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Abstract: In this paper we consider a network of processors aiming at cooperatively solving
linear programming problems subject to uncertainty. Each node only knows a common cost
function and its local uncertain constraint set. We propose a randomized, distributed algorithm
working under time-varying, asynchronous and directed communication topology. The algorithm
is based on a local computation and communication paradigm. At each communication round,
nodes perform two updates: (i) a verification in which they check—in a randomized setup—the
robust feasibility (and hence optimality) of the candidate optimal point, and (ii) an optimization
step in which they exchange their candidate bases (minimal sets of active constraints) with
neighbors and locally solve an optimization problem whose constraint set includes: a sampled
constraint violating the candidate optimal point (if it exists), agent’s current basis and the
collection of neighbor’s basis. As main result, we show that if a processor successfully performs
the verification step for a sufficient number of communication rounds, it can stop the algorithm
since a consensus has been reached. The common solution is—with high confidence—feasible
(and hence optimal) for the entire set of uncertainty except a subset having arbitrary small
probability measure. We show the effectiveness of the proposed distributed algorithm on a
multi-core platform in which the nodes communicate asynchronously.

Keywords: Distributed Optimization, Randomized Algorithms, Robust Linear Programming,
Optimization and control of large-scale network systems, Large scale optimization problems.

1. INTRODUCTION

Robust optimization plays an important role in several
areas such as estimation and control and has been widely
investigated. Its rich literature dates back to the 1950s,
see Ben-Tal and Nemirovski (2009) and references therein.
Very recently, there has been a renewed interest in this
topic in a parallel and/or distributed framework. In Lee
and Nedić (2013), a synchronous distributed random pro-
jection algorithm with almost sure convergence is proposed
for the case where each node has independent cost function
and (uncertain) constraint. Since the distributed algorithm
relies on extracting random samples from an uncertain
constraint set, several assumptions on random set, network
structure and agent weights are made to prove almost sure
convergence. The synchronization of update rule relies on
a central clock to coordinate the step size selection. To
circumvent this limitation the same authors in Lee and
Nedić (2016) present an asynchronous random projection
algorithm in which a gossip-based protocol is used to
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desynchronize the step size selection. The proposed algo-
rithms in (Lee and Nedić, 2013, 2016), require computing
projection onto the constraint set at each iteration which is
computationally demanding if the constraint set does not
have a simple structure such as half space or polyhedron.
In Carlone et al. (2014), a parallel/distributed scheme is
considered for solving an uncertain optimization problem
by means of the scenario approach (Calafiore and Campi,
2004). The scheme consists of extracting a number of sam-
ples from the uncertain set and assigning them to nodes in
a network. Each node is assigned a portion of the extracted
samples. Then, a variant of the constraints consensus al-
gorithm introduced in Notarstefano and Bullo (2011) is
used to solve the deterministic optimization problem. A
similar parallel framework for solving convex optimization
problems with one uncertain constraint via the scenario
approach is considered in You and Tempo (2016). In this
setup, the sampled optimization problem is solved in a
distributed way by using a primal-dual subgradient (resp.
random projection) algorithm over an undirected (resp.
directed) graph. We remark that in Carlone et al. (2014);
You and Tempo (2016), constraints and cost function of
all agents are identical. In Bürger et al. (2014), a cut-
ting plane consensus algorithm is introduced for solving
convex optimization problem where constraints are dis-
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Robust optimization plays an important role in several
areas such as estimation and control and has been widely
investigated. Its rich literature dates back to the 1950s,
see Ben-Tal and Nemirovski (2009) and references therein.
Very recently, there has been a renewed interest in this
topic in a parallel and/or distributed framework. In Lee
and Nedić (2013), a synchronous distributed random pro-
jection algorithm with almost sure convergence is proposed
for the case where each node has independent cost function
and (uncertain) constraint. Since the distributed algorithm
relies on extracting random samples from an uncertain
constraint set, several assumptions on random set, network
structure and agent weights are made to prove almost sure
convergence. The synchronization of update rule relies on
a central clock to coordinate the step size selection. To
circumvent this limitation the same authors in Lee and
Nedić (2016) present an asynchronous random projection
algorithm in which a gossip-based protocol is used to

� This work is supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme, grant agreement No 638992 - OPT4SMART, (GN) and
by a grant from the Singapore National Research Foundation (NRF)
under the ASPIRE project, grant No NCR-NCR001-040 (MC&RB).

