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Abstract

The cognitive radio (CR) is evolved as the promising technology to alleviate the
spectrum scarcity issues by allowing the secondary users (SUs) to use the licensed
band in an opportunistic manner. Various challenges need to be addressed before the
successful deployment of CR technology. This thesis work presents intelligent
resource allocation techniques for improving energy efficiency (EE) of low battery
powered CR nodes where resources refer to certain important parameters that directly
or indirectly affect EE. As far as the primary user (PU) is concerned, the SUs are
allowed to transmit on the licensed band until their transmission power would not
cause any interference to the primary network. Also, the SUs must use the licensed
band efficiently during the PU’s absence. Therefore, the two key factors such as
protection to the primary network and throughput above the threshold are important
from the PU’s and SUs’ perspective, respectively. In deployment of CR, malicious
users may be more active to prevent the CR users from accessing the spectrum or
cause unnecessary interference to the both primary and secondary transmission.
Considering these aspects, this thesis focuses on developing novel approaches for
energy-efficient resource allocation under the constraints of interference to the PR,
minimum achievable data rate and maximum transmission power by optimizing the
resource parameters such as sensing time and the secondary transmission power with
suitably selecting SUs.

Two different domains considered in this thesis are the soft decision fusion
(SDF)-based cooperative spectrum sensing CR network (CRN) models without and
with the primary user emulation attack (PUEA). An efficient iterative algorithm called
iterative Dinkelbach method (IDM) is proposed to maximize EE with suitable SUs in
the absence of the attacker. In the proposed approaches, different constraints are
evaluated considering the negative impact of the PUE attacker on the secondary
transmission while maximizing EE with the PUE attacker. The optimization problem
associated with the non-convex constraints is solved by our proposed iterative resource
allocation algorithms (novel iterative resource allocation (NIRA) and novel adaptive
resource allocation (NARA)) with suitable selection of SUs for jointly optimizing the
sensing time and power allocation. In the CR enhanced vehicular ad hoc network
(CR-VANET), the time varying channel responses with the vehicular movement are
considered without and with the attacker. In the absence of the PUE attacker, an
interference-aware power allocation scheme based on normalized least mean square
(NLMS) algorithm is proposed to maximize EE considering the dynamic constraints.
In the presence of the attacker, the optimization problem associated with the
non-convex and time-varying constraints is solved by an efficient approach based on



genetic algorithm (GA). Further, an investigation is attempted to apply the CR
technology in industrial, scientific and medical (ISM) band through spectrum
occupancy prediction, sub-band selection and optimal power allocation to the CR users
using the real time indoor measurement data. Efficacies of the proposed approaches
are verified through extensive simulation studies in the MATLAB environment and by
comparing with the existing literature. Further, the impacts of different network
parameters on the system performance are analyzed in detail. The proposed
approaches will be highly helpful in designing energy-efficient CRN model with low
complexity for future CR deployment.

Keywords:- Cognitive radio; energy efficiency; spectrum sensing; primary user;
secondary user; malicious user; CR enhanced vehicular ad-hoc network;industrial,
scientific and medical band
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1.1 Introduction

NOW-A-DAYS, communication through the wireless media is becoming one of the
inevitable necessities of people around the globe. The ever-growing interests in

the wireless devices and their applications induce the demand of high data rate which
may result in traffic congestion problem. According to the traditional fixed frequency
allocation policy, the spectrum band is assigned to the licensed holders who have the
authentication to use that band for a specific time basis over a large geographical
region [1, 2]. Though the spectrum is specifically allotted to the licensed users, some
portions of the spectrum still remain underutilized or unutilized [3]. According to
Federal Communications Commission (FCC), the entire utilization of the spectrum
varies between 15% to 85% over time and frequency. This unused portions of the
licensed spectrum are defined as whitespace or spectrum holes. The spectrum hole
concept is illustrated in Figure 1.1.

Figure 1.1: Spectrum hole concept.

The radio frequency band is divided into the licensed and unlicensed band.
The improper and inefficient usage of spectrum band leads to the development

of dynamic spectrum access(DSA) technique which exploits the licensed band in an
opportunistic manner. Depending on the licensed band’s occupancy statistics, the
whitespace is categorized into three types [4, 5].

• White hole/Spectrum hole:The licensed band is vacant.

• Grey hole: The licensed band is partially occupied i.e. the licensed user transmits
with a very low power.
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• Black hole: The licensed band is fully occupied i.e. the licensed user transmits
with high power.

Recently, cognitive radio (CR) is introduced as a promising solution to alleviate
the spectrum scarcity problem by effectively exploiting the underutilized

spectrum band [6]. In CR, the licensed users and the unlicensed users are referred as
the primary users (PUs) and the secondary users (SUs), respectively. In May 2004,
FCC declared the use of unlicensed operation in VHF and UHF TV bands [7]. Then,
IEEE 802 local area network/metropolitan area network (LAN/MAN) working group
created 802.22 committee on wireless regional area networks (WRANs) based on CR
which allows unlicensed users in very high frequency (VHF) and ultra high frequency
(UHF) (54-862 MHz) bands ensuring sufficient protection to the incumbent user [8].

1.1.1 Cognitive radio

The term “Cognitive Radio” was first introduced by Joseph Mitola in his doctoral thesis
in 2002. The CR was presented as an advanced version of software defined radio (SDR)
[9, 10]. The CR concept was defined by the several regulatory bodies presenting the
same contexts. The well-known definition adopted by FCC is [11]

“Cognitive radio: A radio or system that senses its operational

electromagnetic environment and can dynamically and autonomously

adjust its radio operating parameters to modify system operation, such as

maximize throughput, mitigate interference, facilitate interoperability,

access secondary markets.”

