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ABSTRACT 

The IEEE802.11 standard for wireless networks includes a Wired Equivalent Privacy 

(WEP) protocol, which is a popular wireless secure communication stream cipher protocol 

approach to network security used to protect link-layer communications from eavesdropping and 

other attacks. It allows user to communicate with the user; sharing the public key over a network. 

It provides authentication and encrypted communications over unsecured channels. However, 

WEP protocol has an inherent security flaw. It is vulnerable to the various attacks, various 

experiments has proved that WEP fails to achieve its security goals. This thesis entails designing, 

evaluating and prototyping a wireless security infrastructure that can be used with the WEP 

protocol optionally, thus reducing the security vulnerabilities. We have studied the flaws of WEP 

and the reasons for their occurrence, and we provide the design and implementation of a novel 

scheme in Matlab and VHDL to improve the security of WEP in all aspects by a degree of 1000.  

The architecture was designed with a consideration for least increment in hardware, thus 

achieving power and cost efficiency. It also provides flexibility for optional implementation with 

the available technology by being able to be bypassed by the technology, which allows for non-

replacement of existing hardware, common on both, the WEP and the proposed protocols, on the 

fly. 
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INTRODUCTION 

Internet enabled wireless devices continue to proliferate and are expected to surpass 

traditional Internet clients in the near future. Wireless technology has become an integral part of 

today’s life. The use of wireless networking is rapidly rising with an ever-increasing need for 

businesses to cut costs and to provide mobility to workers. Wireless technology has spread to 

devices from small-embedded systems to large general purpose PCs. This is due to cheaper 

prices, faster speeds and also due to the need for greater mobility. However, data security and 

privacy remain major concerns in the current generation of "wireless Web" offerings; it is 

desirable to have as much data privacy as possible. If this data is threatened by phenomenon such 

as hacking, being accessed by unauthorized individuals, stolen or attacked by viruses, disaster is 

bound to occur. Thus data security is a major issue in communications. Hence in today’s 

networked world security is at a premium. All such offerings today use a security architecture 

that lacks security. 

Wireless network security is very essential, as it is not bound to any region. Any 

unauthorized person can read, modify or use the private data being transmitted over a network. 

As wireless platforms mature, grow in popularity, and store valuable information, hackers are 

stepping up their attacks on such wireless targets. This is a problem to be considered because 

wireless devices, including smart cellular phones and personal digital assistants (PDAs) with 

Internet access, were not originally designed with security as a top priority. Now, however, 

wireless security is becoming an important area of product research and development. As in the 

wired world, wireless security boils down to protecting information and preventing unauthorized 

system access. However, it is challenging to implement security in small-footprint devices with 
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low processing power and small memory capacities and these use unreliable, low bandwidth 

wireless networks.  

IEEE 802.11 Wireless Fidelity (Wi-Fi) standard [1, 48, 52, 53] refers to a family of 

specifications developed by the IEEE for wireless LAN technology. It specifies an over-the-air 

interface between a wireless client and a base station or between two wireless clients. The need 

for the 802.11 standard came due to the emergence of various proprietary wireless systems, 

which were incapable of interoperation. The standard becomes popular due to high data rates, 

fast and easy encryption techniques. It modeled on the ISO’s OSI Model [5, 6, 7]; but the 

standard is only concerned with the physical layer and the lower part of the Data Link layer (the 

MAC (Medium Access Control [8, 9, 10, 11, 12] sub-layer). This architecture uses fixed network 

access points with which mobile nodes can communicate. These network access points are 

sometime connected to landlines to widen the LAN's (Local Area Network’s) capability by 

bridging wireless nodes to other wired nodes. It is designed to provide a wireless local area 

network (WLAN) with a level of security and privacy comparable to what is usually expected of 

a wired LAN, using Wired Equivalent Privacy (WEP) [1, 47, 48, 52, 53] security protocol. WEP 

is a popular wireless secure communication stream cipher protocol approaches to network 

security used to protect link-layer communications from eavesdropping and other attacks. It 

allows users to communicate with other users sharing the public key over a network. It provides 

authentication and encrypted communications over unsecured channels. WEP seeks to establish 

similar protection to that offered by the wired network's physical security measures by 

encrypting data transmitted over the WLAN. Data encryption protects the vulnerable wireless 

link between clients and access points; once this measure has been taken, other typical LAN 

security mechanisms such as password protection, end-to-end encryption, virtual private 
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networks (VPNs) [13, 14, 15], and authentication can be put in place to ensure privacy. WEP is 

used to protect link-layer communications from eavesdropping and other attacks. However, it has 

an inherent security flaw. It is vulnerable to various attacks; experiments have proved that WEP 

fails to achieve its security goals. These serious security flaws have been discovered in the 

protocol, stemming from misapplication of cryptographic primitives. The flaws lead to a number 

of practical attacks that demonstrate that WEP fails to achieve its security goals. For example, a 

WEP network can be made vulnerable by simply, passively gathering and analyzing the packets 

as they are transmitted through the air. This type of analysis can be performed by a standard 

personal computer with off the shelf hardware and freely available software. It is by no means 

completely secure. Thus WLANs using the WEP protocol are vulnerable to attacks. These so 

called wireless equivalent privacy attacks appear in the form of intercepting and modifying the 

transmissions, and gaining access to restricted networks. In this thesis, we propose an algorithm 

to patch the WEP protocol against these attacks.  

This thesis develops a minimal required solution for the various attacks in the WEP 

protocol. It offers guidelines to develop a practical and a viable infrastructure for robust WEP 

implementation with least increment in hardware thus providing power and cost efficiency.  

Wireless Communications 

Wireless communications uses radio waves to transmit data between devices. Even with 

advantages such as mobility and portability, there are some limitations that are to be considered. 

A few advantages of wireless technology are: 

• No cables: No physical connection required from one device to another. 
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• Mobility: Freedom of movement and flexibility in placing the devices. 

• Portability: One can easily carry a wireless device. 

• Connecting ports: Devices can have dynamic number of connecting ports. 

The limitations of wireless networks include issues such as security, speed, and not being 

able to change the number of channels without having to change technologies, unlike in wired 

networks where the number of channels (wires) can be changed for higher data rates. 

Popular wireless technologies and standards are 

• WAP, GPRS, 3G 

• Blue tooth 

• IEEE 802.11Std 

Security Issue 

The information security is the protection of information against unauthorized access to 

or modification of information against the denial of service to authorized users or the provision 

of service to unauthorized users. As the wireless network has no physical boundary, any 

unauthorized user can access in the wireless range and thus access the information. Security not 

only requires for user authentication but also requires for data to be protected from 

eavesdropping. There are various kinds of authentication services. 

• Open system (Null authentication system) 

• Digital signature 

• Challenge response text 

• Shared key authentication 
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Open System 

Open System authentication [19] is a null authentication algorithm. It involves a two-step 

authentication transaction sequence. The first step in the sequence is the identity assertion and 

request for authentication. The second step in the sequence is the authentication result. If the 

result is “successful,” the STAs (Stations) shall be mutually authenticated.  

