6 research outputs found

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Penyelesaian Permasalahan Vehicle Routing dengan Objektif Jamak yang Mempertimbangkan Keseimbangan Jarak Rute Kendaraan Menggunakan Metode Hiperheuristik

    Get PDF
    Vehicle Routing Problem (VRP) adalah salah satu permasalahan kombinatorik yang sulit dipecahkan. VRP bertujuan untuk menghasilkan serangkaian rute terpendek dari beberapa kendaraan berkapasitas sama untuk mengunjungi beberapa pelanggan dengan batas waktu tertentu. Sebagian besar penelitian VRP sebelumnya hanya meminimalkan jarak total sebagai objektif tunggal, tanpa mempertimbangkan keseimbangan jarak antar rute yang dihasilkan. Untuk ini diperlukan solusi terhadap permasalahan VRP yang mempertimbangkan faktor keseimbangan jarak antar rute selain batasan yang hanya melibatkan faktor minimalisasi total jarak rute. Dalam penelitian ini dikembangkan algoritma hiperheuristik untuk menyelesaikan permasalahan VRP dengan objektif jamak, yaitu algoritma yang mengombinasikan objektif untuk meminimalkan total jarak rute dan objektif untuk menyeimbangkan jarak antar rute yang dihasilkan. Parameter keseimbangan antar jarak antar rute diukur menggunakan formulasi simpangan baku terhadap masing-masing rute yang dihasilkan. Metode pareto sorting digunakan untuk menghasilkan solusi yang efektif berdasarkan nilai kedua fungsi objektif, indikator jumlah solusi, serta nilai coverage dan nilai hypervolume dari solusi. Algoritma hiperheuristik yang telah berhasil dikembangkan dalam penelitian ini diimplementasikan dengan menggunakan kerangka kerja HyFlex dan bahasa pemrograman Java. Uji coba hasil implementasi dilakukan menggunakan dua set data dengan kompleksitas yang berbeda, yaitu set data Solomon dan set data Gehring dan Homberger. Metode pemilihan low-level heuristic berbasis algoritma hill climbing hyperheuristic dipilih karena memberikan solusi yang lebih baik dibandingkan dengan algoritma great deluge hyperheuristic. Hasil uji coba perbandingan antara solusi VRP dengan objektif jamak dan solusi VRP dengan objektif tunggal menunjukkan bahwa rerata simpangan baku jarak antar rute untuk VRP dengan objektif jamak (sebesar 678) cukup jauh lebih rendah dibandingkan rerata simpangan baku antar rute VRP dengan objektif tunggal (sebesar 1.053), walaupun rerata total jarak minimum yang dihasilkan oleh VRP dengan objektif jamak (sebesar 99.590) relatif lebih besar dibandingkan dengan yang dihasilkan oleh VRP dengan objektif tunggal (sebesar 94.650). Hal ini menunjukkan bahwa tambahan fungsi objektif untuk menyeimbangkan jarak antar rute kendaraan dari solusi VRP yang dihasilkan sesuai dengan tujuan penelitian. ========================================================================================================================Vehicle Routing Problem (VRP) is one of the combinatoric problems hard to solve. VRP aims to generate a set of the shortest routes of vehicles with similar capacity to visit customers with certain time limit. Most previous VRP studies only minimized total distance as a single objective, regardless of the balance of route distances. Therefore, it required a solution to the VRP that considered the balance factor of distance between routes other than minimizing the total distance of the route. In this study, hyper-heuristic algorithm was developed to solve VRP with multi-objective, an algorithm that combines objective function to minimize the total distance of the routes and objective function to balance of obtained route distances. The balance of route distances parameter was measured by standard deviation formulation of route distances. Pareto sorting method was used to generate effective solutions based on the value of the two objective functions, the number of solutions indicators, the coverage value and hypervolume value of the solutions. The developed hyper-heuristic algorithm was implemented using HyFlex framework and Java programming. The experiments of implemented algorithm utilized two datasets with different complexity, Solomon dataset and Gehring and Homberger dataset. The low-level heuristic selection method based on the hill-climbing hyper-heuristic algorithm was chosen because it provided better solutions than the hyper-heuristic of great deluge algorithm. The comparison of multi-objective VRP solutions and single objective VRP solutions indicated that the average of standard deviation between routes of VRP with multi-objective (678) is considerably lower than the average of standard deviation between routes of VRP with single objective (1,053 ), even though the average of minimum total distance obtained by VRP with multi-objective (99,590) was relatively higher than the average of minimum total distance obtained by VRP with single objective (94,650). It showed that additional objective function for balancing vehicle route distances from obtained VRP solution corresponded to the research objectives