desynchronize the step size selection. The proposed algo-
rithms in (Lee and Nedić, 2013, 2016), require computing
projection onto the constraint set at each iteration which is
computationally demanding if the constraint set does not
have a simple structure such as half space or polyhedron.
In Carlone et al. (2014), a parallel/distributed scheme is
considered for solving an uncertain optimization problem
by means of the scenario approach (Calafiore and Campi,
2004). The scheme consists of extracting a number of sam-
ples from the uncertain set and assigning them to nodes in
a network. Each node is assigned a portion of the extracted
samples. Then, a variant of the constraints consensus al-
gorithm introduced in Notarstefano and Bullo (2011) is
used to solve the deterministic optimization problem. A
similar parallel framework for solving convex optimization
problems with one uncertain constraint via the scenario
approach is considered in You and Tempo (2016). In this
setup, the sampled optimization problem is solved in a
distributed way by using a primal-dual subgradient (resp.
random projection) algorithm over an undirected (resp.
directed) graph. We remark that in Carlone et al. (2014);
You and Tempo (2016), constraints and cost function of
all agents are identical. In Bürger et al. (2014), a cut-
ting plane consensus algorithm is introduced for solving
convex optimization problem where constraints are dis-
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and Nedić (2013), a synchronous distributed random pro-
jection algorithm with almost sure convergence is proposed
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tributed to the network processors and all processors have
common cost function. In the case where constraints are
uncertain, a worst-case approach based on a pessimizing
oracle is used. The oracle relies on the assumption that
constraints are concave with respect to uncertainty vector
and the uncertainty set is convex. A distributed scheme
based on the scenario approach is introduced in Margellos
et al. (2016) in which random samples are extracted by
each node from its local uncertain constraint set and a
distributed proximal minimization algorithm is designed
to solve the sampled optimization problem. The num-
ber of samples required to guarantee robustness can be
large if the probabilistic levels defining robustness of the
solution—accuracy and confidence levels—are stringent,
possibly leading to a computationally demanding sampled
optimization problem at each node.

The main contribution of this paper is the design of a fully
distributed algorithm to solve an uncertain linear program
in a network with directed and asynchronous communica-
tion. The problem under investigation is a linear program
in which the constraint set is the intersection of local
uncertain constraints, each one known only by a single
node. Starting from a deterministic constraint exchange
idea introduced in Notarstefano and Bullo (2011), the
algorithm proposed in this paper introduces a random-
ized, sequential approach in which each node: (i) locally
performs a probabilistic verification step (based on a local
sampling of its uncertain constraint set), and (ii) solves a
local, deterministic optimization problem with a limited
number of constraints. If suitable termination conditions
are satisfied, we are able to prove that the nodes agree
on a common solution which is probabilistically feasible
and optimal with high confidence. As compared to the
literature above, the proposed algorithm has three main
advantages. First, no assumptions are needed on the prob-
abilistic nature of the local constraint sets. Second, each
node can sample locally its own uncertain set. Thus, no
central unit is needed to extract samples and no common
constraint set needs to be known by the nodes. Third and
final, nodes do not need to perform the whole sampling at
the beginning and subsequently solve the (deterministic)
optimization problem. Online extracted samples are used
only for verification, which is computationally inexpensive.
The optimization is performed always on a number of con-
straints that remains constant at each node and depends
only on the dimension of the decision variable and on the
number of node neighbors.

The paper is organized as follows. In Section 2, we for-
mulate the uncertain distributed linear program (LP).
Section 3 presents our distributed sequential random-
ized algorithm for finding a solution—with probabilistic
robustness—to the uncertain distributed LP. The proba-
bilistic convergence properties of the distributed algorithm
are investigated in Section 4. Finally, extensive numerical
simulations are performed in Section 5 to prove the effec-
tiveness of the proposed methodology.

2. PROBLEM FORMULATION

We consider a network of processors with limited compu-
tation and/or communication capabilities that aim at co-
operatively solving the following uncertain linear program

min
θ

cT θ

subject to AT
i (q)θ ≤ bi(q), ∀q ∈ Q, i ∈ {1, . . . , n}, (1)

where θ ∈ Θ ⊂ Rd is the vector of decision variables,
q ∈ Q is the uncertainty vector, c ∈ Rd defines the
objective direction, Ai(q) ∈ Rmi×d and bi(q) ∈ Rmi ,
with mi ≥ d, define the (uncertain) constraint set of
agent i ∈ {1, . . . , n}. Processor i has only knowledge
of a constraint set defined by Ai(q) and bi(q) and the
objective direction c (which is the same for all nodes). Each
node runs a local algorithm and by exchanging limited
information with neighbors, all nodes converge to the same
solution. We want to stress that there is no (central) node
having access to all constraints. We make the following
assumption regarding problem (1).

Assumption 1. (Non-degeneracy). The minimum point of
any subproblem of (1) with at least d constraints is unique
and there exist only d constraints intersecting at the
minimum point.

We let the nodes communicate according to a time-
dependent, directed communication graph G(t) = {V, E(t)}
where t ∈ N is a universal time, V = {1, . . . , n} is the
set of agent identifiers and (i, j) ∈ E(t) indicates that i
send information to j at time t. The time-varying set of
incoming (resp. outgoing) neighbors of node i at time t,
Nin(i, t) (Nout(i, t)), is defined as the set of nodes from
(resp. to) which agent i receives (resp. transmits) informa-
tion at time t. A directed static graph is said to be strongly
connected if there exists a directed path (of consecutive
edges) between any pair of nodes in the graph. For time-
varying graphs we use the notion of uniform joint strong
connectivity formally defined next.

Assumption 2. (Uniform joint strong connectivity).
There exists an integer L ≥ 1 such that the graph(
V,

⋃t+L−1
τ=t E(τ)

)
is strongly connected for all t ≥ 0.

There is no assumption on how uncertainty q enters prob-
lem (1) making it computationally difficult to solve. In
fact, if the uncertainty set Q is an uncountable set, prob-
lem (1) is a semi-infinite optimization problem involving
infinite number of constraints. In general, there are two
main paradigms to solve an uncertain optimization prob-
lem of form (1). The first approach is a deterministic
worst-case paradigm in which the constraints are enforced
to hold for all possible uncertain parameters in the set
Q. This approach is computationally intractable for cases
where uncertainty does not appear in a “simple” form,
e.g. affine, multi-affine, convex, etc. The second approach
is a probabilistic approach where uncertain parameters are
considered to be random variables and the constraints are
enforced to hold for the entire set of uncertainty except a
subset having an arbitrary small probability measure. In
this paper, we follow a probabilistic approach and present
a distributed tractable randomized setup for finding a
solution—with desired probabilistic properties—for the
optimization problem (1).