Digital Signature 

Digital signature [19, 20] is a method of authenticating digital information, in the same  

 

sense that an individual signing a paper document (or applying the seal of an organization) 

authenticates it. 

It is itself simply a sequence of bits conforming to one of a number of standards in the 

area. The whole system depends on the fact that anyone can transform a message using a public 

key, but the private key is needed to reverse that transformation. Most digital signatures rely on 

public key cryptography to work.  

In Digital signature method, the receiver generates a key pair consisting of two related 

"keys": public key and private key. Then it encrypts the data with its private key. After which, 

the receiver publishes their private key, which is used for encrypting the data and then 

transmitting the encrypted data which can only be decrypted with the private key; the key pairs 

are generated in such a way that its impractical to obtain private key from the public key. 
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Challenge-response test 

Challenge-response authentication relies on the possession of a secret of some sort to 

perform authentication. A very simple example is asking for a password, where the challenge is 

asking for the password, and the adequate response is the correct password. A sophisticated 

algorithm is RSA [21, 22, 23, 24, 25, 26, 27] method to avoid communicating password or any 

other private information. 

Shared Key Authentication 

Shared Key Authentication [27, 28, 29, 30, 31] also known as Public-key cryptography or 

Asymmetric-key cryptography, is a form of cryptography in which two digital "keys" are 

generated, one private and one public. These keys are used for encrypting or signing messages; 

one key is used to encrypt a message and another is used to decrypt it, or one key is used to sign 

a message and another is used to verify the signature. The public key can encrypt or sign 

messages that can only be verified using the private key, and vice-versa, so it is critical that the 

private key be kept secret. The two keys are related mathematically - a message encrypted by the 

algorithm using one key can be decrypted by the same algorithm using the other key. A few 

examples of asymmetric algorithm are mentioned below: 

• Diffie-Hellman [32, 33] 

• RSA encryption algorithm 

• ElGamal [34, 35, 36] 

• Elliptic curve cryptography [36, 37] 

Protocols using asymmetric key algorithms include: 
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• DSS (Digital Signature Standard) [38, 39, 40] which incorporates the Digital Signature 

Algorithm 

• PGP (Pretty Good Privacy) / GPG (GNU Privacy Guard) [41] 

SSH (Secure SHell) is both a program and a network protocol for logging into and 

executing commands on a remote computer. It is intended to replace rlogin, telnet and RSH 

(Remote SHell), A program to provide a means of executing commands on a remote host without 

the need to (r)login), and provides secure encrypted communications between two non-trusted 

hosts over an insecure network 

• Secure Socket Layer now implemented as an IETF (Internet Engineering Task Force) 

standard (TLS (Transport Layer Security)). 

To avoid the eavesdropping security issue, data is usually encrypted using cryptographic 

techniques and transmitted over the network, and the authorized personnel having the proper 

access rights and keys can access the data.  

IEEE 802.11 provides standard for designing wireless LAN services with two different 

levels of security systems.  

• Open System 

• Shared Key authentication service. 

Cryptography 

Cryptography [45, 46] is a process by which information is converted into an encrypted 

version that is difficult (ideally, impossible) for any unauthorized person to convert back to the 

original information, while still allowing the intended reader to do so. In traditional 
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cryptography, the sender and receiver of a message know and use the same secret key; the sender 

uses the secret key to encrypt the message, and the receiver uses the same secret key to decrypt 

the message. This method is known as secret key or symmetric cryptography. The main 

challenge is getting the sender and receiver to agree on the secret key without anyone else 

finding out. If they are in separate physical locations, they must trust a courier, a phone system, 

or some other transmission medium to prevent the disclosure of the secret key. Anyone who 

overhears or intercepts the key in transit can later read, modify, and forge all messages encrypted 

or authenticated using that key. The generation, transmission and storage of keys is called key 

management. All cryptosystems must deal with key management issues. Because all keys in a 

secret-key cryptosystem must remain a secret, secret-key cryptography often has difficulty 

providing secure key management, especially in open systems with a large number of users. 

The other popular cryptography technique is public key cryptography, which uses 

asymmetric keys, one being private and the other being public. The private key is kept a secret; 

the public key can be known by anyone.  

Sets of public and private keys match from a cryptographic standpoint. For example, the 

sending station (e.g., NIC (Network Interface Card) or access point) can encrypt data using the 

public key, and the receiver uses the private key for decryption. The opposite is also true. The 

sending station can encrypt data using the private key, and the receiving station decrypts the data 

using the public key. 
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General Cryptography techniques 
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Figure 1: Encryption Decryption 

 

The process of disguising data (binary) in order to hide its information content is called 

Encryption (denoted by E) (see Figure 1). Data that is not enciphered is called Plaintext (denoted 

by P) and data that is enciphered is called Cipher-text (denoted by C). The process of turning 

cipher-text back into plaintext is called Decryption (denoted by D). A cryptographic algorithm, 

or cipher, is a mathematical function used for enciphering or deciphering data. Modern 

cryptographic algorithms use a key sequence (denoted by k) to modify their output. The 

encryption function E operates on P to produce C: At the sending end the encryption function 

operates on the P to produce E: 

 CPEk =)(  (1) 

At the receiving end the decryption function operates on C to produce P: 
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 PCDk =)(  (2)  

The WEP algorithm is symmetric in nature. Hence we can use the same key for 

enciphering as well as deciphering: 

 PPED kk =))((  (3) 

Symmetric and Asymmetric key cryptography 

The primary advantage of public-key cryptography is increased security and 

convenience: private keys never need to be transmitted or revealed to anyone. In a secret-key 

system, by contrast, the secret keys must be transmitted (either manually or through a 

communication channel) since the same key is used for encryption and decryption. A serious 

concern is that there may be a chance that an enemy can discover the secret key during 

transmission. 

Another major advantage of public-key systems is that they can provide digital signatures 

that cannot be repudiated. Authentication via secret-key systems requires the sharing of some 

secret and sometimes requires trust of a third party as well. As a result, a sender can repudiate a 

previously authenticated message by claiming the shared secret was somehow compromised by 

one of the parties sharing the secret 

A disadvantage of using public-key cryptography for encryption is speed. There are many 

secret-key encryption methods that are significantly faster than any currently available public-

key encryption method. Nevertheless, public-key cryptography can be used with secret-key 

cryptography to get the best of both worlds. For encryption, the best solution is to combine 
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public- and secret-key systems in order to get both the security advantages of public-key systems 

and the speed advantages of secret-key systems. Such a protocol is called a digital envelope. 

Public-key cryptography may be vulnerable to impersonation, even if users' private keys 

are not available. A successful attack on a certification authority will allow an adversary to 

impersonate whomever he or she chooses by using a public-key certificate from the 

compromised authority to bind a key of the adversary's choice to the name of another user. 

