21,888 research outputs found

    Finding Significant Fourier Coefficients: Clarifications, Simplifications, Applications and Limitations

    Get PDF
    Ideas from Fourier analysis have been used in cryptography for the last three decades. Akavia, Goldwasser and Safra unified some of these ideas to give a complete algorithm that finds significant Fourier coefficients of functions on any finite abelian group. Their algorithm stimulated a lot of interest in the cryptography community, especially in the context of `bit security'. This manuscript attempts to be a friendly and comprehensive guide to the tools and results in this field. The intended readership is cryptographers who have heard about these tools and seek an understanding of their mechanics and their usefulness and limitations. A compact overview of the algorithm is presented with emphasis on the ideas behind it. We show how these ideas can be extended to a `modulus-switching' variant of the algorithm. We survey some applications of this algorithm, and explain that several results should be taken in the right context. In particular, we point out that some of the most important bit security problems are still open. Our original contributions include: a discussion of the limitations on the usefulness of these tools; an answer to an open question about the modular inversion hidden number problem

    The Power of Localization for Efficiently Learning Linear Separators with Noise

    Full text link
    We introduce a new approach for designing computationally efficient learning algorithms that are tolerant to noise, and demonstrate its effectiveness by designing algorithms with improved noise tolerance guarantees for learning linear separators. We consider both the malicious noise model and the adversarial label noise model. For malicious noise, where the adversary can corrupt both the label and the features, we provide a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can tolerate a nearly information-theoretically optimal noise rate of η=Ω(ϵ)\eta = \Omega(\epsilon). For the adversarial label noise model, where the distribution over the feature vectors is unchanged, and the overall probability of a noisy label is constrained to be at most η\eta, we also give a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can handle a noise rate of η=Ω(ϵ)\eta = \Omega\left(\epsilon\right). We show that, in the active learning model, our algorithms achieve a label complexity whose dependence on the error parameter ϵ\epsilon is polylogarithmic. This provides the first polynomial-time active learning algorithm for learning linear separators in the presence of malicious noise or adversarial label noise.Comment: Contains improved label complexity analysis communicated to us by Steve Hannek

    Learning Geometric Concepts with Nasty Noise

    Full text link
    We study the efficient learnability of geometric concept classes - specifically, low-degree polynomial threshold functions (PTFs) and intersections of halfspaces - when a fraction of the data is adversarially corrupted. We give the first polynomial-time PAC learning algorithms for these concept classes with dimension-independent error guarantees in the presence of nasty noise under the Gaussian distribution. In the nasty noise model, an omniscient adversary can arbitrarily corrupt a small fraction of both the unlabeled data points and their labels. This model generalizes well-studied noise models, including the malicious noise model and the agnostic (adversarial label noise) model. Prior to our work, the only concept class for which efficient malicious learning algorithms were known was the class of origin-centered halfspaces. Specifically, our robust learning algorithm for low-degree PTFs succeeds under a number of tame distributions -- including the Gaussian distribution and, more generally, any log-concave distribution with (approximately) known low-degree moments. For LTFs under the Gaussian distribution, we give a polynomial-time algorithm that achieves error O(ϵ)O(\epsilon), where ϵ\epsilon is the noise rate. At the core of our PAC learning results is an efficient algorithm to approximate the low-degree Chow-parameters of any bounded function in the presence of nasty noise. To achieve this, we employ an iterative spectral method for outlier detection and removal, inspired by recent work in robust unsupervised learning. Our aforementioned algorithm succeeds for a range of distributions satisfying mild concentration bounds and moment assumptions. The correctness of our robust learning algorithm for intersections of halfspaces makes essential use of a novel robust inverse independence lemma that may be of broader interest

    Identification of binary cellular automata from spatiotemporal binary patterns using a fourier representation

    Get PDF
    The identification of binary cellular automata from spatio-temporal binary patterns is investigated in this paper. Instead of using the usual Boolean or multilinear polynomial representation, the Fourier transform representation of Boolean functions is employed in terms of a Fourier basis. In this way, the orthogonal forward regression least-squares algorithm can be applied directly to detect the significant terms and to estimate the associated parameters. Compared with conventional methods, the new approach is much more robust to noise. Examples are provided to illustrate the effectiveness of the proposed approach

    Hardware-Amenable Structural Learning for Spike-based Pattern Classification using a Simple Model of Active Dendrites

    Full text link
    This paper presents a spike-based model which employs neurons with functionally distinct dendritic compartments for classifying high dimensional binary patterns. The synaptic inputs arriving on each dendritic subunit are nonlinearly processed before being linearly integrated at the soma, giving the neuron a capacity to perform a large number of input-output mappings. The model utilizes sparse synaptic connectivity; where each synapse takes a binary value. The optimal connection pattern of a neuron is learned by using a simple hardware-friendly, margin enhancing learning algorithm inspired by the mechanism of structural plasticity in biological neurons. The learning algorithm groups correlated synaptic inputs on the same dendritic branch. Since the learning results in modified connection patterns, it can be incorporated into current event-based neuromorphic systems with little overhead. This work also presents a branch-specific spike-based version of this structural plasticity rule. The proposed model is evaluated on benchmark binary classification problems and its performance is compared against that achieved using Support Vector Machine (SVM) and Extreme Learning Machine (ELM) techniques. Our proposed method attains comparable performance while utilizing 10 to 50% less computational resources than the other reported techniques.Comment: Accepted for publication in Neural Computatio

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure
    • …
    corecore