Notation
The constraint set of agent i is defined by

Hi(q)
.
= [Ai(q), bi(q)].
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Throughout this paper, we use capital italic letter, e.g.
Hi(q)

.
= [Ai(q), bi(q)] to denote a collection of half spaces

and capital calligraphic letter, Hi(q) to denote the set
induced by half spaces, i.e. Hi(q)

.
= {θ ∈ Rd : Ai(q) ≤

bi(q)}. We note that, with this notation, if A = B∪C with
B and C being collection of half spaces, then A = B ∩ C,
that is, the set induced by the union of constraint sets B
and C is the intersection of B and C. Finally J(H) is the
smallest value of cT θ while θ ∈ H. The linear program
specific to each agent i ∈ V is fully characterized by the
pair (Hi(q), c) (note that c defines the objective direction
which is the same for all nodes).

3. RANDOMIZED CONSTRAINTS CONSENSUS

In this section, we present a distributed, randomized
algorithm for solving the uncertain linear program (LP)
(1) in a probabilistic sense. First, recall that the solution
of a linear program of the form (1) can be identified by
at most d active constraints (d being the dimension of the
decision variable). This concept is formally characterized
by the notion of basis. Given a collection of constraints
H, a subset B ⊆ H is a basis of H if the optimal cost
of the LP problem defined by (H, c) is identical to the
one defined by (B, c), and the optimal cost decreases if
any constraint is removed from B. We define a primitive
[θ∗, B] = SolveLP(H, c) which solves the LP problem
defined by the pair (H, c) and returns back the optimal
point θ∗ and the corresponding basis B.

Note that, since the uncertainty set is uncountable, it is
in general very difficult to verify if a candidate solution is
feasible for the entire set of uncertainty or not. We instead
use a randomized approach based, on Monte Carlo sim-
ulation, to check probabilistic feasibility. The distributed
algorithm we propose has a probabilistic nature consisting
of two main steps: verification and optimization. The main
idea is the following. A node has a candidate basis and
candidate solution point. First, it verifies if the candidate
solution point belongs to its local uncertain set with high
probability. Then, it collects bases from neighbors and
solves an LP with its basis and its neighbors’ bases as
constraint set. If the verification step was not successful,
the first violating constraint is also added to the problem.

Formally, we assume that q is a random variable and
a probability measure P over the Borel σ−algebra of Q
is given. In the verification step each agent i generates
Mki

independent and identically distributed (i.i.d) random
samples from the set of uncertainty

qki

.
= {q(1), . . . , q(Mki

)} ∈ QMki ,

according to the measure P, where ki is a local counter
keeping track of the number of times the verification step
is performed and QMki

.
= Q× . . .×Q (Mki

times). Using
a Monte Carlo algorithm, node i checks feasibility of the
candidate solution θi(t) only at the extracted samples.
If a violation happens, the first violating sample is used
as a violation certificate. In the optimization step, agent
i transmits its current basis to all outgoing neighbors
and receives bases from incoming ones. Then, it solves
an LP problem whose constraint set is composed of: i)
a constraint constructed at the violation certificate (if it
exists) ii) its current basis and iii) the collection of bases
from all incoming neighbors. Node i repeats these two

steps until a termination condition is satisfied, namely if
the candidate basis has not changed for 2nL+1 times, with
L defined in Assumption 2. The distributed algorithm is
formally presented in Algorithm 1. The counter ki counts

Algorithm 1 Randomized Constraints Consensus

Input: (Hi(q), c), εi, δi
Output: θsol
Initialization:
Set ki = 1, [θi(1), Bi(1)] = SolveLP(H

i(0), c)
Evolution:

(i) Verification:
• If θi(t) = θi(t− 1), set qviol = ∅ and goto (ii)
• Extract

Mki
≥

2.3 + 1.1 ln ki + ln 1
δi

ln 1
1−εi

(2)

i.i.d samples qki
= {q(1)ki

, . . . , q
(Mki

)

ki
}

• If θi(t) ∈ Hi(q
(�)
ki

) for all 
 = 1, . . . ,Mki , set

qviol = ∅; else, set qviol as the first sample for
which θi(t) /∈ Hi(qviol)

• Set ki = ki + 1
(ii) Optimization:

• Transmit Bi(t) to j ∈ Nout(i, t) and acquire
incoming neighbors basis Y i(t)

.
= ∪j∈Nin(i,t)B

j

• [θi(t+ 1), Bi(t+ 1)] =
SolveLP(H

i(qviol) ∪Bi(t) ∪ Y i(t), c)
• If θi(t+1) has not changed for 2nL+1 times and

qviol = ∅, return θsol = θi(t+ 1)

the number of times the verification step is called. We
remark that if at some t the candidate solution has not
changed, that is θi(t) = θi(t − 1), then θi(t − 1) has
successfully satisfied the verification step and qviol = ∅
at time t − 1 and therefore there is no need to check it
again.