Motivation and Problem Statement  

WEP used in Wi-Fi standard uses RC4 [4, 24, 43] encryption algorithm, which operates 

by expanding a short key into an infinite pseudo-random key stream. If an attacker flips a bit in 

the cipher text, then upon decryption, the corresponding bit in the plaintext will be flipped. If an 

eavesdropper intercepts two cipher texts encrypted with the same key stream, it is possible to 

obtain the XOR of the two plaintexts. Knowledge of this XOR can enable statistical attacks to 

recover the plaintexts. The statistical attacks become increasingly practical as more cipher text 

that uses the same key stream become known. Once one of the plaintexts becomes known, it is 

trivial to recover all of the others. To ensure that a packet has not been modified, WEP uses an 

Integrity Check Value (ICV) field in the packet. To avoid encrypting two cipher text with the 

same key stream, an initialization vector (IV) is used to augment the shared key and produce a 

different RC4 key for each packet. The major attacks [16, 17, 18, 47, 52, 53] to WEP are given 

as follows: 

1. Active attack: Modification of the packet by modifying the ICV. 

2. Passive attacks: 
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a. Integrity violation by analyzing the IV 

b. Table based attack for decrypting every packet that is sent over the wireless link. 

In order to avoid these attacks, a novel-scrambling algorithm is proposed in this work. 

The algorithms randomize the data and prevent access from unauthorized users by adding some 

standard randomness to it. This random characteristic is a function of the private attribute shared 

between transmitter and receiver only. In this approach the randomness is achieved by RC4 

algorithm, and the distribution of the randomness is provided with different algorithms to 

increase the complexity of rectifying the encrypted data and optimize utilization of the 

randomness. 

Related Work 

Various groups are working on different approaches in order to make WEP more robust 

and impractical to break. IEEE 802.11i group is working on integrating TKIP [54, 55, 56] 

(Temporal Key Integrity Protocol) with it which is attempting to harden IV based attacks and 

authentication issues by changing the SK (Secret Key) over the certain amounts of packet 

transfer from particular user. 

Another group at Wi-Fiplanet has proposed to use AES (Advanced Encryption Standard) 

encryption method with it to secure it from all other known encryption attacks to WEP. 

WPA [57, 58, 59] (Wi-Fi Protected Access) is another approach to attain more security. It 

incorporates both the TKIP and the AES and achieves both authentication and encryption 

security. WPA includes both the Temporal Key Integrity Protocol (TKIP) and 802.1x 

mechanisms, which together provide dynamic key encryption and mutual authentication for 
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mobile clients. WPA thwarts hackers by periodically generating a unique encryption key for each 

client. 

TKIP introduces new algorithms to WEP, which includes extended 48-bit initialization 

vectors and associated sequencing rules, per-packet key construction, key derivation and 

distribution function, and a message integrity code (referred to as "Michael"). WPA can interface 

with an authentication server, such as Remote Authentication Dial-In User Service, using 802.1x 

with EAP. The authentication server is a storehouse for user credentials. This function enables 

effective authentication control and integration into existing information systems. 

Another alternative is to use IPsec [60] for wireless security adding VPN [61] 

functionality to the client. 

The TESLA [62] Broadcast Authentication Protocol despite using purely symmetric 

cryptographic functions (MAC functions), TESLA achieves asymmetric properties. We discuss a 

PKI application based purely on TESLA, assuming that all network nodes are loosely time 

synchronized. 

All the above approaches are leading to give partial or full security to the wireless 

communication comparable to the wired network. The approach which gives full security 

requires replacing the existing hardware completely and not downward compatible with existing 

technology. In our approach we have achieved very high security in all aspects with downward 

compatibility, non replacement of current hardware and technology with minimal requirement of 

hardware and computational power. 
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WIRED EQUIVALENT PRIVACY (WEP) 

Wired Equivalent Privacy (WEP) is a part of the IEEE 802.11 Wireless Fidelity (Wi-Fi) 

standard. It is a system to secure Wi-Fi networks. It is a data encryption method designed to 

protect the transmission between 802.11 wireless clients and Access Points (APs) and to provide 

a Wireless Local Area Network (WLAN) with the same level of security as can be expected from 

the security provided to a wired network. The WEP algorithm is a form of electronic codebook 

in which a block of plaintext is bitwise XORed with a pseudorandom key sequence of equal 

length. The WEP algorithm generates the key sequence based on shared key authentication, 

which uses RC4 algorithm to encrypt the message and CRC32 to keep the integrity. Wired 

Equivalent Privacy is defined as protecting authorized users of a wireless LAN (Local Area 

Network) from casual eavesdropping. This service is intended to provide functionality for the 

wireless LAN equivalent to that provided by the physical security attributes inherent to a wired 

medium. It provides an adequate level of security for most home networks. It is a popular 

wireless secure communication stream cipher protocol approaches to network security used to 

protect link-layer communications from eavesdropping and other attacks. It allows users to 

communicate with other users sharing the public key over a network. It provides authentication 

and encrypted communications over unsecured channels. WEP seeks to establish similar 

protection to that offered by the wired network's physical security measures by encrypting data 

transmitted over the WLAN. Data encryption protects the vulnerable wireless link between 

clients and access points; once this measure has been taken, other typical LAN security 

mechanisms such as password protection, end-to-end encryption, virtual private networks 
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(VPNs), and authentication can be put in place to ensure privacy. WEP is used to protect link-

layer communications from eavesdropping and other attacks.  

Shared key identification system 

Shared key authentication supports authentication of STA (station). It accomplishes this 

without the need to transmit the secret key in the open; however, it does require the use of the 

WEP privacy mechanism. Therefore, this authentication scheme is only available if the WEP 

option is implemented. The required secret, shared key is presumed to have been delivered to 

participating STAs via a secure channel that is independent of IEEE 802.11. This shared key is 

contained in a write-only Management Information Base (MIB) attribute via the MAC 

management path; so that the key value remains internal to the MAC. During the Shared Key 

authentication exchange, both the challenge and the encrypted challenge are transmitted. This 

facilitates unauthorized discovery of the pseudorandom number (PRN) sequence for the key/IV 

pair used for the exchange. Implementations should therefore avoid using the same key/IV pair 

for subsequent frames. 
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Figure 2: IEEE 802.11 Station Authentication 

Block Diagram 

WEP is a symmetric algorithm in which the same key is used for encipherment and 

decipherment. The secret key is concatenated with an initialization vector (IV) and the resulting 

seed is input to a PRNG (Pseudo Random Number Generator). The PRNG outputs a key 

sequence k of pseudorandom octets equal in length to the number of data octets that are to be 

transmitted in the data plus 4 (since the key sequence is used to protect the integrity check value 

(ICV) as well as the data). Two processes are applied to the plaintext. To protect against 

unauthorized data modification, an integrity algorithm operates on P to produce an ICV.  
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Encipherment is then accomplished by mathematically combining the key sequence with the 

plaintext concatenated with the ICV. The output of the process is a message containing the IV 

and cipher-text. The WEP PRNG is the critical component of this process, since it transforms a 

relatively short secret key into an arbitrarily long key sequence. This greatly simplifies the task 

of key distribution, as only the secret key needs to be communicated between STAs. The IV 

extends the useful lifetime of the secret key and provides the self-synchronous property of the 

algorithm. The secret key remains constant while the IV changes periodically. Each new IV 

results in a new seed and key sequence, thus there is a one-to-one correspondence between the 

IV and k. The IV may be changed as frequently as every MPDU (MAC protocol data unit) and, 

since it travels with the message, the receiver will always be able to decipher any message. The 

IV is transmitted in the clear since it does not provide an attacker with any information about the 

secret key, and since its value must be known by the recipient in order to perform the decryption. 
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The WEP algorithm is applied to the frame body of an MPDU. The IV, frame body, ICV triplet 

forms the actual data to be sent in the data frame. 