Hence, the CR is a reconfigurable radio, it can adaptively change its operational
parameters according to the dynamic surrounding environment to enable the SUs to
select the white space in the frequency band and use that band until they do not cause
any harmful interference to the legitimate user.The primary objectives of the CR are

• To facilitate efficient utilization of the limited spectrum, thereby achieving the
demands for more data rate and quality of service (QoS).

• To protect the PUs from any harmful interference caused by the SUs.

• To provide highly secure communication to all the users present in the cognitive
radio networks (CRNs).

So, the main operational features of the CR are cognitive capability and
reconfigurability [2, 5, 12].Cognitive capability refers to the ability of the CR to
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identify the unutilized spectrum band from the temporal and spatial varying radio
environment at the specific time and required location. In order to cope of with the
real-time environment, the CR must be aware of the changes occurring in the
surrounding. Hence, it has to perform spectrum sensing (SS), spectrum analysis,
spectrum decision and spectrum mobility as shown in Figure 1.2. Reconfigurability
refers to the capability of the CR to reconfigure the operating parameters according to
the dynamic radio environment. So, the CR can be programmed to transmit and
receive on any frequency bands, and to use different access technologies supported by
its hardware design. The reconfigurable parameters include operating frequency,
modulation scheme, transmit power limited by the maximum power constraint and
communication network access.

Figure 1.2: General working principles of CR.

The CRN’s architecture is designed so as to meet the challenges from all the users’
perspective. From the PU’s perspective, SUs are allowed to access the licensed band
until they do not create any interference to the PU. From the SUs’ perspective, they
must avail the service facilities efficiently to maximize their data transmission rate.
Further, the deployment of CRNs should not affect other networks. The basic
components of the CRN are mobile stations/ CR nodes (MSs/CR nodes), CR base
stations (CR-BSs) and the backbone/core networks. Basically, there are three types of
architectures; infrastructure architecture, ad hoc architecture and mesh
architecture [13]. The infrastructure refers to the central controller entity CR-BS at
which the local information from CR nodes is collected. The CRs present under the
same CR-BS are allowed to communicate with each other via CR-BS. Thus, each CR
node can access the CR-BS only in a one-hop manner. In accordance with the final
decision by the BS, the CR nodes adopt their operating parameters. The ad hoc
network refers to the non-existence of the CR-BSs. The links between the CR nodes
act as ad hoc networks either by using the existing communication protocols (e.g.
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WiFi, Bluetooth) or by dynamically selecting the spectrum holes. The mesh
architecture is also called hybrid wireless mesh networks, and is formed by
implementing the concepts of both infrastructure and ad hoc Networks. The CR nodes
can connect to the BS either directly or by using other nodes as relay. Hence, the
communication process to the BS may be done in a one-hop or multi-hop manner.

1.1.2 Working principles of CR

The working principles of CR are to perform SS, to analyze, to learn from the
surroundings and to adapt its internal parameters according to the statistical variations
of the real-time environments. So, the main working mechanisms of the CR are SS,
spectrum management, spectrum sharing and spectrum mobility.

Spectrum sensing
SS is the primary task amongst all the processes. It enables the CR nodes to correctly
identify the spectrum holes and to detect the PU’s activity on the licensed band. The
PU has no rights to change its characteristics in order to share the authenticated band
with the SUs. Hence, the CR nodes need to perform SS continuously to obtain the
information about the occupancy statistics. Figure 1.3 shows the classification of SS
techniques on different bases [14–19]. Primarily, SS is classified based on the number
of SUs that participate in the detection and decision-making process.

• In non-cooperative SS technique, the single SU makes its own decision regarding
the availability of the licensed band and reconfigures its parameters according to
its own observation.

• In cooperative SS (CSS), multiple SUs participate in the detection process in
centralized or decentralized or relay-assisted manner. Each SU can use any of the
local sensing methods, and the global decision is obtained by combining all the
local decisions.

Specifically, SS is performed at two instants, periodically and demand basis which are
defined as follows.

• Proactive (periodical) SS: The SUs perform SS periodically in the licensed band.

• Reactive (demand) SS: SS is performed on the demand basis when the SUs intend
to transmit their data on the licensed band.
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Figure 1.3: Classification of spectrum sensing techniques.

Based on the bandwidth of the spectrum to be detected, the SS technique chooses
either the narrowband or wideband sensing. Narrowband SS techniques include
matched filtering [20], energy detection [21], feature detection [22], waveform based
detection [23], eigenvalue based SS [24], covariance based SS [25], etc. Similarly, the
wideband SS techniques include filter-bank based detection [26], wavelet based [27],
multi-tapper spectrum estimation [28], compressed SS [29], blind source separation
based [30], etc. Also, depending on the requirements of the priori information for
detecting the PU, the SS techniques are classified into

• Non-blind SS: It requires some specific parameters about the PU’s signal and
noise variance for the detection purpose (e.g. matched filtering, waveform based
and feature detection method).

• Semi-blind SS: It requires only the noise variance for spectrum detection (e.g.
energy detection, filter-bank based detection, wavelet and multi-tapper spectrum
estimation method).

• Blind SS: It requires no information regarding the PU system or noise variance
for detection purpose (e.g. eigenvalue based, covariance based, compressed SS
and blind source separation based method).