Remark 1. (Asynchronicity). The distributed algorithm
presented in this section is completely asynchronous. In-
deed, time t is just a universal time that does not need
to be known by the nodes. The time-dependent jointly
connected graph then captures the fact that nodes can
perform computation at different speeds.

Remark 2. In the deterministic constraints consensus al-
gorithm presented in Notarstefano and Bullo (2011), at
each iteration of the algorithm, the original constraint set
of the node needs to be taken into account in the local
optimization problem. Here, we can drop this requirement
because of the verification step.

4. ANALYSIS OF RANDOMIZED CONSTRAINTS
CONSENSUS ALGORITHM

In this section, we analyze the convergence properties of
the distributed algorithm and investigate the probabilistic
properties of the solution computed by the algorithm.

Theorem 1. Let Assumptions 1 and 2 hold. Given the
probabilistic levels εi > 0 and δi > 0, i = 1, . . . , n,
let ε =

∑n
i=1 εi and δ =

∑n
i=1 δi. Then, the following

statements hold

(i) Along the evolution of Algorithm 1, the cost J(Bi(t))
at each node i ∈ {1, . . . , n} is monotonically non-
decreasing. That is, J(Bi(t+ 1)) ≥ J(Bi(t)).
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Throughout this paper, we use capital italic letter, e.g.
Hi(q)

.
= [Ai(q), bi(q)] to denote a collection of half spaces

and capital calligraphic letter, Hi(q) to denote the set
induced by half spaces, i.e. Hi(q)

.
= {θ ∈ Rd : Ai(q) ≤

bi(q)}. We note that, with this notation, if A = B∪C with
B and C being collection of half spaces, then A = B ∩ C,
that is, the set induced by the union of constraint sets B
and C is the intersection of B and C. Finally J(H) is the
smallest value of cT θ while θ ∈ H. The linear program
specific to each agent i ∈ V is fully characterized by the
pair (Hi(q), c) (note that c defines the objective direction
which is the same for all nodes).

3. RANDOMIZED CONSTRAINTS CONSENSUS

In this section, we present a distributed, randomized
algorithm for solving the uncertain linear program (LP)
(1) in a probabilistic sense. First, recall that the solution
of a linear program of the form (1) can be identified by
at most d active constraints (d being the dimension of the
decision variable). This concept is formally characterized
by the notion of basis. Given a collection of constraints
H, a subset B ⊆ H is a basis of H if the optimal cost
of the LP problem defined by (H, c) is identical to the
one defined by (B, c), and the optimal cost decreases if
any constraint is removed from B. We define a primitive
[θ∗, B] = SolveLP(H, c) which solves the LP problem
defined by the pair (H, c) and returns back the optimal
point θ∗ and the corresponding basis B.

Note that, since the uncertainty set is uncountable, it is
in general very difficult to verify if a candidate solution is
feasible for the entire set of uncertainty or not. We instead
use a randomized approach based, on Monte Carlo sim-
ulation, to check probabilistic feasibility. The distributed
algorithm we propose has a probabilistic nature consisting
of two main steps: verification and optimization. The main
idea is the following. A node has a candidate basis and
candidate solution point. First, it verifies if the candidate
solution point belongs to its local uncertain set with high
probability. Then, it collects bases from neighbors and
solves an LP with its basis and its neighbors’ bases as
constraint set. If the verification step was not successful,
the first violating constraint is also added to the problem.

Formally, we assume that q is a random variable and
a probability measure P over the Borel σ−algebra of Q
is given. In the verification step each agent i generates
Mki

independent and identically distributed (i.i.d) random
samples from the set of uncertainty

qki

.
= {q(1), . . . , q(Mki

)} ∈ QMki ,

according to the measure P, where ki is a local counter
keeping track of the number of times the verification step
is performed and QMki

.
= Q× . . .×Q (Mki

times). Using
a Monte Carlo algorithm, node i checks feasibility of the
candidate solution θi(t) only at the extracted samples.
If a violation happens, the first violating sample is used
as a violation certificate. In the optimization step, agent
i transmits its current basis to all outgoing neighbors
and receives bases from incoming ones. Then, it solves
an LP problem whose constraint set is composed of: i)
a constraint constructed at the violation certificate (if it
exists) ii) its current basis and iii) the collection of bases
from all incoming neighbors. Node i repeats these two

steps until a termination condition is satisfied, namely if
the candidate basis has not changed for 2nL+1 times, with
L defined in Assumption 2. The distributed algorithm is
formally presented in Algorithm 1. The counter ki counts

Algorithm 1 Randomized Constraints Consensus

Input: (Hi(q), c), εi, δi
Output: θsol
Initialization:
Set ki = 1, [θi(1), Bi(1)] = SolveLP(H

i(0), c)
Evolution:

(i) Verification:
• If θi(t) = θi(t− 1), set qviol = ∅ and goto (ii)
• Extract

Mki
≥

2.3 + 1.1 ln ki + ln 1
δi

ln 1
1−εi

(2)

i.i.d samples qki
= {q(1)ki

, . . . , q
(Mki

)

ki
}

• If θi(t) ∈ Hi(q
(�)
ki

) for all 
 = 1, . . . ,Mki , set

qviol = ∅; else, set qviol as the first sample for
which θi(t) /∈ Hi(qviol)

• Set ki = ki + 1
(ii) Optimization:

• Transmit Bi(t) to j ∈ Nout(i, t) and acquire
incoming neighbors basis Y i(t)

.
= ∪j∈Nin(i,t)B

j

• [θi(t+ 1), Bi(t+ 1)] =
SolveLP(H

i(qviol) ∪Bi(t) ∪ Y i(t), c)
• If θi(t+1) has not changed for 2nL+1 times and

qviol = ∅, return θsol = θi(t+ 1)

the number of times the verification step is called. We
remark that if at some t the candidate solution has not
changed, that is θi(t) = θi(t − 1), then θi(t − 1) has
successfully satisfied the verification step and qviol = ∅
at time t − 1 and therefore there is no need to check it
again.