Features of WEP Algorithm 

• Reasonably strong: Relies on the difficulty of discovering the secret key through brute 

force attack 

• Self synchronizing: Important when mobile stations go in and out of coverage 

• Computationally efficient: Easily implemented on software and hardware 

• Exportable: Can be exported outside the US 

• Optional: It is an option not required in an 802.11 compliant system 

Design Specification 

The frame body of the data frame has the following format: 

WEP protected frames are having 3 major parts IV, encrypted text, and ICV. The first 

four octets of the frame body contain the IV field for the MPDU (MAC Protocol Data Unit). The 

PRNG (Pseudo Random Number Generator) is fed with a 64 bit seed, which is obtained from 

concatenation of 24 bit IV and 40 bit SK (secret Key). The 24 LSBs (Least Significant Bits) of 

seed are IV and rest 40 bits are SK. The IV is followed by the MPDU, which is followed by a 

32-bit ICV. The WEP ICV is obtained form Integrity Check algorithm that is CRC-32, WEP 

achieve encryption by combines k with P using bitwise XOR. The WEP mechanism is invisible 

to the entities outside the MAC data path. WEP design incorporates the following modules 

• ICV (CRC32) 
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• RC4 PRNG 

• Cipher Engine 

• Control logic and Data Path 

CRC32 

A cyclic redundancy check (CRC) [49, 50, 51] is the result of a type of calculation made 

upon data, such as network traffic or computer files, in order to detect errors in transmission or 

duplication. CRCs are calculated before and after transmission or duplication, and compared to 

confirm that they are the same. 

A cyclic redundancy check (CRC) is the result of a type of calculation made upon data, 

such as network traffic or computer files, in order to detect errors in transmission or duplication. 

CRCs are calculated before and after transmission or duplication, and compared to confirm that 

they are the same. It is used by the WEP to produce the ICV. It performs a mathematical 

calculation on a block of data and returns a 32-bit number called the checksum that represents 

the content and organization of that data. The IEEE 802.11 protocol uses the CRC to verify 

whether the data received at the receiver is the same as the data that was sent; i.e. whether the 

data has modified after transmission or not. 

Algorithm 

The essential mathematical operation in the calculation of a CRC is binary division, and the 

remainder from the division determines the CRC. 

shiftregister = initialize shiftregister with 0s 
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   while (there are more input bits) { 

       if (MSB of shiftregister == 1) 

            shiftregister = (shiftregister leftshift 1) xor polynomial 

       else: 

           shiftregister = shiftregister leftshift 1 

         xor next bit from the string into LSB of shiftregister 

  } 

CRC32 = shiftregister value 

Applications of CRC: 

• Verifying transmitted information 

• Sending and receiving records 

• Modifying files and records 

• Verifying emails between 4D databases 

WEP incorporates the most commonly used CRC32 polynomial given by 

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 X4 + X2 + X1 

This polynomial generates a 32-bit fingerprint checksum. 

RC4 

RC4 is a symmetric key, secret key, stream cipher of RSA Security. It is a pseudo-

random number generator initialized from a secret key of up to 256 bytes. The RC4 algorithm it 

generates a "keystream" which is simply XORed with the plaintext to produce the cipher-text 
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stream. Decryption is exactly the same as encryption. One reason for the algorithm's popularity 

is its simplicity.  

Algorithm 

The RC4 algorithm consists of an initialization stage, which uses the key to initialize the pseudo-

random number generator: 

 for i = 0 ... 255 

    S[i] = i 

 for i = 0 ... 255 

     j = (j + S[i] + key[i mod key_length]) mod 256 

     swap (S[i],S[j]) 

Once the generator has been initialized, both encryption and decryption is performed using 

values output from the generation stage. The process of encryption and decryption is as follows:  

 i = 0 

 j = 0 

 while(Entire message is encrypted/decrypted) 

     i = (i + 1) mod 256 

     j = (j + S[i]) mod 256 

     swap(S[i],S[j]) 

     k = S[(S[i] + S[j]) mod 256] 

 output the k as psedo random byte 

end while 
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Output k is then used to XOR with the input RC4  

The WEP PRNG 

The WEP PRNG is very critical to the process of security as it converts the relatively 

short secret key into an arbitrarily long key sequence. Hence only the secret key needs to be 

distributed among the STAs. The PRNG uses the RC-4 algorithm.  

RC-4 uses a private and a public key.  

e: Public key 

 d: Private key 

 n: number used to find e (this is also a public key) 

To generate the keys, two large prime numbers p and q are chosen such that:  

 qpn ×=  (4) 

Randomly an encryption key is chosen such that e and (p-1) X (q-1) are relatively prime. 

The decryption key is computed using Euclid’s algorithm such that: 

 ))1()1(mod(1 −×−×=× qpde  (5) 

d and n are relatively prime. 

In the end, publish e and n, keep d secret and discard p & q. 

Dynamically set the initial state to configure any starting random integer and corresponding 

sequence. 
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Cipher Engine 

WEP Cipher Engine is a simple entity that performs bitwise XOR of the 8-bit plaintext 

and 8-bit keystream. The resultant will be 8-bit encrypted text. This gives the WEP a simple, fast 

but very powerful encryption engine as it is merging the properties of plaintext and random 

keystream together without any increase in the size of the output.  

Control Logic and Data Path 

As the ICV algorithm is working bit by bit and the rest of the unit works on byte, and the 

resultant 32 bits are fed 8 bit at a time thus a parallel to serial converter is used at the beginning 

and end of ICV module. 

The controller first initializes and randomize the RC4 PRNG and once the RC4 PRNG is 

ready to use the data path of keystream and input data is enabled. At the end of the packet input 

data path is disabled and the ICV serial to parallel cov2 data path is enabled, results in encrypted 

ICV at the end of the packet. 