The primary focus of the SS is the PU’s transmitter detection which is based on the
local observations of the SUs. So, the methods of SS are broadly classified into
transmitter detection (non-cooperative detection), cooperative detection and
interference-based detection [2]. The non-cooperative SS schemes may not provide
accurate detection of the PU in an adversarial environmental condition. In the practical
wireless environment, due to the presence of multipath fading and shadowing, the PU’s
signal is heavily attenuated and signal-to-noise ratio (SNR) value decreases. When the
received SNR at the SU falls below a certain threshold, the SU can not detect the PU
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signal and starts transmitting the data. It will cause severe interference to the primary
receiver (PR), if that receiver is present in the SU’s transmission range. This is called
hidden node problem. Further, single SU can not provide reliable detection probability,
and may induce false alarm probability and miss detection probability. These serious
outcomings of non-cooperative SS techniques can be overcome by sharing the
individual decision with other SUs to obtain the promised sensing performance. This
prompts the idea of CSS [31]. The CSS includes the local sensing by the SUs,
reporting of their decisions and the information fusion. Specifically, there are two
types of channels; sensing channel and the reporting channel. The physical channel
between the PU and the SU is called the sensing channel, and the channel between the
SU and the fusion center (FC) is called reporting channel. Further, FCC introduced
interference temperature for interference measurement. So, that the interference at the
receiver side is controlled by the interference temperature limit i.e when the
transmission power of the SU exceeds the above limit, it will cause interference to the
receiver. Thus, the SUs are allowed to access the spectrum band as long as the
transmission power is below the interference temperature limit [32].

Spectrum management
After SS, considering the dynamic behavior of the spectrum, the SUs are capable of
selecting the best spectrum band out of the available unused licensed and unlicensed
band in order to achieve its promising QoS. The spectrum management function is
classified into spectrum analysis and spectrum decision which are related to the upper
layers.

• Spectrum analysis: Before selecting the appropriate spectrum band for the
specific application, the spectrum bands are analyzed considering the
time-varying characteristics, the frequency of operation and the PU activity.
Hence, the spectrum analysis is performed on the basis of certain factors such as
system capacity, path loss, holding time, delay, interference level, etc.

• Spectrum decision: After the spectrum analysis, the SUs select the suitable band
for data transmission achieving the QoS requirements.

Spectrum sharing
The spectrum sharing depends on the coordination between the SUs. The first
classification of spectrum sharing is based on the architecture which states that the
spectrum sharing is controlled by either the central unit called centralized spectrum
sharing or by the individual SU in the distributive manner which is called distributed
spectrum sharing. Spectrum sharing technique is also classified on the basis of
spectrum allocation i.e cooperative and non-cooperative spectrum sharing. It is
obvious that cooperative scheme always outperforms the non-cooperative scheme in
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improving the system performance and throughput. Further, spectrum sharing is also
classified in terms of spectrum access techniques such as overlay spectrum sharing in
which the SUs use the unused portion of the licensed band and vacant that band on the
arrival of the PU so as to avoid the unnecessary interference to the PU. In underlay
spectrum sharing, the SUs coexist with the PU on the licensed band provided that its
transmission power is below the interference temperature limit. Sometimes, in a
certain portion of the spectrum the transmission power from the SUs appears as noise
to the licensed user.

Spectrum mobility
In order to operate on the best available frequency band, the SUs have the ability to
change the frequency of operation which is known as spectrum mobility. Spectrum
mobility occurs to support the dynamic characteristic of the licensed band. It leads
to the concept of spectrum handoff when the SUs change the operating frequency and
accordingly, the protocols in the upper layers modify their operational parameters.

1.1.3 Research challenges in the CRN

Being one of the emerging areas, the CR attracts lots of researchers in different
application domains, obtaining with new interesting results. Still, there are some
technical challenges, that need to be addressed before successful deployment of CR
technology in near future [17, 33]. There are numerous challenges arising due to the
operational characteristics to support the real-time environment and the working
mechanism of CR in the application domain. Here, some of the important research
challenges are described below.

• Decision making:To utilize the spectrum more efficiently, it is always required
for the SUs to select the best band. The decision-making process entirely relies
on the identification of available vacant bands, strategies to select a suitable band
and on the designing of the decision-making algorithm. Though there are lots of
optimization algorithms available in the literature, still, it needs further analysis
and development of the new algorithm which can give accurate results even in the
adversarial real time scenario with less complexity.

• SUs selection:The SUs involved in the sensing process play a vital role in
improving the detection performance and spectral efficiency. Usually, the SUs
having higher received SNR provide better detection probability. It is a
challenging issue to select an optimum number of SUs and eligible SUs for
different scenarios such as correlated shadowing, energy consumption, security,
and mobility.
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• Sensing time and delay: The delay in CSS refers to the sensing delay, reporting
delay and data transmission delay. The sensing time delay is the time taken by
the SUs for identifying the PU. In the CRN, the CR users must be perfectly
synchronized, and their sensing results should be available at the FC instantly.
More specifically, the reporting delay is very less as compared to the sensing and
transmission delay. Further, longer sensing duration provides better detection
probability but leaving a short duration for data transmission. Certainly, this
reduces the system throughput. Hence, the sensing time must be chosen so as to
maintain a trade-off between the detection performance and system throughput.
Transmission delay occurs when the SUs accurately detect the PU or false alarm
occurs. False alarm probability deprives the SUs from accessing the band, hence
leads to delay in data transmission.

• Power allocation: Transmission power allocation to the SUs is one of the
precious resources which maximizes the system throughput preventing the
primary network from interference. Usually, the CR devices are low powered
battery devices. During the data transmission, there may be chances of sudden
increase of the transmission power that crosses the interference limit of the PU.
So, proper power allocation algorithms should be developed which increase
system throughput providing sufficient protection to the legitimate users from
any harmful interference.