Remark 1. (Asynchronicity). The distributed algorithm
presented in this section is completely asynchronous. In-
deed, time t is just a universal time that does not need
to be known by the nodes. The time-dependent jointly
connected graph then captures the fact that nodes can
perform computation at different speeds.

Remark 2. In the deterministic constraints consensus al-
gorithm presented in Notarstefano and Bullo (2011), at
each iteration of the algorithm, the original constraint set
of the node needs to be taken into account in the local
optimization problem. Here, we can drop this requirement
because of the verification step.

4. ANALYSIS OF RANDOMIZED CONSTRAINTS
CONSENSUS ALGORITHM

In this section, we analyze the convergence properties of
the distributed algorithm and investigate the probabilistic
properties of the solution computed by the algorithm.

Theorem 1. Let Assumptions 1 and 2 hold. Given the
probabilistic levels εi > 0 and δi > 0, i = 1, . . . , n,
let ε =

∑n
i=1 εi and δ =

∑n
i=1 δi. Then, the following

statements hold

(i) Along the evolution of Algorithm 1, the cost J(Bi(t))
at each node i ∈ {1, . . . , n} is monotonically non-
decreasing. That is, J(Bi(t+ 1)) ≥ J(Bi(t)).
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(ii) The cost J(Bi(t)) for all i ∈ {1, . . . , n} con-
verges to a common value asymptotically. That is,
limt→∞ J(Bi(t)) = J̄ for all i ∈ {1, . . . , n}.

(iii) If the candidate solution of node i, θi(t), has not
changed for 2Ln+1 communication rounds, all nodes
have a common candidate solution θsol

1 .
(iv) The following inequality holds for θsol

PM

{
q ∈ QM :

P
{
q ∈ Q : θsol /∈

n⋂
i=1

Hi(q)

}
≤ ε

}
≥ 1− δ,

where M is the cardinality of the collection of multi-
samples of all agents.

(v) Let Bsol be the basis corresponding to θsol. The
following inequality holds for Bsol

PM

{
q ∈ QM : P

{
q ∈ Q : J

(
Bsol ∪H(q)

)
> J(Bsol)

}

≤ ε

}
≥ 1− δ

where H(q)
.
=

⋃n
i=1 H

i(q) and M is the cardinality
of the collection of multisamples of all agents.

Proof of first statement:
The set of constraints at time t + 1 consists of the node
current basis Bi(t), the collection of neighbors’ bases
Y i(t)

.
= ∪j∈Nin(i,t)B

j and Hi(qviol). Since the basis at

time t, Bi(t), is part of the constraint set for computing
Bi(t+ 1), J(Bi(t+ 1)) cannot be smaller than J(Bi(t)).

Proof of second and third statements:
Since the graph is uniformly jointly strongly connected, for
any pairs of nodes u and v and for any t > 0, there exists
a time-dependent path from u to v (Hendrickx, 2008)—
a sequence of nodes �1, . . . , �k and a sequence of time
instances t1, . . . , tk+1 with t ≤ t1 < . . . < tk+1, such that
the directed edges {(u, �1), (�1, �2), . . . , (�k, v)} belongs
to the directed graph at time instances {t1, . . . , tk+1},
respectively—of length at most nL. We recall that n is the
number of nodes and L is defined in Assumption 2. Con-
sider nodes i and p. If �1 ∈ Nout(i, t0), then J(Bi(t0)) ≤
J(B�1(t0+1)) as the constraint set of node �1 at time t0+1
is a superset of the constraint set of node i at time t0.
Iterating this argument, we obtain J(Bi(t0)) ≤ J(Bp(t0+
nL)). Again since the graph is uniformly jointly strongly
connected, there will be a time varying path of length at
most nL from node p to node i. Therefore,

J(Bi(t0)) ≤ J(Bp(t0 + nL)) ≤ J(Bi(t0 + 2nL)).

Two scenarios can happen proving respectively statements
(ii) and (iii).

If J(Bi(t0)) �= J(Bi(t0 + 2nL)), then J(Bi(t0)) <
J(Bi(t0 + 2nL)) which means the cost at node i is
strictly increasing. Denote by J∗ the optimal cost asso-
ciated to problem (1). Since the problem at each node
can be considered as a sub-problem of (1), the sequence
{J(Bi(t))}t>0 is convergent and has a limit point J̄ i ≤ J∗,
i.e. limt→∞ J(Bi(t)) → J̄ i for all i ∈ V. In what follows, we
prove that the limit point of all agents are the same, that is
J̄1 = . . . = J̄n. We follow a similar reasoning as in (Bürger