Implementation 

CRC32 

On the application of reset or the end of the beginning of the CRC calculation; the 32 bit 

CRC registers have reset to zeroes and a bit value is given to the module from the parallel to 

serial converter at every clock cycle. A dataavailble signal is used to indicate that datapath has 
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valid data for the period. After the dataavailable goes low the controller waits for the last bit to 

propagate to the last register which takes 32 clock cycles. For this time period a crc_busy signal 

goes high, indicating that the ICV module is busy calculating CRC32 value of the data; and at 

the end of calculation (which is data_avalble + 32 clock cycles) the signal goes low indicating 

the current 32-bit output in CRC32 is valid CRC output of last input data packet. The value is 

held until the next data_available or reset signal. On application of Reset clear out all 32 registers 

with zeroes. A active (high) data_available signal with inactive (low) reset pulled up the busy 

signal notify other modules that CRC calculation has begin and CRC register contents are 

invalid. An input data bit fed form parallel to serial converter is sampled at the rising edge of the 

clock and shifted into the CRC shift registers from LSB side. The busy signal remains high for 

next 32 clock cycle after the data_available goes low, which ensure the propagation of the last 

input bit till the end of the CRC register. The valid or correct CRC result is notified by high to 

low transition of the busy signal. The value is held in the register until the next data_available or 

reset signal. 
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Figure 4: generation of ICV using CRC32 algorithm 

 

The implemented CRC function is realization of well known CRC polynomial  

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 X4 + X2 + X1 

used in various error recovery algorithms and WEP. This implementation is simple shift register 

and XOR network in loop back. 
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Concatenater 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Concatenater  

 

Simulation shows the generation of seed as a result of concatenation of IV and SK. On 

every rising edge of clock IV and SK are sampled and held in the 64 bit register. The lower 24 

bit (0 thru 23) of 64 bit are sampled IV and next 40 bit (24 thru 63) are SK. Simulation shows 

that change in any one or both at any time will reflect at next rising edge. 
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Parallel to Serial Converter 

 

 

 

 

 

 

 

 

 

 

Figure 6: Parallel to Serial Converter 

 

An handshaking signal ack is used to let other units know that current input data has 

sampled and data at input port can be changed without any effect on the current output; This 

ensure the data has delivered to ICV unit and rest of the time (9 clock cycles of parallel to serial 

converter) could be utilize for the next data settlement. Busy signal is activated (high) from 

sampling to the shifting output, which notifies other units that parallel to serial converter is 

processing data and cannot sample any input data at this time. This in conjunction with ack 

signal shows the other units that output at output post is a valid serial data output. The output 

data will be valid when busy signal will be high and ack signal has not received. 
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The data bits in the shift register are shifted bit by bit at rising edge of clock; a 3-bit 

counter is used to shift 8 bits. Counter reseted at high ack. Busy signal is dropped low after 7. 

Output is shifted to right that is from MSB to LSB and output starts with the LSB and ends with 

MSB. Zeroes are inserted from MSB side, which ends all zeroes at the end in the shift register. 

The shifting process starts as soon as a data_available signal comes and an ack has responded 

back. 

Random Generator 

A handshaking signal ‘SET’ is used to initialize the random generator every time IV 

changes, and ACK is outputted to acknowledge that the input SEED has been read and can be 

changed. Initially, the random generator has the unknown contents. The small initial setup time 

is required for the random generator, after initialization the generator is capable to generate a 

random byte every clock cycle. 
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Figure 7: Random Generator 

Attacks 

The simple passive gathering and analyzing of packets as they are transmitted through the 

air can compromise a WEP network. This type of analysis can be performed by a standard 

personal computer with off the shelf hardware and freely available software. 

WEP uses RC4 encryption algorithm, which operates by expanding a short key into an 

infinite pseudo-random key stream. If an attacker flips a bit in the cipher-text, then upon 

decryption, the corresponding bit in the plaintext will be flipped. If an eavesdropper intercepts 

two cipher-texts encrypted with the same key stream, it is possible to obtain the XOR of the two 

plaintexts. Knowledge of this XOR can enable statistical attacks to recover the plaintexts. The 

statistical attacks become increasingly practical as more cipher-text use the same key streams 
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that are already known. Once one of the plaintexts becomes known, it is trivial to recover all of 

the others. To ensure that a packet has not been modified, WEP uses an Integrity Check Value 

(ICV) field in the packet. To avoid encrypting two cipher-texts with the same key stream, an 

initialization vector (IV) is used to augment the shared key and produce a different RC4 key for 

each packet. The major attacks to WEP are given as follows: 

• Active attack: Modification of the packet by modifying the ICV. 

• Passive attacks: 

o Integrity violation by analyzing the IV 

o Table based attack for decrypting every packet that is sent over the wireless link. 
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NOVEL SCRAMBLING ALGORITHM 

In this chapter we propose two algorithms to patch the WEP protocol against the 

described attacks in chapter WIRED EQUIVALENT PRIVACY (WEP). 

We have attempted a minimal required solution for the various attacks in the WEP 

protocol. In this chapter we will discuss the about the design, implementation and analysis of the 

algorithms to develop a practical and a viable infrastructure for robust WEP implementation. We 

have designed two algorithms and called Scrambling Algorithm (SA) to randomize the contents 

of WEP.  

In the SA, a random octet is inserted at a random position. The random position is 

obtained by RC4 as a function of the secret key. Currently, the octets contain random 

information, however, these octets can be utilize for further improvement in security of the 

packets (e.g., dynamically changing secret keys (TKIP)). Octet insertion is applied to three 

different fields in the packet format, namely, ICV, IV and cipher-text, to reduce the vulnerability 

for each of the attacks mentioned above. One octet is inserted for both ICV and IV. However, 

due to the length of the cipher-text and the need to improve security, more octets are inserted to 

the cipher-text. In the cipher-text, the SA distributes the random octets at random positions in 

such a way that density of octets reduces along with the length of the packet, which ensures 

insignificant increase in the packet size for large packets. 

Each field (IV, cipher-text, ICV) uses one RC4 key-stream octet, to find random position 

for insertion of random octet. Thus every packet requires 3 RC4 octets from the key-stream, thus 

the key stream is divided into sets of 3 octets, and where one set is used for each WEP frame. We 

have two major algorithms using these sets for inserting the random octet at a random position.  
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Algorithm 1: IV and ICV randomizations / extraction 

Algorithm 1: IV and ICV randomizations / extraction uses the first and last octet of the 

set to randomize cipher-text to randomize IV and ICV. It uses 5 lower bits of first octet from a 

set to randomize IV and 5 lower bits of third octet to randomize ICV. It inserts a random octet in 

IV and ICV at random position depending upon the value of these 5 bits. 

Algorithm 

For entire transmission 

    Fetch packet_number and IV/ICV from 802.11 protocol 

    Fetch random data content for the octet from memory 

     Calculate_random_position(RC4(secret_key)  

     [i *packet_number],field_length) 

     Insert/Extract the octet at the calculated random position  

End for 

where i is the number of RC4 octets used per packet for randomness. 