    Matheuristic algorithms for solving multi-objective/stochastic scheduling and routing problems

    Get PDF
    In der Praxis beinhalten Optimierungsprobleme oft unterschiedliche Ziele, welche optimiert werden sollen. Oft ist es nicht möglich die Ziele zu einem einzelnen Ziel zusammenzufassen. Mehrzieloptimierung beschäftigt sich damit, solche Probleme zu lösen. Wie in der Einzieloptimierung muss eine Lösung alle Nebenbedingungen des Problems erfüllen. Im Allgemeinen sind die Ziele konfligierend, sodass es nicht möglich ist eine einzelne Lösung zu finden welche optimal im Sinne aller Ziele ist. Algorithmen zum Lösen von Mehrziel-Optimierungsproblemen, präsentieren dem Entscheider eine Menge von effizienten Alternativen. Effizienz in der Mehrzieloptimierung ist als Pareto-Optimalität ausgedrückt. Eine Lösung eines Optimierungsproblems ist genau dann Pareto-optimal wenn es keine andere zulässige Lösung gibt, welche in allen Zielen mindestens gleich gut wie die betrachtete Lösung ist und besser in mindestens einem Ziel. In dieser Arbeit werden Mehrziel-Optimierungsprobleme aus zwei unterschiedlichen Anwendungsgebieten betrachtet. Das erste Problem, das Multi-objective Project Selection, Scheduling and Staffing with Learning Problem (MPSSSL), entstammt dem Management in forschungsorientierten Organisationen. Die Entscheider in solchen Organisationen stehen vor der Frage welche Projekte sie aus einer Menge von Projektanträgen auswählen sollen, und wie diese Teilmenge von Projekten (ein Projektportfolio) mit den benötigten Ressourcen ausgestattet werden kann (dies beinhaltet die zeitliche und personelle Planung). Aus unterschiedlichen Gründen ist dieses Problem schwer zu lösen, z.B. (i) die Auswahl von Projekten unter Beachtung der beschränkten Ressourcen ist ein Rucksackproblem (und ist damit NP-schwer) (ii) ob ein Projektportfolio zulässig ist oder nicht hängt davon ab ob, man dafür einen Zeitplan erstellen kann und genügend Mitarbeiter zur Verfügung stehen. Da in diesem Problem die Mitarbeiterzuordnung zu den einzelnen Projekten einbezogen wird, muss der Entscheider Ziele unterschiedlicher Art berücksichtigen. Manche Ziele sind ökonomischer Natur, z.B. die Rendite, andere wiederum beziehen sich auf die Kompetenzentwicklung der einzelnen Mitarbeiter. Ziele, die sich auf die Kompetenzentwicklung beziehen, sollen sicherstellen, dass das Unternehmen auch in Zukunft am Markt bestehen kann. Im Allgemeinen können diese unterschiedlichen Ziele nicht zu einem einzigen Ziel zusammengefasst werden. Daher werden Methoden zur Lösung von Mehrziel-Optimierungsproblemen benötigt. Um MPSSSL Probleme zu lösen werden in dieser Arbeit zwei unterschiedliche hybride Algorithmen betrachtet. Beide kombinieren nämlich Metaheuristiken (i) den Nondominated Sorting Genetic (NSGA-II) Algorithmus, und den (ii)~Pareto Ant Colony (P-ACO) Algorithmus, mit einem exakten Algorithmus zum Lösen von Linearen Programmen kombinieren. Unsicherheit ist ein weiterer wichtiger Aspekt der in der Praxis auftaucht. Unterschiedliche Parameter des Problems können unsicher sein (z.B. der aus einem Projekt erzielte Gewinn oder die Zeit bzw. der Aufwand, der benötigt wird, um die einzelnen Vorgänge eines Projekts abzuschließen). Um in diesem Fall das ``beste'' Projektportfolio zu finden, werden Methoden benötigt, welche stochastische Mehrziel-Optimierungsprobleme lösen können. Zur Lösung der stochastischen Erweiterung (SMPSSSL) des MPSSSL Problems zu lösen, präsentieren wir eine Methode, die den zuvor genannten hybriden NSGA-II Algorithmus mit dem Adaptive Pareto Sampling (APS) Algorithmus kombiniert. APS wird verwendet, um das Zusammenspiel von Simulation und Optimierung zu koordinieren. Zur Steigerung der Performance des Simulationsprozesses, verwenden wir Importance Sampling (IS). Das zweite Problem dieser Arbeit, das Bi-Objective Capacitated Vehicle Routing Problem with Route Balancing (CVRPB), kommt aus dem Bereich Logistik. Wenn man eine Menge von Kunden zu beliefern hat, steht man als Entscheider vor der Frage, wie man die Routen für eine fixe Anzahl von Fahrzeugen (mit beschränkter Kapazität) bestimmt, sodass alle Kunden beliefert werden können. Die Routen aller Fahrzeuge starten und enden dabei immer bei einem Depot. Die Einziel-Variante dieses Problems ist als Capacitated Vehicle Routing Problem (CVRP) bekannt, dessen Ziel es ist die Lösung zu finden, die die Gesamtkosten aller Routen minimiert. Dabei tritt jedoch das Problem auf, dass die Routen der optimalen Lösung sehr unterschiedliche Fahrtzeiten haben können. Unter bestimmten Umständen ist dies jedoch nicht erwünscht. Um dieses Problem zu umgehen, betrachten wir in dieser Arbeit eine Variante des (bezeichnet als CVRPB) CVRP, welche als zweite Zielfunktion die Balanziertheit der einzelnen Routen einbezieht. Zur Lösung von CVRPB Problemen verwenden wir die Adaptive Epsilon-Constraint Method in Kombination mit einem Branch-and-Cut Algorithmus und zwei unterschiedlichen