1 We remark that this value becomes 2×(graph diameter)+1 for
fixed graphs.

et al., 2014, Lemma IV.2). Suppose by contradiction that
there exist two processors i and p such that J̄ i > J̄p.
There exists η0 > 0 such that J̄ i − J̄p > η0. Since the
sequences {J(Bi(t))}t>0 and {J(Bp(t))}t>0 are monoton-
ically increasing and convergent, for any η > 0, there exists
a time Tη such that for all t ≥ Tη, J̄

i − J(Bi(t)) ≤ η
and J̄p − J(Bp(t)) ≤ η. This implies that there exists a
Tη0 such that for all t ≥ Tη0 , J(B

i(t)) ≥ J̄ i − η0 > J̄p.
Additionally, since the objective function is increasing, it
follows that for any time instant t′ ≥ 0, J(Bp(t′)) ≤ J̄p.
Thus, for all t ≥ Tη0 and all t′ ≥ 0

J(Bi(t)) > J(Bp(t′)). (3)

On the other hand, since the graph is uniformly jointly
strongly connected, there exists a time-varying path of
length at most nL from node i to node p. Therefore, for
all t ≥ Tη0

J(Bi(t)) ≤ J(Bp(t+ nL)). (4)

However, (4) contradicts (3) proving that J1 = . . . =
Jn. Therefore, it must hold that limt→∞ |J(Bi(t)) −
J(Bj(t))| → 0 for all i, j ∈ V. This proves the second
statement of the theorem.

If J(Bi(t0)) = J(Bi(t0 + 2nL)) and considering the point
that node p can be any node of the graph, then all nodes
have the same cost. That is, J(B1(t)) = . . . = J(Bn(t)).
This combined with Assumption 1 proves the third state-
ment of the theorem. That is, if the candidate solution
is not updated for 2nL + 1 communication rounds, all
nodes have a common solution and hence the distributed
algorithm can be halted.

Proof of forth statement:
We first note that using (Chamanbaz et al., 2016, The-
orem 1), (Calafiore and Dabbene, 2007, Theorem 3) and
(Dabbene et al., 2010, Theorem 5.3) we can show that—at
any iteration t—if the sample size is selected based on (2)
and the verification step is successful, that is qviol = ∅,
then

PM
{
q ∈ QM : P{q ∈ Q : θi(t) /∈ Hi(q)} ≤ εi

}
≥ 1− δi.

We note that the above inequality is a centralized result
and holds only for the agent’s own constraint Hi(q). Also
since for θsol, the verification has to be successful, then

PM
{
q ∈ QM : P{q ∈ Q : θsol /∈ Hi(q)} ≤ εi

}
≥ 1− δi.

(5)
We further remark that the sample bound (2) is obtained
by replacing kt− 1, δ/2 and γ in (Chamanbaz et al., 2016,
Eq. (10)) with ∞, δi and 1.1 respectively, see (Chamanbaz
et al., 2016, Remark 1) for a discussion on optimal value
of γ.

Now, we are interested in bounding the probability by
which θsol /∈

⋂n
i=1 Hi(q), i.e.

PM

{
q ∈ QM : P

{
q ∈ Q : θsol /∈

n⋂
i=1

Hi(q)

}
≤ ε

}
. (6)

In order to bound (6), we follow similar reasoning stated
in Margellos et al. (2016). Define the following events

Badi
.
= {θsol /∈ Hi(q), ∀q ∈ Q}

Bad
.
= {θsol /∈

n⋂
i=1

Hi(q), ∀q ∈ Q}.
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Equations (5) and (6) can be written in terms of the events
Badi and Bad

PM
{
q ∈ QM : P{Badi} ≤ εi

}
≥ 1− δi (7)

PM
{
q ∈ QM : P{Bad} ≤ ε

}
(8)

respectively. One can observe that

θsol /∈
n⋂

i=1

Hi(q) ⇒ ∃i ∈ {1, . . . , n} : θsol /∈ Hi(q).

Hence, the event Bad can be written as the union of events
Badi, i = 1, . . . , n, that is Bad = Bad1∪Bad2∪ . . .∪Badn.
Invoking Boole’s inequality (Comtet, 1974) (also known as
Bonferroni’s inequality), we have

P{Bad} ≤
n∑

i=1

P{Badi}. (9)

Replacing P{Bad} in (8) with the right hand side of (9)
we obtain

PM

{
q ∈ QM :

n∑
i=1

P{Badi} ≤ ε

}

=PM

{
q ∈ QM :

n∑
i=1

P{Badi} ≤
n∑

i=1

εi

}

≥PM

{
n⋂

i=1

{
q ∈ QM : P{Badi} ≤ εi

}}

≥1−
n∑

i=1

PM
{
q ∈ QM : P{Badi} > εi

}

≥1−
n∑

i=1

δi = 1− δ.

We remark that the third line of above equation comes
from the fact that if P{Badi} ≤ εi, ∀i = 1, . . . , n then,
one can ensure that

∑n
i=1 P{Badi} ≤

∑n
i=1 εi. The forth

line also is due to the fact that P{
⋂

i Ai} = 1− P{
⋃

i A
c
i}

where Ac
i is the complement of the event Ai.

Proof of fifth statement:
We first note that if the solution θsol is violated for a
sample qv from the set of uncertainty, that is, θsol /∈⋂n

i=1 Hi(qv), then J(Bsol∪H(qv)) ≥ J(Bsol) with H(qv)
.
=⋃n

i=1 H
i(qv). However, due to Assumption 1, any sub-

problem of (1) has a unique minimum point and hence,
J(Bsol ∪H(qv)) �= J(Bsol). This argument combined with
the result of forth statement proves the fifth statement of
the theorem. That is, the probability that the solution
θsol is no longer optimal for a new sample equals the
probability that the solution is violated by the new sample.