• Security issues:The special characteristics of the CRN provide unique
opportunities to the attackers. The attackers introduce a new suite of threats
targeting to damage the entire normal activities of the communication
networks [34]. Besides this, the CR management experiences different kinds of
anomalous behavior from the other Access points (APs) [35] such as
misbehaving AP, selfish AP, cheat AP and Malicious AP. The physical layer is
the lowest layer of the protocol stack and provides an interface to the
communication medium. In the CR technology, the SUs are considered to be
aware of any changes in the surroundings, adapt the physical layer parameters
and access the spectrum dynamically, which makes the operation more
challenging. Primary user emulation attack (PUEA) is one of the serious attacks
in the physical layer where the malicious user (MU) mimics the PU’s signal
characteristics and sends the similar type signal, thereby causing the SUs to
erroneously identify the attacker as the PU [36].Thus, it reduces the efficient
utilization of the spectral resources.
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1.1.4 Application domains of CR

The characteristics of CR increase the interest of researchers to use its functionality
and capability in multidisciplinary applications such as vehicular network, smart grid,
healthcare, military, satellite communication, etc.

Vehicular ad hoc networks (VANETs) have been introduced as an emerging
technology to improve the road safety by enabling certain applications such as
collision warning, traffic information and monitoring [37, 38]. IEEE 802.11p standard
allows vehicular communication to use only 75 MHz of spectrum in 5.9 GHz band
(5.850 - 5.925 GHz), which is dedicated for short-range communications (DSRC). But
the spectrum gets congested during the busy traffic hour. The vehicular network
deployment in the TV white space using the CR technology can solve this problem.
The CR-enabled vehicles can improve the spectral efficiency by utilizing the available
bandwidth for VANET. The smart grid requires integration of high-speed, reliable and
secure data information into it. However, due to the adversarial environmental
condition, the sharing of information among the multiple networks gets affected due to
interference and collision in the information, noise, etc [39]. Hence, CR application in
the smart grid allows the smart devices to identify the unutilized spectrum and utilize
them under interference constraint. Wireless body area network (WBAN) which
enables continuous monitoring of the patient through integration of wireless sensors
worn by the patient. But simultaneously it allows new challenges in the operating
wireless channel environment. Hence, CR is introduced in WBAN to improve the QoS
by reducing interference between the medical devices [40]. In the military application,
when an adversary sends a jamming signal to block the communication link, the CR
sensor node has the ability to detect and switch over to a different frequency band [41].
Even in the satellite communication, to utilize the terrestrial and satellite spectrum
efficiently, CR can be employed [42].

1.2 Literature Survey

The extensive growth of wireless communication devices offers an escalation to the
spectrum scarcity issues in the radio spectrum. Both spectrum scarcity issues and
underutilization of spectrum led the FCC to develop CR which allows the unlicensed
users to access the licensed band in an opportunistic manner. Before the CR
deployment, the spectrum occupancy measurement is necessary to predict the PU
activity on the different licensed bands allocated for several services. An effective
quantitative measurement is essential to provide a detailed structure of the current
spectrum usage and to identify the suitable and potential candidate bands for future CR
access. To do this, various measurement campaigns were conducted worldwide in
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different locations such as US, Europe, New Zealand, South Africa, China, Singapore,
Vietnam etc. covering the wide frequency range in order to find out the suitable bands
for the secondary usage in the context of CR. Most of the observations were conducted
in the US and hence assess the American spectrum regulations and monitoring.
National Telecommunications and Information Administration (NTIA) has performed
first larger spectrum occupancy measurement [43]. The occupancy statistics vary with
the location, time, space and the band of operation. Moreover, the spectrum usage in
the nearby country also affects the occupancy statistics [44]. The research activities
involve survey on TV band, cellular band, UHF band, and many more assigned to
different services. Based on the derived solutions from these studies conducted in
diverse locations and scenarios, CR should undertake the various possibilities and
challenges in technological aspects.

The continuous measurement system enables the CR device to scan multiple bands
with sufficient sensitivity and efficiency by rotating or switching the antenna. Again,
the CR device can not perform both transmission or reception and sensing operation
simultaneously. Additionally, efficiency in the CRN can be maximized by minimizing
the energy consumption during sensing and data transmission. So, it is desirable to
develop an optimized SS model to minimize both time and energy consumption
ensuring maximum throughput. SS is the backbone of the CR technology. Accurate
identification of the PU is the primary concern and one of the most challenging
problems in the CRN. In real time environment, the detection performance may
degrade due to the dynamic behavior of the channel that occurs due to fading, mobility
of the SU or the PU, shadowing, the presence of other MUs, etc. Lee et al. acquired
the time diversity gain by combining the time domain sensing results obtained from a
single user at different instants to improve the detection performance in the presence of
fading. The time-domain combing SS algorithm was based on Bayesian method and
Neyman-Pearson theorem [45]. In the CRN, the SS algorithm needs to be designed to
provide proper utilization of the available spectrum providing sufficient protection to
the PU. Hence, false alarm probability and miss detection probability should be
equally balanced which is not possible in the conventional single threshold-based SS.
So, in [46], an interference-aware SS method was proposed in which the probability of
identifying the spectrum hole was maximized considering the missed detection and
probability of interference to the PU. Besides the channel impairments, the presence of
other malicious SUs may obstruct the naive SUs from obtaining the accurate sensing
results. In order to nullify the harmful effect and to improve the detection performance
Li et al. evaluated the trust value by considering the spatial and temporal correlation
among the received information [47]. But, when the PU is small-scale mobile user
such as the wireless microphone, a novel framework called Sequential mOnte carLo
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combined with shadow-faDing estimation (SOLID) was proposed to accurately track
the PU by discarding the false sensing reports from the malicious users [48]. When the
SUs are the mobile SUs, the detection performance metrics were evaluated by
considering different parameters such as velocities, locations of the SUs and distances
of the SUs from the PU [49, 50].

