871 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    SPECTRUM SENSING AND COOPERATION IN COGNITIVE-OFDM BASED WIRELESS COMMUNICATIONS NETWORKS

    Get PDF
    The world has witnessed the development of many wireless systems and applications. In addition to the large number of existing devices, such development of new and advanced wireless systems increases rapidly the demand for more radio spectrum. The radio spectrum is a limited natural resource; however, it has been observed that it is not efficiently utilized. Consequently, different dynamic spectrum access techniques have been proposed as solutions for such an inefficient use of the spectrum. Cognitive Radio (CR) is a promising intelligent technology that can identify the unoccupied portions of spectrum and opportunistically uses those portions with satisfyingly high capacity and low interference to the primary users (i.e., licensed users). The CR can be distinguished from the classical radio systems mainly by its awareness about its surrounding radio frequency environment. The spectrum sensing task is the main key for such awareness. Due to many advantages, Orthogonal Frequency Division Multiplexing system (OFDM) has been proposed as a potential candidate for the CR‟s physical layer. Additionally, the Fast Fourier Transform (FFT) in an OFDM receiver supports the performance of a wide band spectrum analysis. Multitaper spectrum estimation method (MTM) is a non-coherent promising spectrum sensing technique. It tolerates problems related to bad biasing and large variance of power estimates. This thesis focuses, generally, on the local, multi antenna based, and global cooperative spectrum sensing techniques at physical layer in OFDM-based CR systems. It starts with an investigation on the performance of using MTM and MTM with singular value decomposition in CR networks using simulation. The Optimal MTM parameters are then found. The optimal MTM based detector theoretical formulae are derived. Different optimal and suboptimal multi antenna based spectrum sensing techniques are proposed to improve the local spectrum sensing performance. Finally, a new concept of cooperative spectrum sensing is introduced, and new strategies are proposed to optimize the hard cooperative spectrum sensing in CR networks. The MTM performance is controlled by the half time bandwidth product and number of tapers. In this thesis, such parameters have been optimized using Monte Carlo simulation. The binary hypothesis test, here, is developed to ensure that the effect of choosing optimum MTM parameters is based upon performance evaluation. The results show how these optimal parameters give the highest performance with minimum complexity when MTM is used locally at CR. The optimal MTM based detector has been derived using Neyman-Pearson criterion. That includes probabilities of detection, false alarm and misses detection approximate derivations in different wireless environments. The threshold and number of sensed samples controlling is based on this theoretical work. In order to improve the local spectrum sensing performance at each CR, in the CR network, multi antenna spectrum sensing techniques are proposed using MTM and MTM with singular value decomposition in this thesis. The statistical theoretical formulae of the proposed techniques are derived including the different probabilities. ii The proposed techniques include optimal, that requires prior information about the primary user signal, and two suboptimal multi antenna spectrum sensing techniques having similar performances with different computation complexity; these do not need prior information about the primary user signalling. The work here includes derivations for the periodogram multi antenna case. Finally, in hard cooperative spectrum sensing, the cooperation optimization is necessary to improve the overall performance, and/or minimize the number of data to be sent to the main CR-base station. In this thesis, a new optimization method based on optimizing the number of locally sensed samples at each CR is proposed with two different strategies. Furthermore, the different factors that affect the hard cooperative spectrum sensing optimization are investigated and analysed and a new cooperation scheme in spectrum sensing, the master node, is proposed.Ministry of Interior-Kingdom of Saudi Arabi

    Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network

    Get PDF
    The cognitive radio (CR) is evolved as the promising technology to alleviate the spectrum scarcity issues by allowing the secondary users (SUs) to use the licensed band in an opportunistic manner. Various challenges need to be addressed before the successful deployment of CR technology. This thesis work presents intelligent resource allocation techniques for improving energy efficiency (EE) of low battery powered CR nodes where resources refer to certain important parameters that directly or indirectly affect EE. As far as the primary user (PU) is concerned, the SUs are allowed to transmit on the licensed band until their transmission power would not cause any interference to the primary network. Also, the SUs must use the licensed band efficiently during the PU’s absence. Therefore, the two key factors such as protection to the primary network and throughput above the threshold are important from the PU’s and SUs’ perspective, respectively. In deployment of CR, malicious users may be more active to prevent the CR users from accessing the spectrum or cause unnecessary interference to the both primary and secondary transmission. Considering these aspects, this thesis focuses on developing novel approaches for energy-efficient resource allocation under the constraints of interference to the PR, minimum achievable data rate and maximum transmission power by optimizing the resource parameters such as sensing time and the secondary transmission power with suitably selecting SUs. Two different domains considered in this thesis are the soft decision fusion (SDF)-based cooperative spectrum sensing CR network (CRN) models without and with the primary user emulation attack (PUEA). An efficient iterative algorithm called iterative Dinkelbach method (IDM) is proposed to maximize EE with suitable SUs in the absence of the attacker. In the proposed approaches, different constraints are evaluated considering the negative impact of the PUE attacker on the secondary transmission while maximizing EE with the PUE attacker. The optimization problem associated with the non-convex constraints is solved by our proposed iterative resource allocation algorithms (novel iterative resource allocation (NIRA) and novel adaptive resource allocation (NARA)) with suitable selection of SUs for jointly optimizing the sensing time and power allocation. In the CR enhanced vehicular ad hoc network (CR-VANET), the time varying channel responses with the vehicular movement are considered without and with the attacker. In the absence of the PUE attacker, an interference-aware power allocation scheme based on normalized least mean square (NLMS) algorithm is proposed to maximize EE considering the dynamic constraints. In the presence of the attacker, the optimization problem associated with the non-convex and time-varying constraints is solved by an efficient approach based on genetic algorithm (GA). Further, an investigation is attempted to apply the CR technology in industrial, scientific and medical (ISM) band through spectrum occupancy prediction, sub-band selection and optimal power allocation to the CR users using the real time indoor measurement data. Efficacies of the proposed approaches are verified through extensive simulation studies in the MATLAB environment and by comparing with the existing literature. Further, the impacts of different network parameters on the system performance are analyzed in detail. The proposed approaches will be highly helpful in designing energy-efficient CRN model with low complexity for future CR deployment

    CELLULAR-ENABLED MACHINE TYPE COMMUNICATIONS: RECENT TECHNOLOGIES AND COGNITIVE RADIO APPROACHES

    Get PDF
    The scarcity of bandwidth has always been the main obstacle for providing reliable high data-rate wireless links, which are in great demand to accommodate nowadays and immediate future wireless applications. In addition, recent reports have showed inefficient usage and under-utilization of the available bandwidth. Cognitive radio (CR) has recently emerged as a promising solution to enhance the spectrum utilization, where it offers the ability for unlicensed users to access the licensed spectrum opportunistically. By allowing opportunistic spectrum access which is the main concept for the interweave network model, the overall spectrum utilization can be improved. This requires cognitive radio networks (CRNs) to consider the spectrum sensing and monitoring as an essential enabling process for the interweave network model. Machine-to-machine (M2M) communication, which is the basic enabler for the Internet-of-Things (IoT), has emerged to be a key element in future networks. Machines are expected to communicate with each other exchanging information and data without human intervention. The ultimate objective of M2M communications is to construct comprehensive connections among all machines distributed over an extensive coverage area. Due to the radical change in the number of users, the network has to carefully utilize the available resources in order to maintain reasonable quality-of-service (QoS). Generally, one of the most important resources in wireless communications is the frequency spectrum. To utilize the frequency spectrum in IoT environment, it can be argued that cognitive radio concept is a possible solution from the cost and performance perspectives. Thus, supporting numerous number of machines is possible by employing dual-mode base stations which can apply cognitive radio concept in addition to the legacy licensed frequency assignment. In this thesis, a detailed review of the state of the art related to the application of spectrum sensing in CR communications is considered. We present the latest advances related to the implementation of the legacy spectrum sensing approaches. We also address the implementation challenges for cognitive radios in the direction of spectrum sensing and monitoring. We propose a novel algorithm to solve the reduced throughput issue due to the scheduled spectrum sensing and monitoring. Further, two new architectures are considered to significantly reduce the power consumption required by the CR to enable wideband sensing. Both systems rely on the 1-bit quantization at the receiver side. The system performance is analytically investigated and simulated. Also, complexity and power consumption are investigated and studied. Furthermore, we address the challenges that are expected from the next generation M2M network as an integral part of the future IoT. This mainly includes the design of low-power low-cost machine with reduced bandwidth. The trade-off between cost, feasibility, and performance are also discussed. Because of the relaxation of the frequency and spatial diversities, in addition, to enabling the extended coverage mode, initial synchronization and cell search have new challenges for cellular-enabled M2M systems. We study conventional solutions with their pros and cons including timing acquisition, cell detection, and frequency offset estimation algorithms. We provide a technique to enhance the performance in the presence of the harsh detection environment for LTE-based machines. Furthermore, we present a frequency tracking algorithm for cellular M2M systems that utilizes the new repetitive feature of the broadcast channel symbols in next generation Long Term Evolution (LTE) systems. In the direction of narrowband IoT support, we propose a cell search and initial synchronization algorithm that utilizes the new set of narrowband synchronization signals. The proposed algorithms have been simulated at very low signal to noise ratios and in different fading environments
    corecore