4,583 research outputs found

    Development of a space qualified high reliability rotary actuator. Volume 1: Technical report

    Get PDF
    A space-qualified, high reliability, 150 ft-lb rated torque rotary acutator based on the Bendix Dynavector drive concept was developed. This drive is an integrated variable reluctance orbit motor-epicyclic transmission actuator. The performance goals were based on future control moment gyro torquer applications and represent a significant advancement in the torque-to-weight ratio, backlash, inertia and response characteristics of electric rotary drives. The program accomplishments have been in two areas: (1) the development of two high ratio (818:1) actuator configurations (breadboard and flightweight), and (2) the invention of a reliable proximity switch sensor system for self-commutation without use of optical or electrical brush techniques

    Development of a drive system for a sequential space camera

    Get PDF
    An electronically commutated dc motor is reported for driving the camera claw and magazine, and a stepper motor is described for driving the shutter with the two motors synchronized electrically. Subsequent tests on the breadboard positively proved the concept, but further development beyond this study should be done. The breadboard testing also established that the electronically commutated motor can control speed over a wide dynamic range, and has a high torque capability for accelerating loads. This performance suggested the possibility of eliminating the clutch from the system while retaining all of the other mechanical features of the DAC, if the requirement for independent shutter speeds and frame rates can be removed. Therefore, as a final step in the study, the breadboard shutter and shutter drive were returned to the original DAC configuration, while retaining the brushless dc motor drive

    Harjattoman tasavirtamoottorin arviointi opto-mekaanisessa paikkasäätösovelluksessa

    Get PDF
    This thesis evaluates the applicability of a micro-sized brushless direct current (DC) mo- tor in an opto-mechanical positioning application. Brushless DC motors are electronically commutated motors that use permanent magnets to produce the airgap magnetic field. The motor is powered through an inverter or switching power supply which produces an AC electric current to drive each phase of the motor. Optimal current waveforms are determined by the motor controller based on the desired torque, speed or position requirements. The benefits of a brushless motor over conventional brushed DC motors are a high power to weight ratio, low noise and a long operating life. The purpose of this thesis is to find out the performance potential of such motors and determine methods to achieve it. Firstly, a motor model and an exact motor classification is presented. A literature review is made to discuss state of the art control methods and hardware configurations for dynamic position control. Based on the literature review, a control scheme with field-oriented control based torque control and cascaded PI controlled speed and position loops was selected for further evaluation. Experimental positioning tests were executed for two motors with different power transmission setups. Tests were performed with both, a hardware and software implemented, motor controllers. Results show promising performance. It was shown that the required acceleration is feasible with both, geared and direct drive, transmissions. Field-oriented control was shown as a well performing method to control torque but special caution was needed to implement a reliable position sensing solution in a small size as the control algorithm is intolerant for inaccurate and noisy position data. The conventional PI based position controller was effective in cases with no feedback related harmonics or motor related torque ripple but was not capable in handling ripple caused by a non-ideal system. Quality variances were seen between motors which were originated from mechanical defects and non-idealities in the stator structure. Further research is needed to achieve a better settling performance through filtering undesired feedback harmonics, better tuning and thus minimizing undesired vibrations.Tämän diplomityön tarkoituksena on arvioida pienikokoisen harjattoman tasavirtamoottorin soveltuvuutta opto-mekaaniseen paikkasäätösovellukseen. Harjattomat tasavirtamoottorit ovat elektronisesti ohjattuja moottoreita, joissa ilmavälin magneettivuo luodaan kestomagneeteilla. Moottorille syötetään virtaa taajuusmuuttajalta, joka muodostaa halutunlaisen vaihtovirran jokaiselle moottorin vaiheelle. Syötettävää virtaa ohjataan moottorinohjaimelta määritettyjen vääntö-, nopeus- ja paikkavaatimusten perusteella. Harjattoman DC-moottorin edut verrattuna perinteiseen harjalliseen DC-moottoriin ovat hyvä teho-painosuhde, hiljainen käyntiääni ja pitkä käyttöikä. Diplomityön tavoitteena on kartoittaa kyseisen moottorityypin suorituskyky paikkasäädössä ja tutkia keinoja saavuttaa haluttu taso. Alan tutkimuksessa ja kirjallisuudessa tunnettuja suorituskykyisiä säätömenetelmiä ja laite- sekä komponenttikokoonpanoja on koostettu kirjallisuuskatsauksessa. Tämän perusteella kokeellisiin testeihin valittiin säätöarkkitehtuuri vektorisäätöön perustuvalla virransäädöllä sekä PI-pohjaisilla nopeus- ja paikkasäätimillä. Kokeellisilla paikoitustesteillä arvioitiin kahden moottorin suorituskykyä erilaisilla voimansiirtovaihtoehdoilla. Testit suoritettiin sekä ohjelmistopohjaisella että sovelluskohtaiseen mikropiiriin toteutetulla laitepohjaisella säätimellä. Tulokset osoittavat että vaaditun kiihtyvyyden saavuttaminen on mahdollista sekä vaihteellisella että suoravetoisella voimansiirrolla. Vektorisäätö osoittautui suorituskykyiseksi virransäätömenetelmäksi, mutta moottorin asentomittauksen luotettava toteutus vaati erityishuomiota, sillä vektorisäätöalgoritmi on herkkä paikkadatan tarkkuudelle. PI-säätimillä toteutettu paikkasäätö osoittautui toimivaksi, mutta herkäksi moottorin epäideaalisuuksille sekä häiriöille takaisinkytkennässä. Moottoreiden välillä havaittiin laatueroja mekaanisissa toleransseissa ja staattorin rakenteessa. Lopullisen asettumisajan saavuttaminen vaatii lisätutkimusta. Erityishuomiota on kiinnitettävä harmonisten komponenttien suodattamiseen sekä systeemin säätöön, jotta ei-toivotut värinät saadaan minimoitua

