258 research outputs found

    Comparison of POD reduced order strategies for the nonlinear 2D Shallow Water Equations

    Full text link
    This paper introduces tensorial calculus techniques in the framework of Proper Orthogonal Decomposition (POD) to reduce the computational complexity of the reduced nonlinear terms. The resulting method, named tensorial POD, can be applied to polynomial nonlinearities of any degree pp. Such nonlinear terms have an on-line complexity of O(kp+1)\mathcal{O}(k^{p+1}), where kk is the dimension of POD basis, and therefore is independent of full space dimension. However it is efficient only for quadratic nonlinear terms since for higher nonlinearities standard POD proves to be less time consuming once the POD basis dimension kk is increased. Numerical experiments are carried out with a two dimensional shallow water equation (SWE) test problem to compare the performance of tensorial POD, standard POD, and POD/Discrete Empirical Interpolation Method (DEIM). Numerical results show that tensorial POD decreases by 76×76\times times the computational cost of the on-line stage of standard POD for configurations using more than 300,000300,000 model variables. The tensorial POD SWE model was only 28×2-8\times slower than the POD/DEIM SWE model but the implementation effort is considerably increased. Tensorial calculus was again employed to construct a new algorithm allowing POD/DEIM shallow water equation model to compute its off-line stage faster than the standard and tensorial POD approaches.Comment: 23 pages, 8 figures, 5 table

    Reduced Order Optimal Control of the Convective FitzHugh-Nagumo Equation

    Full text link
    In this paper, we compare three model order reduction methods: the proper orthogonal decomposition (POD), discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) for the optimal control of the convective FitzHugh-Nagumo (FHN) equations. The convective FHN equations consists of the semi-linear activator and the linear inhibitor equations, modeling blood coagulation in moving excitable media. The semilinear activator equation leads to a non-convex optimal control problem (OCP). The most commonly used method in reduced optimal control is POD. We use DEIM and DMD to approximate efficiently the nonlinear terms in reduced order models. We compare the accuracy and computational times of three reduced-order optimal control solutions with the full order discontinuous Galerkin finite element solution of the convection dominated FHN equations with terminal controls. Numerical results show that POD is the most accurate whereas POD-DMD is the fastest

    A FOM/ROM Hybrid Approach for Accelerating Numerical Simulations

    Get PDF
    corecore