As most of the detection techniques are based on the energy detection method,
selecting the decision threshold is an important aspect in measuring the spectrum
occupancy. Selecting the high threshold leads to underestimation of the actual
spectrum occupancy and may cause interference to the PU. Similarly, selecting the low
threshold leads to overestimation of the actual spectrum occupancy, and results in high
false alarm probability. Further, in the conventional single threshold based detection
technique, missed detection decreases with increase of the false alarm probability.
Hence, several methods have been proposed to find the optimum threshold. Either, the
detection schemes used two or more thresholds to compare the energy values of the
SUs [51] or the threshold was optimized to minimize the sensing error [52]. In double
threshold-based detection, the two thresholds control the false alarm and missed
detection. The decision is made when the energy value falls either side of the two
thresholds. However, if the energy value lies in between the two thresholds called the
confusion area, either the SUs do not send any information [53], or send their energy
values to the central unit [54] or they perform more sensing rounds until they reach to
any final decision [55].

While conducting the spectrum occupancy measurement in different bands in
diverse locations worldwide by the research campaigns, selecting the appropriate
threshold is one of the major issues. This can be evaluated considering different
parameters such as the average noise floor [56] or the minimum value of signal
level [57] or the false alarm probability [58].

In CSS, although the participation of the more SUs offer reliable detection
performance, but it may lead to more energy consumption and sensing overhead. So,
an optimum number of SUs and suitable SUs need to be chosen to make a balance
between the detection performance and energy consumption. It is always desirable to
choose the SUs with high detection performance. In [59], the authors proposed three
types of methods such as simple counting, partial-agreement counting, and collision
detection to select the SUs with the best detection performance. In order to reduce the
sensing overhead and energy consumption, Godarzi et al. proposed Secant method to
obtain the optimum number of SUs for improving the detection performance under
false alarm constraint [60]. The effective number of SUs were obtained to improve
both throughput and sensing performance [61]. In [62], energy based sensor selection
algorithm was proposed to select appropriate SUs that balanced the energy
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consumption among the sensors, so that each sensor could participate in CSS for long
time. To maintain the trade-off between the sensing performance and energy efficiency
(EE), Zahmati et al. proposed an energy-aware SUs selection algorithm to obtain
suitable SUs providing better detection probability with minimum false alarm
probability, and the eligible SUs were chosen based on the local sensing results, global
decision and the energy consumption [63]. In the practical environment, the
cooperation between the SUs cannot be guaranteed always because of the obstruction
in the propagation path between the transmitter and receiver. This is called shadowing
which tends to produce a weak and correlated signal, hence reduces the diversity gain.
Further, as the number of users increases, there is a chance of more users present in the
vicinity of the same obstruction. As a result, those users suffer from similar levels of
fading and their SS results are similar. Hence, the detection probability can be
improved significantly by exclusion of spatially correlated SUs and inclusion of
selected SUs [64]. In order to select less spatial correlated SUs Ren et al. applied
adaptive genetic algorithm under the constraints of false and miss detection probability
in correlated log-normal shadowing environment [65].

The CR devices are low powered battery-driven terminal.Further, the SUs can
access the licensed band as long as the interference to the PU remain below a certain
threshold. Hence, power allocation to the SUs is one of the important aspects in the
CRN to maximize EE while providing sufficient protection to the PU. So, the main
objective must be either to maximize EE or to minimize the energy consumption.
In [66], EE was maximized by jointly optimizing the sensing time and power
allocation under the constraints of interference to the PU, minimum achievable data
rate and the target detection probability. The EE maximization problem was
formulated by using the fractional programming based on Dinkelbach method. The
optimal sensing time was obtained by exhaustive search method for maximum EE. In
OFDM-based CR system, EE was maximized by optimizing the power allocation
under the constraints of interference to the PU, maximum transmission power and
minimum achievable data rate [67]. The energy-efficient power allocation per
sub-carrier was obtained by original water filling factors aided search (WFAC)
method. Additionally, the authors proposed simplified-WFAC method which had
much lower complexity than original WFAC. In [68], EE optimization problem was
expressed by Energy per Goodbit (EPG) combined with soft sensing information.
Power assignment with interference constraint was solved by channel inversion policy,
and maximization of EE with power allocation problem was solved by applying
Lagrangian duality theorem. In the TV band, EE was maximized with sub-channel
assignment and power allocation under the constraints of interference to the PU,
maximum transmission power and minimum achievable data rate. The EE
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maximization problem was transferred to concave programming problem by using
Charnes-Cooper transformation method. Then Karush-Kuhn-Tucker (KKT) condition
was applied to obtain the optimal power allocation [69]. The aid of bisection search
method with the Lagrangian dual decomposition method was used to obtain the power
allocation for maximizing EE [70]. In [71], the authors proposed an efficient process
associated with the Bisection search method to optimize the SUs for maximizing the
system throughput, minimizing the energy consumption and maximizing the EE. In the
cooperative CRNs, when the SUs act as relay, maximization of EE was obtained by
jointly optimizing the power and SUs relay set under the constraints of interference to
the PU and minimum achievable data rate [72]. There, a Greedy spectrum sharing
algorithm was proposed to jointly optimize the power allocation to the relay and also
the best set of relays. When the SUs were the small cells and the PUs were the
macro-cells, the EE maximization problem was formulated by convex parametric
approach in [73]. Two types of algorithms based on Newton method and
minorization-maximization principle with Newton method were proposed for
orthogonal and non-orthogonal secondary transmission, respectively. In [74], the
energy consumption was minimized by optimizing the sensing time and power
allocation under the constraints of maximum average interference and transmit power.
The optimization problem was formulated by using the fractional programming, and
the sensing time was obtained by performing the exhaustive search for minimizing the
average energy consumption. The EE in the CRN can also be maximized by
minimizing the energy consumption. The joint optimization of threshold and number
of sensor nodes helped in minimizing the energy consumption in [75] where the power
allocation was obtained by using the bisection search method. The aid of convex
optimization algorithm with an efficient iterative method was used to obtain suitable
range of threshold using maximum probability of detection algorithm (MPDA), and in
addition, modified energy-efficient sensor selection (MEESS) was proposed to obtain
the sensing nodes. In [76], the total energy consumption was minimized by optimizing
the amplifying gain and relay power allocation under the constraints of interference to
the PU, minimum achievable throughput, detection and false alarm probability.

