12 research outputs found

    A Polyhedral Approximation Framework for Convex and Robust Distributed Optimization

    Full text link
    In this paper we consider a general problem set-up for a wide class of convex and robust distributed optimization problems in peer-to-peer networks. In this set-up convex constraint sets are distributed to the network processors who have to compute the optimizer of a linear cost function subject to the constraints. We propose a novel fully distributed algorithm, named cutting-plane consensus, to solve the problem, based on an outer polyhedral approximation of the constraint sets. Processors running the algorithm compute and exchange linear approximations of their locally feasible sets. Independently of the number of processors in the network, each processor stores only a small number of linear constraints, making the algorithm scalable to large networks. The cutting-plane consensus algorithm is presented and analyzed for the general framework. Specifically, we prove that all processors running the algorithm agree on an optimizer of the global problem, and that the algorithm is tolerant to node and link failures as long as network connectivity is preserved. Then, the cutting plane consensus algorithm is specified to three different classes of distributed optimization problems, namely (i) inequality constrained problems, (ii) robust optimization problems, and (iii) almost separable optimization problems with separable objective functions and coupling constraints. For each one of these problem classes we solve a concrete problem that can be expressed in that framework and present computational results. That is, we show how to solve: position estimation in wireless sensor networks, a distributed robust linear program and, a distributed microgrid control problem.Comment: submitted to IEEE Transactions on Automatic Contro

    A duality-based approach for distributed min-max optimization with application to demand side management

    Full text link
    In this paper we consider a distributed optimization scenario in which a set of processors aims at minimizing the maximum of a collection of "separable convex functions" subject to local constraints. This set-up is motivated by peak-demand minimization problems in smart grids. Here, the goal is to minimize the peak value over a finite horizon with: (i) the demand at each time instant being the sum of contributions from different devices, and (ii) the local states at different time instants being coupled through local dynamics. The min-max structure and the double coupling (through the devices and over the time horizon) makes this problem challenging in a distributed set-up (e.g., well-known distributed dual decomposition approaches cannot be applied). We propose a distributed algorithm based on the combination of duality methods and properties from min-max optimization. Specifically, we derive a series of equivalent problems by introducing ad-hoc slack variables and by going back and forth from primal and dual formulations. On the resulting problem we apply a dual subgradient method, which turns out to be a distributed algorithm. We prove the correctness of the proposed algorithm and show its effectiveness via numerical computations.Comment: arXiv admin note: substantial text overlap with arXiv:1611.0916

    Randomized Constraints Consensus for Distributed Robust Linear Programming

    Get PDF
    In this paper we consider a network of processors aiming at cooperatively solving linear programming problems subject to uncertainty. Each node only knows a common cost function and its local uncertain constraint set. We propose a randomized, distributed algorithm working under time-varying, asynchronous and directed communication topology. The algorithm is based on a local computation and communication paradigm. At each communication round, nodes perform two updates: (i) a verification in which they check-in a randomized setup-the robust feasibility (and hence optimality) of the candidate optimal point, and (ii) an optimization step in which they exchange their candidate bases (minimal sets of active constraints) with neighbors and locally solve an optimization problem whose constraint set includes: a sampled constraint violating the candidate optimal point (if it exists), agent's current basis and the collection of neighbor's basis. As main result, we show that if a processor successfully performs the verification step for a sufficient number of communication rounds, it can stop the algorithm since a consensus has been reached. The common solution is-with high confidence-feasible (and hence optimal) for the entire set of uncertainty except a subset having arbitrary small probability measure. We show the effectiveness of the proposed distributed algorithm on a multi-core platform in which the nodes communicate asynchronously.Comment: Accepted for publication in the 20th World Congress of the International Federation of Automatic Control (IFAC

    Distributed Partitioned Big-Data Optimization via Asynchronous Dual Decomposition

    Full text link
    In this paper we consider a novel partitioned framework for distributed optimization in peer-to-peer networks. In several important applications the agents of a network have to solve an optimization problem with two key features: (i) the dimension of the decision variable depends on the network size, and (ii) cost function and constraints have a sparsity structure related to the communication graph. For this class of problems a straightforward application of existing consensus methods would show two inefficiencies: poor scalability and redundancy of shared information. We propose an asynchronous distributed algorithm, based on dual decomposition and coordinate methods, to solve partitioned optimization problems. We show that, by exploiting the problem structure, the solution can be partitioned among the nodes, so that each node just stores a local copy of a portion of the decision variable (rather than a copy of the entire decision vector) and solves a small-scale local problem

    Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization

    Get PDF
    Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes

    Randomized Constraints Consensus for Distributed Robust Mixed-Integer Programming

    Full text link
    In this paper, we consider a network of processors aiming at cooperatively solving mixed-integer convex programs subject to uncertainty. Each node only knows a common cost function and its local uncertain constraint set. We propose a randomized, distributed algorithm working under asynchronous, unreliable and directed communication. The algorithm is based on a local computation and communication paradigm. At each communication round, nodes perform two updates: (i) a verification in which they check---in a randomized fashion---the robust feasibility of a candidate optimal point, and (ii) an optimization step in which they exchange their candidate basis (the minimal set of constraints defining a solution) with neighbors and locally solve an optimization problem. As main result, we show that processors can stop the algorithm after a finite number of communication rounds (either because verification has been successful for a sufficient number of rounds or because a given threshold has been reached), so that candidate optimal solutions are consensual. The common solution is proven to be---with high confidence---feasible and hence optimal for the entire set of uncertainty except a subset having an arbitrary small probability measure. We show the effectiveness of the proposed distributed algorithm using two examples: a random, uncertain mixed-integer linear program and a distributed localization in wireless sensor networks. The distributed algorithm is implemented on a multi-core platform in which the nodes communicate asynchronously.Comment: Submitted for publication. arXiv admin note: text overlap with arXiv:1706.0048
    corecore