346,136 research outputs found

    Top-Down Integration Methodology for Clocking Blocks into High Speed Serial IO

    Get PDF
    High Speed Serial Input-Output (HSIOs) design architecture is widely used for many applications in today’s System-On-Chips (SOCs). SOCs integrate a number of protocols including PCIe, SATA, SD4, USB3, etc. which are based on IO architecture. Typical HSIO integrates Analog blocks such as Receiver (Rx), Transmitter (Tx) and Clocking (PLL, Clock Distribution) functions along with sea of logic gates for PCS (Physical Connectivity Sub layer), logic micro-partitions for Tx/Rx power management, encoding/decoding and Serialization/Deserialization functions. The top level design database is typically RTL leading to a sea of gates when synthesized. The top level design is implemented using standard ASIC design flow including RTL, Simulation, Synthesis, Timing, Place & Route, and Formal Verification etc. However, the partitions for Tx, Rx, PLL and Clocking are Analog/Custom hard-macros. To ensure proper functionality, integrity (for low power, timing, Place and route, Mixed Signal/IP level validation) we need to model hard-macros in a digital friendly manner. For functionality verification purpose, we model the macro behavior in Verilog, timing needs to be abstracted in industry standard liberty file format (lib file), for place and route we abstract the physical information in LEF/FRAM format etc. In HIP, while there are methods to build these individually, streamlined methodology for building these with consistency, quality and flow friendly manner is missing. The focus of this project is to formulate a methodology for hard-macro integration into top level HSIO database, and apply this for Secure Digital card (SD4) IO that is being developed in IP Blocks. DOI: 10.17762/ijritcc2321-8169.15066

    User flexibility aware price policy synthesis for smart grids

    Get PDF
    In order to optimally manage a modern electricity distribution network, peaks in residential users demand should be avoided, as this can reduce energy and network asset management costs. Furthermore, this must be done without compressing residential users demand. To this aim, in a demand response setting, residential users are given a price policy, which economically motivates them to shift their loads in order to achieve this goal. However, if the price policy for all users is similar, this demand response may result in simply shifting the demand peaks (peak rebound), leaving the problem unsolved. In this paper we propose a novel methodology which i) for each network substation s, automatically computes the desired power profile to be kept in order to optimally manage the network itself, ii) for each network substation s, automatically synthesizes individualized price policies for residential users connected to s, so that s is kept at the desired profile. Note that price policies individualization avoids the peak rebound problem, as different users have different low tariff areas. Furthermore, our methodology measures the flexibility of a residential user as the capacity needed by a home energy storage system (e.g., a battery) to always follow the given price policy, thus mitigating residential users discomfort. We show the feasibility of our approach on a realistic scenario taken from an existing medium voltage Danish distribution network

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    The Political Economy Of Sanitation: How Can We Increase Investment and Improve Service For The Poor?

    Get PDF
    This report presents the results of a Global Economic and Sector Work (ESW) Study on the Political Economy of Sanitation in Brazil, India, Indonesia, and Senegal that was conducted by the Water and Sanitation Program (WSP) and the World Bank. Its purpose is to help WSP and the World Bank -- through a better understanding of the political economy of sanitation -- in their efforts to support partner countries and development practitioners in the design, implementation, and effectiveness of operations that aim to provide pro-poor sanitation investments and services to improve health and hygiene outcomes

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Theoretical results of research on spatial and territorial development (with examples on the european north of Russia)

    Full text link
    This article focuses primarily on the correlation between the concepts of “spatial” and “territorial” development. It is shown that, while differing in their content, these concepts substantially complement each other when it comes to specific research studies. In this case, the topic of spatial development includes considering the general areas for the location of productive forces, geographic dimension of the specific types of economic activities, economic measurement of distances, linear communications and a network structure of the economy while. In the topic of territorial development, the author introduces the territory itself as a natural and economic capital and territorial economic management based on such capital. The study of spatial and territorial aspects of socio-economic development in the European North of Russia (ENR) showed that its immediate future is associated not so much with the large projects aimed at creating new fuel and energy, mineral and raw material, or forestry bases, as with the improvement in the existing economic systems based on scientific and technological progress and interregional integration. The progression from developed territories to new Arctic and Northern locations is associated with tremendous costs and requires time for scientific and technical preparation. The modernization of existing production facilities, territorial and production complexes is a priority in the development of productive forces in ENR. The author proposes to apply the theoretical provisions and practical recommendations formulated as a result of studying the spatial and territorial development in the elaboration of government strategic planning documents. Currently, the practice of strategic planning does not fully consider the substance of such concepts as “spatial development” and “territorial development.” This incompleteness is so significant that overcoming it should be considered as one of the key objectives pursued by the regional policy

    Economic and environmental strategies for process design

    Get PDF
    This paper first addresses the definition of various objectives involved in eco-efficient processes, taking simultaneously into account ecological and economic considerations. The environmental aspect at the preliminary design phase of chemical processes is quantified by using a set of metrics or indicators following the guidelines of sustainability concepts proposed by . The resulting multiobjective problem is solved by a genetic algorithm following an improved variant of the so-called NSGA II algorithm. A key point for evaluating environmental burdens is the use of the package ARIANE™, a decision support tool dedicated to the management of plants utilities (steam, electricity, hot water, etc.) and pollutants (CO2, SO2, NO, etc.), implemented here both to compute the primary energy requirements of the process and to quantify its pollutant emissions. The well-known benchmark process for hydrodealkylation (HDA) of toluene to produce benzene, revisited here in a multiobjective optimization way, is used to illustrate the approach for finding eco-friendly and cost-effective designs. Preliminary biobjective studies are carried out for eliminating redundant environmental objectives. The trade-off between economic and environmental objectives is illustrated through Pareto curves. In order to aid decision making among the various alternatives that can be generated after this step, a synthetic evaluation method, based on the so-called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) (), has been first used. Another simple procedure named FUCA has also been implemented and shown its efficiency vs. TOPSIS. Two scenarios are studied; in the former, the goal is to find the best trade-off between economic and ecological aspects while the latter case aims at defining the best compromise between economic and more strict environmental impact

    Optimizing construction of scheduled data flow graph for on-line testability

    Get PDF
    The objective of this work is to develop a new methodology for behavioural synthesis using a flow of synthesis, better suited to the scheduling of independent calculations and non-concurrent online testing. The traditional behavioural synthesis process can be defined as the compilation of an algorithmic specification into an architecture composed of a data path and a controller. This stream of synthesis generally involves scheduling, resource allocation, generation of the data path and controller synthesis. Experiments showed that optimization started at the high level synthesis improves the performance of the result, yet the current tools do not offer synthesis optimizations that from the RTL level. This justifies the development of an optimization methodology which takes effect from the behavioural specification and accompanying the synthesis process in its various stages. In this paper we propose the use of algebraic properties (commutativity, associativity and distributivity) to transform readable mathematical formulas of algorithmic specifications into mathematical formulas evaluated efficiently. This will effectively reduce the execution time of scheduling calculations and increase the possibilities of testability

    Study on Capacity, Change and Performance: Interim Report

    Get PDF
    In 2002 the chair of the Govnet, the OECD's Network on Governance and Capacity Building, asked the European Centre for Development Policy Management (ECDPM) in Maastricht, the Netherlands, to undertake a study of the capacity of organisations and groups of organisations, mainly in low-income countries, its development over time and its relationship to improved performance. The specific purposes of this study were twofold:to enhance understanding of the interrelationships amongst capacity, change and performance across a wide range of development experiences; andto provide general recommendations and tools to support the effectiveness of external interventions aimed at improving capacity and performance
    corecore