Hence, an energy-efficient CRN design with reliable spectrum detection depends on
various parameters which need perfect optimization and evaluation.

1.3 Research Motivation

From the above discussion, it is apparently studied that the system parameters are
directly influencing the designing of the energy-efficient CRN with balanced sensing
performance. The sensing time and the selection of SUs are the two common
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parameters which influence the detection performance and EE. Further, EE depends on
the system throughput and the total power consumption.

Most of the existing SU’s selection method are based on the estimation of the
number of SUs that improve the detection probability. Apart from the number of SUs,
the eligible SUs have also equal importance in improving the system performance.
The SUs suitable for SS may not be effective for data transmission with least
interference to the PU. Hence, proper selection of the SUs imparts similar performance
towards the detection performance and system throughput.

Another parameter related to both SS performance and throughput is the sensing
time. The longer sensing time gives accurate sensing result leaving very short duration
for data transmission. Similarly, longer transmission period may not be reliable in
giving proper knowledge about the PU due to the shorter sensing duration. Based on
these arguments, it is necessary to incorporate the sensing time optimization for
enhancing the system throughput while achieving the good detection performance.
Therefore, it is required to include sensing time in designing of the energy-efficient
CRN model.

Another important aspect is power allocation to the SUs so that the interference to
the PU is kept under a certain limit as well as all the SUs achieve their minimum
throughput intending for EE maximization. When the SUs are present at different
distances from the PU, traditional same power allocation technique either leads to
more transmission outage or the PU is affected by nearby secondary transmission.
Hence, distance dependent power allocation policy needs to be adopted for designing
an interference-aware energy-efficient CRN.

The PUE attacker always tends to prevent the secondary transmission by
transmitting a similar signal that of the PU. Though, the SUs are intelligent enough to
detect the attacker and start transmitting their data, but superimposition of the
attacker’s signal tends to reduce the signal-to-interference-plus-noise ratio (SINR),
thereby decreasing the throughput. The SUs need to transmit with more power to
achieve the minimum throughput in the presence of the attacker than without the
attacker. In this scenario, the restriction in the transmission power regrowth needs to
be imposed to protect the PU. This concept motivates us to design suitable power
allocation algorithms that improve EE while giving adequate protection to the PU by
controlling the transmission power of SUs.

Due to the exponential rise of consumer market for emerging vehicular
applications and services, the deployment of CR enabled VANET is envisioned for
efficient spectrum management and also for enhancing the communication efficiency
in the dynamic vehicular environment. Application of CR in VANET provides
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additional spectrum opportunities in TV bands. In CR-VANET, the channel
characteristics between the SU and the PU vary due to the motion of the vehicles
resulting spatial correlation between the local decisions of the vehicular SUs (VSUs)
in cooperative scenario. The data transmission period is longer than the sensing period
and the distance of the vehicle continuously changes with the time. Hence, fixed power
allocation to the VSUs over the transmission period may increase the VSU’s outage
which introduces interference to the PU. Considering the time-varying channel gains
in vehicular framework, appropriate dynamic power allocation to the vehicular CRs is
an open research issue.

Most of the existing work on energy-efficient power allocation considered the hard
decision fusion (HDF)- based SS and focused only on the optimization of the power
allocation. The appearance of the PU during the data transmission period was not
taken into consideration. Hence, an extensive study and development of
interference-aware resource allocation algorithms in soft decision fusion (SDF)-based
CSS satisfying required constraint is necessary. Further, the idea of CR deployment in
the unlicensed band like industrial, scientific and medical (ISM) band need to be
explored and development of adaptive power allocation algorithm are required so that
other coexisting devices remain unaffected during the CR operation.

1.4 Research Contributions

The main objective of this research is to propose intelligent approaches for
energy-efficient resource allocation in the CRN. SDF-based SS framework is chosen
for implementation of our proposed schemes. The key contributions of this thesis are
summarized below and are also concisely illustrated in Figure 1.4.