Algorithm 2: Algorithm for cipher randomization / extraction 

Algorithm 2: Algorithm for cipher randomization / extraction uses the second octet of the 

set to randomize cipher-text. The distributive algorithm used in Algorithm 2: Algorithm for 

cipher randomization / extraction incorporates the LSBs of octet to find the random point in the 

chunk. The size of the chunk is increased exponentially to utilize the different patterns of second 

octet and to create high random density at the starting of the cipher field (explained in analysis). 
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Distributive algorithm ensures the insertion of the random octet at the random position through 

out the chunk, which is always in the range of 0 to current chunk size. A chunk is a portion of 

input stream whose size is increasing logarithmically and dependent on the chunk number or 

chunk position. Each chunk is twice the size of its previous chunk and the first chunk is 1 byte 

wide. This is due to the random pointer being pre-pended with one bit to point the random 

position, which results in twice as many points as the earlier one, so the size is doubled every 

time. If pre-pending is not binary but rather octal or hex then chunk sizes will be 8 times or 16 

times of its predecessor. 

Algorithm 

For Entire transmission 

     Fetch packet_number from 802.11 protocol 

     Reset Cipher_octet_cntr to 0; 

     Reset octets_processed to 0; 

     While not end of the cipher-text 

         If (random_position == current position) then 

            /* 

(random_position = distributiveAlgorithm (No_of_inserted_octets, 

packet_number)) == Cipher_octet_cntr  

*/ 

(Fetch random data content for the octet from memoryInsert the octet in the current 

position) OR (Remove the current octet from stream) 
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octets_processed = octets_processed+1; 

         End if 

         Insert an octet of cipher-text; 

         Cipher_octet_cntr = Cipher_octet_cntr +1; 

         Fetch next cipher octet; 

     End While 

End For 

 

SubProc: Return pos distributiveAlgorithm (No_of_inserted_octets, packet_number) 

    pos = RC4(secret_key)[packet_number*i+2][0 to No_of_inserted_octets] 

/* packet_number*i+2 points to the second octet among the current set of RC4 octets  used */ 

End subProcedure; 

Scrambling 

Performing the insert action in the above algorithms results in the Scrambling of the 

original WEP cipher-text. This action causes the insertion of the random octet at the random 

position obtained from distributive algorithm. Insertion could be the part of another protocol 

enhancing security or other robustness, but must not be the function of SK, because combination 

of Scrambling algorithm and it may cause major leak of Secret key information. 
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De-scrambling 

Algorithms are designed in such a way that same design implementation can be sued to 

achieve both scrambling and descrambling, thus not necessarily requiring different hardware, 

which further helps in reduction of hardware and thus power, cost and size. Performing the 

extract action in the above algorithms results in the descrambling of the scrambled WEP cipher-

text. The extracted octet is then made available for other processors if used for other 

enhancements. 

Implementation 

The cipher-text is randomized in decreasing density of randomness. We are dividing 

cipher-text into virtual chunks of different sizes and adding random contents at random positions 

in each chunk. The size of a chunk is determined by the formula: 2 (chunk number), as shown in Table 

1. 
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Table 1: Chunk specification and randomization of binary values in chunk 

Chunk no 

Cp 

Max chunk size 

Cs = 2^Cp 

Chunk size 

Cs 

Chunk size after randomized 

Cs+1 

Min-max of valid random 

positions 0-Cs 

0 20 1 1 – 2 0 – 1 

1 21 1 – 2 1 – 3 0 – 2 

2 22 1 – 4 1 – 5 0 – 4 

3 23 1 – 8 1 – 9 0 – 8 

4 24 1 – 16 1 – 17 0 – 16 

5 25 1 – 32 1 – 33 0 – 32 

6 26 1 – 64 1 – 65 0 – 64 

7 27 1 – 128 1 – 129 0 – 128 

8 28 1 – 256 1 – 257 0 – 256 

 

 

We have implemented the proposed algorithm in MATLAB to verify the functionality at 

the system level. Furthermore, the algorithm is behaviorally modeled in VHDL to obtain 

hardware simulation and verification. The architecture of the implemented patching algorithm is 

given in Figure 8. The algorithm works as a post-processor to the WEP protocol. It takes the 

WEP input and applies randomness to it as specified in section 2. In the architecture, BAB (Bit 

Addressable Memory Bank) is having 2 banks of bit addressable memory. Bank 1 is, of size 32 

bits, used to hold input WEP content either IV or ICV. Bank 2 is, of size 48 bits, used to hold the 

resultant randomized output of IV or ICV. Cntr 1 is used to point bits in Bank 1 for the IV 

starting of the packet and decreases across the length of the packet. 
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Figure 8: Architecture of the implemented patching algorithm 

 

Random insertion positions in above test simulation are calculated by the controller 

(shown in architecture), which has access to RC4 octets from WEP implementation. In the above 

test, the RC4 octet has a binary value of ”00011100”. The last bits of the obtained RC4 octet are 

used to give different positions in the mth chunk between the range of 0 and the maximum chunk 

size. 

The dashed region in Fig. 3 is zoomed in Fig. 4 to illustrate the insertion of random octet 

in details. In every clock cycle, input is read and forwarded to output if the current state is 

READ_INP_PORT state. When the current state is INSERT state, a control signal is sent to FIFO 

to wait for a clock cycle; in which the system inserts the random content. 
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Simulation Results 

IV Randomization 

Above simulation result demonstrate the implementation of Algorithm 1: IV and ICV 

randomizations / extraction. 

Signal clock is a global clock input signal to the system generated by the clocking 

circuitry of the system. All the events are synchronized at the clock transition. Signal reset is 

another global reset input signal to the system, which resets the system to the initial condition 

where all required registers are initialized and the system is brought up into IDLE state. 
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Figure 9: IV Randomizing  

 

Signal portIn is an 8-bit input which provides the data entry point to the system. Data at 

this port is sampled for 3 consecutive clock cycles for each packet in READ state. 

CURRENT_STATE is the state register for the system, which maintains the current state of the 

system depending upon the previous state and the output of previous state, which is also used to 

determine the next state. Signal Start_end_sig is input to the system that shows whether packet 

has started or ended. A high on it when all of the 3 systems (IV randomizer, CiRandomizer, 

CRCRandomizer) are IDLE causes start of the packet, else end of the packet. Count1 and count2 

are counter registers used as data pointers to point the processing and processed data. 

Data_holder is a 24-bit, bit addressable register used to store a 24-bit IV. Data holder is written 
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in read state in 3 consecutive clock cycles and read in READ and FILL states. New_data_holder 

is a 32 bit, bit addressable register that is used to store new generated IVs (actual IV + 8 bit 

unrelated data). On every clock transition, reset input is sampled and on high, reset system goes 

into IDLE state. Current state is IDLE (see Figure 10) due to high Reset input. In the RESET 

state all the registers and counters are reset to zero(s). At low Reset, input system waits for 

start_end_signal, which is high on start and end of the packet. 

  

 

Figure 10: IV Randomizing showing insertion of random octet 

 

(If state is IDLE; a high on it states packet start else packet end). On high start_end _signal, 

system goes into READ state and reads 3 bytes from port. System enters into SEARCH state after 
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read state and counter 1 and counter 2 increments every time; in the design counter1is used to 

point the bit position of data_holder register holding input-24 bits of IV and counter2 is used to 

point bit position of new_data_holder register which will be the resultant modified 32 bit IV. 