Genetischen Algorithmen (GA), (i) einem Einziel-GA und (ii) dem NSGA-II. In dieser Arbeit werden Optimierungsalgorithmen präsentiert, welche es erlauben, Mehrziel- und stochastische Mehrziel-Optimierungsprobleme zu lösen. Unterschiedliche Algorithmen wurden implementiert und basierend auf aktuellen Performance-Maßen verglichen. Experimente haben gezeigt, dass die entwickelten Methoden gut geeignet sind, die betrachteten Optimierungsprobleme zu lösen. Die hybriden Algorithmen, welche Metaheuristiken mit exakten Methoden kombinieren, waren entweder ausschlaggebend um das Problem zu lösen (im Fall des Project Portfolio Selection Problems) oder konnten die Performance des Lösungsprozesses signifikant verbessern (im Fall des Vehicle Routing Problems).In practice decision problems often include different goals which can hardly be aggregated to a single objective for different reasons. In the field of multi-objective optimization several objective functions are considered. As in single objective optimization a solution has to satisfy all constraints of the problem. In general the goals are conflicting and there will be no solution, that is optimal for all objectives. Algorithms for multi-objective optimization problems provide the decision maker a set of efficient solutions, among which she or he can choose the most suitable alternative. In multi-objective optimization efficiency of a solution is expressed as Pareto-optimality. Pareto-optimality of a solution is defined as the property that no other solution exists that is better than the proposed one in at least one objective and at least equally good in all criteria. The first application that is considered in this thesis, the Multi-objective Project Selection, Scheduling and Staffing with Learning problem (MPSSSL) arises from the field of management in research-centered organizations. Given a set of project proposals the decision makers have to select the ``best'' subset of projects (a project portfolio) and set these up properly (schedule them and provide the necessary resources). This problem is hard to solve for different reasons: (i) selecting a subset of projects considering limited resources is a knapsack-type problem that is known to be NP-hard, and (ii) to determine the feasibility of a given portfolio, the projects have to be scheduled and staff must be assigned to them. As in this problem the assignment of workers is influenced by the decision which portfolio should be selected, the decision maker has to consider goals of different nature. Some objectives are related to economic goals (e.g. return of investment), others are related to the competence development of the workers. Competence oriented goals are motivated by the fact that competencies determine the attainment and sustainability of strategic positions in market competition. In general the objectives cannot be combined to a single objective, therefore methods for solving multi-objective optimization problems are used. To solve the problem we use two different hybrid algorithms that combine metaheuristic algorithms, (i) the Nondominated Sorting Genetic Algorithm (NSGA-II), and (ii) Pareto Ant Colony (P-ACO) algorithm with a linear programming solver as a subordinate. In practice, uncertainty is another typically encountered aspect. Different parameters of the problem can be uncertain (e.g. benefits of a project, or the time and effort required to perform the single activities required by a project). To determine the ``best'' portfolio, methods are needed that are able to handle uncertainty in optimization. To solve the stochastic extension (SMPSSSL) of the MPSSSL problem we present an algorithm that combines the aforementioned NSGA-II algorithm with the Adaptive Pareto Sampling (APS) algorithm. APS is used to handle the interplay between multi-objective optimization and simulation. The performance of the simulation process is increased by using importance sampling (IS). The second problem, the Bi-objective Capacitated Vehicle Routing Problem with Route Balancing (CVRPB) arises from the field of vehicle routing. Given a set of customers, the decision makers have to construct routes for a fixed number of vehicles, each starting and ending at the same depot, such that the demands of all customers can be fulfilled, and the capacity constraints of each vehicle are not violated. The traditional objective of this problem (known as the Capacitated Vehicle Routing Problem (CVRP)) is minimizing the total costs of all routes. A problem that may arise by this approach is that the resulting routes can be very unbalanced (in the sense of drivers workload). To overcome this problem a second objective function that measures the balance of the routes of a solution is introduced. In this work, we use the Adaptive Epsilon-Constraint Method in combination with a branch-and-cut algorithm and two genetic algorithms (i) a single-objective GA and (ii) the multi-objective NSGA-II, to solve the considered problem. Prototypes of different algorithms to solve the problems are developed and their performance is assessed by using state of the art performance measures. The computational experiments show that the developed solution procedures will be well suited to solve the considered optimization problems. The hybrid algorithms combining metaheuristic and exact optimization methods, turned out to be crucial to solve the problem (application to project portfolio selection) or to improve the performance of the solution procedure (application to vehicle routing)