• The energy-efficient SDF-based CRN is designed for both the single and double
threshold-based detection schemes satisfying the constraints of interference
power to the PR, minimum achievable throughput, maximum transmission
power and secondary outage probability. The total interference on the PR is
derived analytically considering the exponential transition probability of the PU.
The solution approaches towards the EE maximization problem start with the
suitable SUs’ selection algorithm to decide minimum number of SUs to achieve
minimum sensing rounds in double threshold-based detection scheme. This is
substantiated by selecting eligible SUs for both SS and data transmission. An
iterative Dinkelbach method (IDM) algorithm is proposed to jointly optimize the
sensing time and power allocation to the SUs. Accurate power assignment to the
SUs is achieved through the proposed exact power allocation (EPA) algorithm.
The efficacy of the proposed algorithms is verified by comparing with the
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existing algorithms.

• The energy-efficient CRN system model is proposed for both single and double
threshold-based detection schemes considering the presence of the PUE attacker.
Mathematical expressions for the performance metrics are derived in the
presence of the attacker. The negative impact of the attacker on the secondary
transmission is analyzed and is considered as constraint in the formulation of the
EE maximization problem. The detection performance and the system
throughput are improvised by the proposed suitable SUs selection algorithm for
SS and data transmission based on their channel gains. A novel iterative
resource allocation (NIRA) algorithm is propsed to jointly optimize the sensing
time and power allocation to the SUs. Dual decomposition and Difference of
convex (DC) programming methods are applied to solve the non-convex
constraints. A novel adaptive resource allocation (NARA) scheme is proposed
based on Normalized least mean square (NLMS) algorithm to reduce the
complexity and to improve the EE further.

• The energy-efficient SDF-based CR-VANET system model is proposed for a
typical vehicular network scenario in the absence and presence of the PUE
attacker. The spatial correlation between the local decisions of the vehicular SUs
(VSUs) is considered as the weight coefficient while deriving the performance
metrics. The EE maximization problem is formulated under the constraints of
interference to the PR, minimum achievable throughput and maximum
transmission power. In the presence of the attacker, an extra constraint is added
to the optimization problem to control the excessive increase of the secondary
transmission power. Two adaptive power allocation schemes based on NLMS
and genetic algorithm (GA) are proposed to maximize EE considering the
non-convex and time varying channel responses in the absence and presence of
the attacker, respectively. The efficacy of our proposed intelligent resource
allocation techniques is verified over different CR network parameters.

• For implementation of CR technology considering underlay spectrum sharing
mechanism with the co-existing devices in the unlicensed band, an attempt is
made in this research work to collect real time data through a practical
measurement campaign using standard measurement setup. The spectrum
occupancy is evaluated in the frequency range 2.4-2.5 GHz ISM band. A
spectrum prediction algorithm based on functional link artificial neural network
(FLANN) is proposed to forecast the future spectrum usage profile from the
history of occupancy statistics. Using the proposed double threshold-based
suitable band selection scheme with proper power allocation to the CR users
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(CRUs), throughput is maximized by avoiding interference to the co-existing
electronic devices operating in this band. The performance of the proposed
approach is validated using the measurement data and their efficacies are
verified.

1.5 Thesis Outline

This chapter provided a brief introduction to CR, its working principle and research
challenges. Our research motivations and contributions are also discussed. The
remainder of the thesis is structured as follows. In Chapter 2, different SS techniques
are presented. The performances of both HDF and SDF-based CSS schemes are
illustrated through the simulation results. In Chapter 3, the SDF-based model is
introduced which is considered as the principal framework for the system model
design in the next chapters. The EE maximization problem formulation both in the
single and double threshold-based detection schemes under different constraints by
optimizing both the sensing time and power allocation with selecting suitable number
and eligible SUs are analyzed. Further, the concept of interference-aware power
allocation in the adverse domain is explored and a novel energy-efficient CRN for both
single and double threshold-based schemes considering the presence of PUEA is
presented in Chapter 4. Along with the power optimization, EE maximization problem
is solved by considering the eligible SUs and sensing time providing better sensing
performance and system throughput. In Chapter 5, intelligent resource allocation
techniques in the CR-VANET are introduced considering the absence and presence of
the PUEA. Instead of allocating fixed power to all the vehicular SUs (VSUs), adaptive
power assignment schemes are provided considering the time-varying behavior of the
channel due to the velocity of the vehicle. Chapter 6 discusses the application of CR
technology in the ISM band in the frequency range 2.4-2.5 GHz. The effect of
threshold selection on the spectrum occupancy is examined taking the real-time data
collected through practical indoor measurement campaign. A future occupancy
prediction algorithm based on FLANN is proposed. A power allocation algorithm is
provided in double threshold-based spectrum occupancy measurement to enhance the
probability of spectrum utilization with adequately protecting the coexisting devices .
Finally, in Chapter7, the thesis is concluded summarizing the major outcome, and
some scopes towards future work.
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Figure 1.4: Illustration of Research contributions.
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Chapter 2

Overview of Spectrum Sensing Techniques in the Cognitive
Radio Network

This chapter discusses the conventional SS techniques with the detailed analysis of the
decision fusion schemes. The highlights of the chapter are

• The conventional SS techniques are discussed in detail with their pros and cons.

• The probability of detection and false alarm are derived for both HDF and SDF-
based SS tecniques.

20



2.2 Hypothesis Testing

2.1 Introduction

SPECTRUM sensing is the primary task in the CRN for effective utilization of
the spectrum band. It enables the capability of CR to find the best underutilized

licensed band. In the real-time wireless environment, availability of the spectrum
varies with the time of performing SS, operating frequency and the location of
measurement. The SUs are allowed to access the available licensed band in an
opportunistic manner. Even in the harsh environmental condition, the SUs have the
capability to frequently identify the idle spectrum for making the spectrum handoff
without restraining the continuous data transmission. Additionally, while using the
licensed band, the SUs have to periodically perform SS to know about the sudden
appearance of the PU. If it happens, the SUs need to vacate the band quickly or reduce
their transmission power level, so that the interference power level to the PU is
maintained below a certain threshold. This is the most important feature of the SS
which ensures the effective utilization of the available spectrum band while providing
sufficient protection to the PU. Some recent studies on SS are discussed in [77, 78].