One bit is copied from data_holder to new_data_holder register, upon the match of first four bit 

of RC4(1) and counter1 system goes into INSERT mode, during which counter 2, which is 

already initialized with 0, keeps incrementing causing insertion of 8 random bits 

After inserting a random byte, system enters into FILL state where the remaining bits are 

filled as they are. After filling the bits, system enters into IVdone mode and signals to next 

system for further processing and finally returns to the IDLE state and waits for the next input 

packet. 

 The result of this application is the insertion of an 8 bit random octet into IV at random 

positions obtained from RC4 keystream. Figure 11 demonstrates the result. 

 

 

 

 

 

 

 

Cipher textIV
24 + O(n+1) 

O(n+1) 
F(O(n) 

Cipher text
24 bits 

Figure 11: a) IV a) before b) after application of Algorithm 1: IV and ICV randomizations / 
extraction          
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Cipher Randomization 

The simulation result shown below demonstrates the implementation of Algorithm 2: 

Algorithm for cipher randomization / extraction. 

 

Figure 12: Cipher Randomization showing different states 
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Figure 13: Cipher-text randomization showing random insertion positions 
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Figure 14: Cipher-text randomization showing random insertion 

 

Signal clock and Reset, PortIn, CURRENT_STATE, Count1 and Count2 function in a similar 

manner as described in the previous section Signal T_start_end is input to the system, which 

shows that previous system has completed the task. Signal Port_read is output signal that 

indicates to the previous unit that data has been read (if it is high) else data is required to be held 

at the input port for next clock. On every clock transition, reset input is sampled and on high 

reset system goes into IDLE state. A high on T_start_end denotes the completion of the previous 

stage and the start of the Cipher Randomizing module. Current state is IDLE due to high Reset 
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input (see Figure 12). In the IDLE state all the registers and counters are reset. At low Reset, 

input system waits for Tstart_end, which is high on completion of the previous stage. On high 

Tstart_end, the system goes into INITIAL state where it finds if the insertion point is at the very 

beginning or not by reading and comparing second octet of current set of RC4 with the counter1 

value. If the first position is the insertion point then the system directly goes into INSERT state, 

else it goes into READ_PORT state where it reads a byte from the port and makes available the 

randomized output to the next unit.  

 

 

Figure 15: Cipher Randomizing (idle, initialize, insert, read states) 

 

The system then remains in the READ_PORT state and continues transmitting the input port data 

as long as it does not encounter the next insertion point; and then again the system goes into the 
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INSERT state if it is not the end of the packet. In the INSERTING state, the system transmits the 

random byte rather than the input port byte and forces the read_port signal to 0 thereby 

acknowledging the source of the data that the byte has not yet been read and thus needs to be 

available during the next clock cycle. At the end of the packet, the system comes into CIDONE 

state, which requests the next unit to begin functioning. We use a four byte FIFO at the input port 

from which data is read, so that ‘end of the packet’ can be detected 4 bytes earlier, and thus the 

last 4 bytes can then be diverted to CRCrandomizer. 
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Figure 16: Cipher Randomizing a) before b) after application of Algorithm 2: Algorithm for 
cipher randomization / extraction 
 

 
Figure 16 demonstrates the change in the cipher text due to the application of the Algorithm 2: 

Algorithm for cipher randomization / extraction. 

CRC Randomization 

The simulation results shown below demonstrate the CRC randomization using 

Algorithm 1: IV and ICV randomizations / extraction. This module works very similar to the IV 
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randomizer module. There are a few differences, them being: the Data at the input port is 

sampled for 4 consecutive clock cycles; unlike in the IV randomizer where it is 3 cycles during 

the READ state. Data_holder is a 32-bit, bit addressable register used to store a 4 byte (32 bits) 

CRC. New_data_holder is a 40 bit, bit addressable register used to store new, modified CRC 

(actual CRC + 8 bit unrelated data). 

 

  

Figure 17: CRC Randomizing  

  46



  

Figure 18: Zoomed view showing the IDLE, READ_PORT, SEARCH state transitions 
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Figure 19: CRC Randomizing  

 

The module functions similar to the IV randomizer. The application results in the change 

in the CRC as shown in the Figure 19. 
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The affect of the application due to these algorithms to IV, Cipher, CRC fields will result 

in the randomization of the whole MPDU as shown Figure 20. 
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Figure 20: Packet formats for the WEP and modified scrambled WEP by the scrambling 
algorithm 
 

Analysis 

Algorithm 1 

Insertion of an 8-bit random octet in 24-bit IV at any random position, obtained from 

Calculate_random_position function, results in 6144 different patterns of the same IV. 

This means an attacker needs to analyze 6,144 more patterns to decrypt the message in case of an 

IV collision. Thus, the improvement in security is 6144 times for IV based attacks. The same 

improvement in the ICV based attacks is 8192  times as ICV is 32 bits long. 

)224( 8×

)2832( ×

Algorithm 2 

Calculation of achieved randomization:  
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We insert 1 octet per chunk thus  

No of octets inserted = No of chunks processed. 

No of chunks processed = log2 (number of cipher-text octets processed) 

CP as a function of incoming octets can be written as 

  (6) )(log)( 2 nnC P =

Each insertion has s positions among which one has to be selected randomly where s = chunk 

size. 

Before applying the algorithm, the size of a chunk CS at position CP can be calculated as 

  (7) 2)( CCC PPS =

Since every chunk has one random octet in it, the total number of random octets inserted can be 

given as  

 )(log1)(1)( 2 nnCnR PO +=+=  (8) 

For each chunk obtained randomization is: 

28)( CCionRandomizat SS =  

For m chunks the total randomization will be  

)8)
2

)1(((1)1( 22...22
+

−×
− =×××

mm
mm  

Therefore the total improvement in security for cipher table based attacks )8)
2

)1(((
2

+
−× mm

 

The density of inserted random octets in the cipher-text can be given as 
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Figure 21: Density of random octets 

 

As depicted in Figure 21, the density makes a peak at the first 2 bytes of the insertion, 

and then it reduces logarithmically. As it requires lesser computational power to retrieve original 

WEP cipher-text from small number of input octets, we use distributive algorithm to maintain 

high density of randomness at the beginning of the frame and reduce logarithmically over the 

length of the frame, using distributive algorithm. 

The number of octets in the modified packet will be given by  

 )()( nRnnN O+=  (10) 

 

  50



 

Figure 22: The number of octets in the modified packet Vs the number of incoming octets. 

 

 Figure 22 illustrates the change in the ciphered section of WEP packet due to the 

Algorithm 2: Algorithm for cipher randomization / extraction, which shows that for 50 input 

octets, the modified cipher will be 56 octets, and for 1024 octets it will be 1035 octets. 