    The design and development of a constant-speed solar array drive

    Get PDF
    The design and development of a constant-speed solar array drive system for use in high power communications satellites is described. The relationship between continuity of motion in the solar array drive and spacecraft attitude disturbance is investigated. The selection of the system design based on the design requirements including spacecraft disturbance is discussed. The system comprises two main parts: the drive mechanism including small angle stepper motor and reduction gearing and the control electronics including ministepping drive circuits, such that a very small output step size is achieved. Factors contributing to discontinuities in motion are identified and discussed. Test methods for measurement of very small amplitudes of discontinuity at low rotational rates are described to assist in the testing of similar mechanisms

    Automatic exposure control for space sequential camera

    Get PDF
    The final report for the automatic exposure control study for space sequential cameras, for the NASA Johnson Space Center is presented. The material is shown in the same sequence that the work was performed. The purpose of the automatic exposure control is to automatically control the lens iris as well as the camera shutter so that the subject is properly exposed on the film. A study of design approaches is presented. Analysis of the light range of the spectrum covered indicates that the practical range would be from approximately 20 to 6,000 foot-lamberts, or about nine f-stops. Observation of film available from space flights shows that optimum scene illumination is apparently not present in vehicle interior photography as well as in vehicle-to-vehicle situations. The evaluation test procedure for a breadboard, and the results, which provided information for the design of a brassboard are given

    Sim-to-Real Learning of Robust Compliant Bipedal Locomotion on Torque Sensor-Less Gear-Driven Humanoid

    Full text link
    In deep reinforcement learning, sim-to-real is the mainstream method as it needs a large number of trials, however, it is challenging to transfer trained policy due to reality gap. In particular, it is known that the characteristics of actuators in leg robots have a considerable influence on the reality gap, and this is also noticeable in high reduction ratio gears. Therefore, we propose a new simulation model of high reduction ratio gears to reduce the reality gap. The instability of the bipedal locomotion causes the sim-to-real transfer to fail catastrophically, making system identification of the physical parameters of the simulation difficult. Thus, we also propose a system identification method that utilizes the failure experience. The realistic simulations obtained by these improvements allow the robot to perform compliant bipedal locomotion by reinforcement learning. The effectiveness of the method is verified using a actual biped robot, ROBOTIS-OP3, and the sim-to-real transferred policy archived to stabilize the robot under severe disturbances and walk on uneven terrain without force and torque sensors.Comment: 8 pages. An accompanying video is available at the following link: https://youtu.be/fZWQq9yAYe

    University of Maryland walking robot: A design project for undergraduate students

    Get PDF
    The design and construction required that the walking robot machine be capable of completing a number of tasks including walking in a straight line, turning to change direction, and maneuvering over an obstable such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear-box and crank-arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating the machine about this support. The machine can be controlled by using either a user operated remote tether or the on-board computer for the execution of control commands. Absolute encoders are attached to all motors (leg, main drive, and Bigfoot) to provide the control computer with information regarding the status of the motors (up-down motion, forward or reverse rotation). Long and short range infrared sensors provide the computer with feedback information regarding the machine's relative position to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars

    Human-centered Electric Prosthetic (HELP) Hand

    Get PDF
    Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti, we designed a functional, robust, and and low cost electrically powered prosthetic hand that communicates with unilateral, transradial, urban Indian amputees through a biointerface. The device uses compliant tendon actuation, a small linear servo, and a wearable garment outfitted with flex sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The prosthesis was developed such that future groups can design for manufacturing and distribution in India

    Automated biowaste sampling system, solids subsystem operating model, part 2

    Get PDF
    The detail design and fabrication of the Solids Subsystem were implemented. The system's capacity for the collection, storage or sampling of feces and vomitus from six subjects was tested and verified
    corecore