dissertation, we propose an energy efficient security framework. Theframework aims at providing security services that take into account energyconsumption. We suggest three approaches to reduce the energy consumption ofsecurity protocols: replacement of standard security protocol primitives thatconsume high energy while maintaining the same security level, modification ofstandard security protocols appropriately, and a totally new design ofsecurity protocol where energy efficiency is the main focus. From ourobservation and study, we hypothesize that a higher level of energy savings isachievable if security services are provided in an adjustable manner. Wepropose an example tunable security or TuneSec system, which allows areasonably fine-grained security tuning to provide security services at thewireless link level in an adjustable manner.We apply the framework to several standard security protocols in wirelesslocal area networks and also evaluate their energy consumption performance.The first and second methods show improvements of up to 70% and 57% inenergy consumption compared to plain standard security protocols,respectively. The standard protocols can only offer fixed-level securityservices, and the methods applied do not change the security level. The thirdmethod shows further improvement compared to fixed-level security by reducing(about 6% to 40%) the energy consumed. This amount of energy saving can bevaried depending on the configuration and security requirements

    RC4 Encryption-A Literature Survey

    Get PDF
    AbstractA chronological survey demonstrating the cryptanalysis of RC4 stream cipher is presented in this paper. We have summarized the various weaknesses of RC4 algorithm followed by the recently proposed enhancements available in the literature. It is established that innovative research efforts are required to develop secure RC4 algorithm, which can remove the weaknesses of RC4, such as biased bytes, key collisions, and key recovery attacks on WPA. These flaws in RC4 are still offering an open challenge for developers. Hence our chronological survey corroborates the fact that even though researchers are working on RC4 stream cipher since last two decades, it still offers a plethora of research issues. The attraction of community towards RC4 is still alive

    A Study of Wireless Network Security

    Get PDF
    I intend to make a survey in wireless data security since wireless networks are very common, both for organizations and individuals. Many laptop computers have wireless cards pre-installed. The ability to enter a wireless network has great benefits. However, wireless networking has many security issues. Hackers have found wireless networks relatively easy to break into, and even use wireless technology to crack into wired network. As a result, it\u27s very important that enterprises define effective wireless security policies that guard against unauthorized access to important resources. My survey research may involve these following aspects: wireless network architecture, data security in wireless networks, secure data storage in wireless networks and so forth

    Studying IEEE-802.11 encryption protocol

    Get PDF
    From the inception of wireless network in 1997, wireless network has enabled us to communicate over the internet without wired network. It has also grown exponentially over the past three decades and it is ubiquitous of all humans’ activities. As the wireless communication expands, so does wireless network threats. The IEEE in conjugation with Wi-Fi Alliance provides wireless encryption protocols: WEP, WPA, and WPA2.The article will look into the various weaknesses, strengths and attacks of each encryption protocols

    A Practical guide to understanding wireless networking concepts, security protocols, attack, and safer deployment schemes

    Get PDF
    With the explosion of wireless networks appearing in buildings, business and educational campuses, and even homes; security is a large concern in order to prevent attempted intrusions and malicious attacks from the retrieval of confidential data. Wireless Fidelity, Wi-Fi for short, does provide security in the form called Wired Equivalent Privacy otherwise simply known as WEP. However cases documenting WEP\u27s security mechanism being breached in legitimate and illegitimate cases have been published and are readily available on the Internet. While wireless networks provide the freedom of mobility for users, this also allows potential hackers to eavesdrop on unsuspecting wireless users. Or worse, one could potentially hijack an access point and gain unauthorized access past the wireless network and then into the wired internal network. Thus an intruder who has hijacked an access point will be able to access critical data while hiding safely outside the building. Knowledge and understanding of wireless networks and of its security is a necessary step to be learnt if wireless networks are to be deployed securely especially in congested urban settings

    Burglarproof WEP Protocol on Wireless Infrastructure

    Get PDF
    With the popularization of wireless network, security issue is more and more important. When IEEE 802.11i draft proposed TKIP, it is expected to improve WEP (Wired Equivalent Privacy) on both active and passive attack methods. Especially in generating and management of secret keys, TKIP uses more deliberative attitude to distribute keys. Besides, it just upgrades software to accomplish these functions without changing hardware equipments. However, implementing TKIP on the exiting equipment, the transmission performance is decreased dramatically. This article presents a new scheme, Burglarproof WEP Protocol (BWP), that encrypt WEP key twice to improve the security drawbacks of original WEP, and have better performance on transmission. The proposed method is focus on modifying encryption sets to improve the low performance of TKIP, and provides better transmission rate without losing security anticipations base on current hardware configuration

    Design And Hardware Implementation Of A Novel Scrambling Security Algorithm For Robust Wireless Local Area Networks

    Get PDF
    The IEEE802.11 standard for wireless networks includes a Wired Equivalent Privacy (WEP) protocol, which is a popular wireless secure communication stream cipher protocol approach to network security used to protect link-layer communications from eavesdropping and other attacks. It allows user to communicate with the user; sharing the public key over a network. It provides authentication and encrypted communications over unsecured channels. However, WEP protocol has an inherent security flaw. It is vulnerable to the various attacks, various experiments has proved that WEP fails to achieve its security goals. This thesis entails designing, evaluating and prototyping a wireless security infrastructure that can be used with the WEP protocol optionally, thus reducing the security vulnerabilities. We have studied the flaws of WEP and the reasons for their occurrence, and we provide the design and implementation of a novel scheme in Matlab and VHDL to improve the security of WEP in all aspects by a degree of 1000. The architecture was designed with a consideration for least increment in hardware, thus achieving power and cost efficiency. It also provides flexibility for optional implementation with the available technology by being able to be bypassed by the technology, which allows for non-replacement of existing hardware, common on both, the WEP and the proposed protocols, on the fly
    corecore