    Ambulance routing problems with rich constraints and multiple objectives

    Get PDF
    Humanitäre non-profit Organisationen im Bereich des Patiententransports sehen sich dazu verpflichtet alle möglichen Einsparungs- und Optimierungspotentiale auszuloten um ihre Ausgaben zu reduzieren. Im Gegensatz zu Notfalleinsatzfahrten, bei denen ein Zusammenlegen mehrerer Transportaufträge normalerweise nicht möglich ist, besteht bei regulären Patiententransporten durchaus Einsparungspotential. Diese Tatsache gibt Anlass zur wissenschaftlichen Analyse jener Problemstellung, welche die täglich notwendige Planung regulärer Patiententransportaufträge umfasst. Solche Aufgabenstellungen werden als Dial-A-Ride-Probleme modelliert. Eine angemessene Service-Qualität kann entweder durch entsprechende Nebenbedingungen gewährleistet oder durch eine zusätzliche Zielfunktion minimiert werden. Beide Herangehensweisen werden hier untersucht. Zuerst wird eine vereinfachte Problemstellung aus der Literatur behandelt und ein kompetitives heuristisches Lösungsverfahren entwickelt. Diese vereinfachte Problemstellung wird in zwei Richtungen erweitert. Einerseits wird, zusätzlich zur Minimierung der Gesamtkosten, eine zweite benutzerorientierte Zielfunktion eingeführt. Andererseits werden eine heterogene Fahrzeugflotte und unterschiedliche Patiententypen in die Standardproblemstellung integriert. Letztendlich wird das reale Patiententransportproblem, basierend auf Informationen des Roten Kreuzes, definiert und gelöst. Neben heterogenen Fahrzeugen und unterschiedlichen Patienten, werden nun auch die Zuordnung von Fahrern und sonstigem Personal zu den verschiedenen Fahrzeugen, Mittagspausen und weitere Aufenthalte am Depot berücksichtigt. Alle eingesetzten exakten Methoden, obwohl sie auf neuesten Erkenntnissen aus der Literatur aufbauen, können Instanzen von realistischer Größe nicht lösen. Dieser Umstand macht die Entwicklung von passenden heuristischen Verfahren nach wie vor unumgänglich. In der vorliegenden Arbeit wird ein relativ generisches System basierend auf der Variable Neighborhood Search Idee entwickelt, das auf alle behandelten Einzielproblemversionen angewandt werden kann; auch für die bi-kriterielle Problemstellung, in Kombination mit Path Relinking, werden gute Ergebnisse erzielt.Humanitarian non-profit ambulance dispatching organizations are committed to look at cost reduction potentials in order to decrease their expenses. While in the context of emergency transportation cost reduction cannot be achieved by means of combined passenger routes, this can be done when dealing with regular patients. This research work is motivated by the problem situation faced by ambulance dispatchers in the field of patient transportation. Problems of this kind are modeled as dial-a-ride problems. In the field of patient transportation, the provision of a certain quality of service is necessary; the term “user inconvenience” is used in this context. User inconvenience can either be considered in terms of additional constraints or in terms of additional objectives. Both approaches are investigated in this book. The aim is to model and solve the real world problem based on available information from the Austrian Red Cross. In a first step, a competitive heuristic solution method for a simplified problem version is developed. This problem version is extended in two ways. On the one hand, besides routing costs, a user-oriented objective, minimizing user inconvenience, in terms of mean user ride time, is introduced. On the other hand, heterogeneous patient types and a heterogeneous vehicle fleet are integrated into the standard dial-a-ride model. In a final step, in addition to heterogeneous patients and vehicles, the assignment of drivers and other staff members to vehicles, the scheduling of lunch breaks, and additional stops at the depot are considered. All exact methods employed, although based on state of the art concepts, are not capable of solving instances of realistic size. This fact makes the development of according heuristic solution methods necessary. In this book a rather generic variable neighborhood search framework is proposed. It is able to accommodate all single objective problem versions and also proves to work well when applied to the bi-objective problem in combination with path relinking
    corecore