�

5. NUMERICAL SIMULATION

We test the effectiveness of the distributed algorithm pre-
sented in Section 3 through extensive numerical simula-
tions. To this end, we generate random linear programs
(LP)—with a large number of uncertain parameters—
assigned to various nodes of the network. Each node is
assigned an uncertain set of the form

(A0 +Aq)
T θ ≤ b,

where A0 is a fixed (nominal) matrix and Aq is an interval
matrix—a matrix whose entries are bounded in given

intervals—defining the uncertainty in the optimization
problem. We follow the methodology presented in Dunham
et al. (1977) in order to generate A0, b and the problem
cost c such that the linear program is always feasible.
In particular, elements of A0 are drawn from standard
Gaussian distribution (mean= 0 and variance= 1). The

i-th element of b is define by bi = (
∑d

j=1 A
0
ij)

1/2. The
objective direction c—which is the same for all the nodes—
is also drawn from the standard Gaussian distribution. The
communication graph G is a random connected graph with
fixed number of neighbors.

A workstation with 12 cores and 48 GB of RAM is used
to emulate the network model. From an implementation
viewpoint, each node executes Algorithm 1 in an inde-
pendent Matlab environment and the communication is
modeled by sharing files between different Matlab envi-
ronments. We use the linprog function of Mosek (Ander-
sen and Andersen, 2000) to solve optimization problems
appearing at each iteration of the distributed algorithm.

In Table 1, we change the number of nodes and neighbors
such that the graph diameter is always 4. The number of
constraints in each node is also kept at 100. We set the
dimension of decision variables to d = 5 and consider all
elements of Aq to be bounded in [−0.2, 0.2]. The underly-
ing probability distribution is selected to be uniform due
to its worst-case nature. The probabilistic accuracy and
confidence levels of each agent (εi and δi) are 0.1/n and
10−8/n respectively, with n being the number of nodes
(first column of Table 1). We report the average—over
all nodes—number of times each node updates its basis
and transmits it to the outgoing neighbors. It is assumed
that each node keeps the latest information received from
neighbors and hence, if the basis is not updated, there is no
need to re-transmit it to the neighbors. This also accounts
for the asynchronicity of the distributed algorithm. We
also report the average—over all nodes—number of times
node i performs the verification step, i.e., ki at conver-
gence. This allows us to show that with a small number
of “design” samples used in the optimization step, nodes
compute a solution with high degree of robustness. In order
to examine robustness of the obtained solution, we run
an aposteriori analysis based on Monte Carlo simulation.
To this end, we collect all the constraints across different
nodes in a single problem of form (1) and check—in a
centralized setup—the feasibility of the obtained solution
for 10, 000 random samples extracted from the uncertain
set. The empirical violation (last column of Table 1) is
measured by dividing the number of samples that violate
the solution by 10, 000. Since Algorithm 1 has a stochastic
nature, we run the simulation 100 times for each row of
Table 1 and report the average values.

We remark that it is very difficult in practice to check if
Assumption 1 is satisfied for a given problem. However,
we observe that in all the simulations reported here, the
candidate solutions converge to the same point in finite
time. In Figure 1, we report the objective value and
the distance of candidate solutions θi(t), ∀i ∈ {1, . . . , n}
from θsol along the distributed algorithm execution for a
problem instance corresponding to the last row of Table 1.
It is observed that all the nodes converge to the same
solution θsol.
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Equations (5) and (6) can be written in terms of the events
Badi and Bad

PM
{
q ∈ QM : P{Badi} ≤ εi

}
≥ 1− δi (7)

PM
{
q ∈ QM : P{Bad} ≤ ε

}
(8)

respectively. One can observe that

θsol /∈
n⋂

i=1

Hi(q) ⇒ ∃i ∈ {1, . . . , n} : θsol /∈ Hi(q).

Hence, the event Bad can be written as the union of events
Badi, i = 1, . . . , n, that is Bad = Bad1∪Bad2∪ . . .∪Badn.
Invoking Boole’s inequality (Comtet, 1974) (also known as
Bonferroni’s inequality), we have

P{Bad} ≤
n∑

i=1

P{Badi}. (9)

Replacing P{Bad} in (8) with the right hand side of (9)
we obtain

PM

{
q ∈ QM :

n∑
i=1

P{Badi} ≤ ε

}

=PM

{
q ∈ QM :

n∑
i=1

P{Badi} ≤
n∑

i=1

εi

}

≥PM

{
n⋂

i=1

{
q ∈ QM : P{Badi} ≤ εi

}}

≥1−
n∑

i=1

PM
{
q ∈ QM : P{Badi} > εi

}

≥1−
n∑

i=1

δi = 1− δ.

We remark that the third line of above equation comes
from the fact that if P{Badi} ≤ εi, ∀i = 1, . . . , n then,
one can ensure that

∑n
i=1 P{Badi} ≤

∑n
i=1 εi. The forth

line also is due to the fact that P{
⋂

i Ai} = 1− P{
⋃

i A
c
i}

where Ac
i is the complement of the event Ai.