Now, let us calculate the probability of an intruder successfully retrieving the cipher-text 

stream from the scrambled WEP output. 

First, the probability of finding a random octet in a chunk can be given as 

 
1)(

1)(
+

=
nC

nP
S

FR  (11) 

Then, the probability of successfully retrieving the whole cipher-text (i.e., breaking the 

scrambling algorithm for the cipher-text randomization - The probability of finding all random 

octets) will be 

  (12) ∏
=

=
n

i
FRSR iPnP

1

)()(
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Figure 23: PSR versus n 

 

As the number of cipher-text octets increases linearly, the probability of breaking the 

scrambling algorithm for the cipher-text randomization decreases exponentially. For the packets 

with a cipher-text of 5 octets or more, the probability becomes 0.00097 or less. 

 Computational Complexity: calculated in the terms of the number of different patterns 

generated for same data pattern. 

Different patterns for the same 24-bit IV can be given as: 

 
C x1 n( ) 28 24⋅:=

 (13) 

Different pattern for the same n data bits can be given as: 

 
C x2 n( ) 28 log n 2,( )⋅( ) C p n( )⋅:=

 (14) 

Different pattern for the same CRC can be given as: 
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C x3 n( ) 28 32⋅

:=
 (15) 

Increased total Complexity difficulty can be given as: 

 
Cx n( ) Cx1 n( ) Cx2 n( )+ Cx3 n( )+:=

 (16) 

 

 

Figure 24: Computational Complexity and Chunk position 

 

 Curve shows the increase in the requirement of computational power to recover the WEP 

cipher-text from the scrambled cipher text. 

Smart attack 

Algorithm 1 

In Algorithm 1 attacker will try to match the bits of IV with the already created IV bank. 

On a mismatch attacker will skip the next 8 bits and will try to match the remaining to the IV. 
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This attack will require at most 24 matching for IV and 32 for ICV for every match in the bank. 

But not only 255 different IVs can have same scrambled IV pattern but also same IVs can have 

24 same scrambled patterns. 

For example, if an attacker got IVx, IVy, IVz as follows: 

IVx = 1101 0011 0101 1011 0010 0010 0101 1100 

IVy = 1101 0011 0101 1011 0010 0010 0101 1100 

IVz = 1101 0011 0101 1011 0010 0010 0101 1100  

By bit comparison attacker can guess IVx, IVy, and IVz are same 

But actual contents at transmitter are 

IVx = 1101 1011 0010 0010 0101 1100   

With random byte (0100 1101) inserting at 2nd position 

IVy = 1101 0011 0010 0010 0101 1100 

With random byte (1101 0110) inserting at 6th position 

IVz = 1101 1011 0010 0010 0101 1100  

With random byte (0011 0101) inserting at 4th position 

Here IVx and IVz are generated from same IV and IVy has generated from different IV, but 

attacker cannot figure it out and has to analyse for all the cases 

IVx = 1101 0011 0101 1011 0010 0010 0101 1100  

IVy = 1101 0011 0101 1011 0010 0010 0101 1100 

IVz = 1101 0011 0101 1011 0010 0010 0101 1100  

This demonstrates that not only 24 cases are needed to analyze as that will match the IVx 

to IVy. Attacker has to match 24 cases of every match in the bank (255) that will be 24*255 

cases. Also we have assumed that IV bank has created already, but lot more problems are 
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involved in building the bank, as to find out the received IV1 and IV2 are different or same. As 

both results in same scrambled IV that again creates problem if we have IV collision as IV1 and 

IV3, which attacker does not know and has to make different row in the bank for every one of 

these input IV or ICV.  

Algorithm 2 

In Algorithm 2 attacker will try to reveal the random bits used in the previous chink. As 

for the new chunk all the bits used to point random positioning in the previous chunk are used 

and one bit is appended to the random chunk pointer, an attacker can only look for the new bit in 

the chunk and by analyzing the packet chunk by chunk attacker may have less complexity. If 

attacker successfully guesses the random byte in all the chunks, its computational difficulty will 

be 2Cp. And if cannot guess the random byte correctly in any chunk than it will be (2(Cp*(Cp-1)/2)) 

But in real case an attacker has to analyze all the cases (max computational difficulty) as 

he does not know before hand that the result of guess is correct, even if he has guessed correctly. 

For example, if the attacker assumes that the first byte of chunk 0 is random (when bit 0 

of current used set of RC4 key-stream (RC4(SK)[set][2][0]) is 0) and analyzes the next chunk 

accordingly, the next chunk says either 0th or 2nd position could be random insertion. 

Thus, it gives  

2 insertion positions will be for the first chunk  

2 insertion positions will be for the next chunk if 1st guess is correct  

2 insertion positions will be for the next chunk if 2nd guess is correct 

2 insertion positions will be for the next chunk if 3rd guess is correct 
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2 insertion positions will be for the next chunk if 4th guess is correct 

And so on… 

That will result in 2Cp conditions if all the guesses are correct  

If the 2nd guess is incorrect than  

2 insertion positions will be for the next chunk first chunk  

2 insertion positions will be for the next chunk 1st guess is correct  

4 insertion positions will be for the next chunk if 2nd guess is incorrect 

8 insertion positions will be for the next chunk as 3rd guess is uncertain 

16 insertion positions will be for the next chunk as 4th guess is uncertain 

And so on, that gives 2*2*2(4-2)* 2(4-3) patterns to match 

Thus, if the zth guess is incorrect than total computational difficulty will be 

2z*(2(Cp-Z)…. 21)  (17) 

But as attacker does not know before hand that his guess is correct so he has to analysis 

all the cases obtained from eq 17. 
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CONCLUSIONS AND FUTURE WORK 

A novel, scrambling algorithm is proposed to patch WEP protocol. The algorithm is 

implemented in MATLAB and VHDL and is verified through simulations. Mathematically, it 

achieves an aggregate of 6144 times improvement in WEP security for 

table based attacks, where m is the number of chunks in cipher-text. The hardware 

implementation of the algorithm requires only adding two counters, few registers and a simple 

controller. Thus the algorithm provides a robust WEP security system without substantially 

increasing the overall implementation cost. 

)8)2/)1(((28192 +−×++ mm

This implementation increases the data security in various aspects (integrity, 

confidentiality) by a degree of thousand, with very little change in hardware and the packet size. 

This implementation is compatible with WEP. It is integrated into the WEP protocol, so 

that it could either replace the WEP processor or work as a pre and post processor of WEP. It can 

also easily incorporate other protocols to change the Secret Key dynamically after a certain 

number of packet transmissions. 

Issues of concern that can be further researched on are: 

• Optimization of IV/ CRC32 algorithms for insertion of random octets at random points.  

• Utilization of inserted random octets in error recovery or data compression. 

• To incorporate TKIP into the algorithm.  

• To use byte-wise operation on IV and CRC, which currently uses bit-wise. 

• Other insertion approaches such as octet shuffling (trade off between size and efficiency) 

rather than the interpolation process as discussed in this thesis.  
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