Proof of fifth statement:
We first note that if the solution θsol is violated for a
sample qv from the set of uncertainty, that is, θsol /∈⋂n

i=1 Hi(qv), then J(Bsol∪H(qv)) ≥ J(Bsol) with H(qv)
.
=⋃n

i=1 H
i(qv). However, due to Assumption 1, any sub-

problem of (1) has a unique minimum point and hence,
J(Bsol ∪H(qv)) �= J(Bsol). This argument combined with
the result of forth statement proves the fifth statement of
the theorem. That is, the probability that the solution
θsol is no longer optimal for a new sample equals the
probability that the solution is violated by the new sample.

�

5. NUMERICAL SIMULATION

We test the effectiveness of the distributed algorithm pre-
sented in Section 3 through extensive numerical simula-
tions. To this end, we generate random linear programs
(LP)—with a large number of uncertain parameters—
assigned to various nodes of the network. Each node is
assigned an uncertain set of the form

(A0 +Aq)
T θ ≤ b,

where A0 is a fixed (nominal) matrix and Aq is an interval
matrix—a matrix whose entries are bounded in given

intervals—defining the uncertainty in the optimization
problem. We follow the methodology presented in Dunham
et al. (1977) in order to generate A0, b and the problem
cost c such that the linear program is always feasible.
In particular, elements of A0 are drawn from standard
Gaussian distribution (mean= 0 and variance= 1). The

i-th element of b is define by bi = (
∑d

j=1 A
0
ij)

1/2. The
objective direction c—which is the same for all the nodes—
is also drawn from the standard Gaussian distribution. The
communication graph G is a random connected graph with
fixed number of neighbors.

A workstation with 12 cores and 48 GB of RAM is used
to emulate the network model. From an implementation
viewpoint, each node executes Algorithm 1 in an inde-
pendent Matlab environment and the communication is
modeled by sharing files between different Matlab envi-
ronments. We use the linprog function of Mosek (Ander-
sen and Andersen, 2000) to solve optimization problems
appearing at each iteration of the distributed algorithm.

In Table 1, we change the number of nodes and neighbors
such that the graph diameter is always 4. The number of
constraints in each node is also kept at 100. We set the
dimension of decision variables to d = 5 and consider all
elements of Aq to be bounded in [−0.2, 0.2]. The underly-
ing probability distribution is selected to be uniform due
to its worst-case nature. The probabilistic accuracy and
confidence levels of each agent (εi and δi) are 0.1/n and
10−8/n respectively, with n being the number of nodes
(first column of Table 1). We report the average—over
all nodes—number of times each node updates its basis
and transmits it to the outgoing neighbors. It is assumed
that each node keeps the latest information received from
neighbors and hence, if the basis is not updated, there is no
need to re-transmit it to the neighbors. This also accounts
for the asynchronicity of the distributed algorithm. We
also report the average—over all nodes—number of times
node i performs the verification step, i.e., ki at conver-
gence. This allows us to show that with a small number
of “design” samples used in the optimization step, nodes
compute a solution with high degree of robustness. In order
to examine robustness of the obtained solution, we run
an aposteriori analysis based on Monte Carlo simulation.
To this end, we collect all the constraints across different
nodes in a single problem of form (1) and check—in a
centralized setup—the feasibility of the obtained solution
for 10, 000 random samples extracted from the uncertain
set. The empirical violation (last column of Table 1) is
measured by dividing the number of samples that violate
the solution by 10, 000. Since Algorithm 1 has a stochastic
nature, we run the simulation 100 times for each row of
Table 1 and report the average values.

We remark that it is very difficult in practice to check if
Assumption 1 is satisfied for a given problem. However,
we observe that in all the simulations reported here, the
candidate solutions converge to the same point in finite
time. In Figure 1, we report the objective value and
the distance of candidate solutions θi(t), ∀i ∈ {1, . . . , n}
from θsol along the distributed algorithm execution for a
problem instance corresponding to the last row of Table 1.
It is observed that all the nodes converge to the same
solution θsol.
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Table 1. The average—over all nodes—number of times a basis is transmitted to the neighbors,
average number of times verification is performed (ki at the convergence) and empirical violation
of the computed solution (θsol) over 10, 000 random samples for different number of nodes and
neighbors in each node. The simulation is performed 100 times for each row and average results

are reported.

# Nodes # Neighbors Graph #Constraints # Transmissions ki at convergence Empirical
n in each node diameter in each node (averaged) (averaged) violation

10 3 4 100 29.57 31.69 2.81× 10−4

20 4 4 100 26.92 29.02 1.7× 10−4

50 6 4 100 26.47 28.51 7× 10−5

100 7 4 100 26.63 28.68 2.9× 10−5
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Fig. 1. Objective value and distance to θsol for all the
nodes in the network corresponding to the last row
of Table 1.

6. CONCLUSIONS

In this paper, we proposed a randomized distributed al-
gorithm for solving robust linear programs (LP) in which
the constraint sets are scattered across a network of proces-
sors communicating according to a directed time-varying
graph. The distributed algorithm has a sequential nature
consisting of two main steps: verification and optimization.
Each processor iteratively verifies a candidate solution
through a Monte Carlo algorithm, and solves a local LP
whose constraint set includes its current basis, the collec-
tion of bases from neighbors and possibly, a constraint—
provided by the Monte Carlo algorithm—violating the
candidate solution. The two steps, i.e. verification and op-
timization, are repeated till a local stopping criteria is met
and all nodes converge to a common solution. We analyze
the convergence properties of the proposed algorithm.
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