The rest of the chapter is organized as follows. Section 2.2 presents the hypothesis
testing principal used in SS techniques. Different conventional PU detection techniques
are discussed in Section 2.3. CSS with detail analysis of the different fusion schemes is
provided in Section 2.4. The system performance analyses of the most commonly used
fusion schemes are given in Section 2.5. Finally, Section 2.6 provides a brief summary
of the chapter.

2.2 Hypothesis Testing

Hypothesis testing is the principal task in the SS techniques. It is used to identify the
availbility of the PU in the licensed band. Most commonly used hypothesis testing is
binary hypothesis testing. For example, if s(n) represents the PU’s transmitted signal at
nth instant, then the SS problem is formulated by two hypothesis tests which are defined
as [16]

x(n) =

η (n) , (H0)

s(n)hps +η (n) , (H1) n = {1,2, ...,N}
(2.1)

where x(n) represents the received signal at the SU and N is the number of samples. hps

is the propagation channel coefficient between the PU and the SU. The two hypotheses
H0 and H1 correspond to the absence and presence of the PU, respectively. The null
hypothesis H0 represents idle state of the licensed band and only noise is received at the
SU. Similarly, the hypothesis H1 represents the busy state of the licensed band and the
SU receives the PU’s signal along with the noise. η(n) is the additive white Gaussian
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noise with mean zero and variance ση
2. It is not only important for the SU to decide

the idle or busy state of the spectrum but also to identify whether the signal is from the
PU or from other sources under the hypothesis H1. Hence, the performance metrics of
the CRN are measured by probability of detection Pd and proability of false alarm Pf .
Pd is defined as the probability of correctly identifying the PU’s signal in the sensing
band and is expressed as

Pd = Pr
(
Ĥ1|H1

)
(2.2)

where Ĥ1 denotes the decision made by the SU i.e., the PU’s signal is detected.
Similarly, Pf is defined as the probability of falsely identifying the vacant band to be
occupied by the PU. In terms of hypothesis, it is expressed as

Pf = Pr
(
Ĥ1|H0

)
(2.3)

Similar to the (2.2), Ĥ1 is the decision made by the SU about the PU’s presence. More
often the performance metric is characterized by the parameter called miss detection
probability Pmd which is just the complement of Pd . So, Pmd is the probability of
identifying the occupied band to be vacant which can be expressed as

Pmd = 1−Pd = Pr
(
Ĥ0|H1

)
(2.4)

where Ĥ0 denotes the decision of the SU about the absence of the PU. Hence, the key
challenge of the spectrum detection is to keep both Pf and Pmd under certain threshold.
High value of Pf leads to inefficient utilization of the available spectrum band by
preventing the SUs from accessing that vacant band and high Pmd results interference
to the legitimate user. So, the total probability of sensing error Pe i.e. the probability of
making wrong decision about the PU’s status on the licensed band is the weighted sum
of Pf and Pmd . In general, it is expressed as

Pe = PH0Pf +PH1Pmd (2.5)

where PH0 and PH1 represent the probabilities of PU’s absence and presence,
respectively. So, both Pf and Pmd can be decreased by minimizing Pe,.

The other two commonly known hypothesis testings are the Neyman-Pearson (N-P)
test [79, 80] and the Bayes test [16, 81]. The N-P test maximizes Pd keeping Pf under
the constraint. Following (2.1), the N-P detector is equivalent to the likelihood ratio test
(LRT) which is given by

ΛLRT =
N

∏
n=1

Pr (x(n) |H1)

Pr (x(n) |H0)

H1

>

<

H0

λLRT (2.6)

where ΛLRT and λLRT denote the test statistic and the decision threshold, respectively.
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The Bayes test can be represented as

N

∏
n=1

Pr (x(n) |H1)

Pr (x(n) |H0)

H1

>

<

H0

PH0 (C1,0−C0,0)

PH1 (C0,1−C1,1)
= λB (2.7)

where λB is the decision threshold. Ci, j is known as the cost which represents the
decision of hypothesis Hi when H j actually occurs, (i, j ∈ {0,1}). However, when
distributions of the received signal under hypothesis H0 and H1 consist of the unknown
parameters, then the hypothesis testing is known as composite hypothesis testing.
Generalized likelihood ratio test (GLRT) is one of the approaches to solve this
hypothesis testing problem where the unknown parameters are determined by the
maximum likelihood estimates (MLE) [18]. The GLRT is expressed as

N

∏
n=1

max
/01

Pr (x(n) | /01,H1)

max
/00

Pr (x(n) | /00,H0)

H1

>

<

H0

λGLRT (2.8)

where /01 and /00 are the unknown parameters and λGLRT is the decision threshold.

2.3 Spectrum Sensing Techniques

In this section, we discuss some of the commonly used SS techniques. Each SU can
use one of these techniques to find out the PU’s activity. If the PU is absent, then the
band is declared as the vacant band. SS techiques are the most important priliminary
methods for making accurate decision about the spectrum occupancy.

2.3.1 Matched filter detection

Matched filter (MF) is an optimum detector which maximizes the received SNR,
provided that some information about the PU’s signal such as operating frequency,
signal bandwidth, modulation type, pulse shaping, etc, are known a priori to the
receiver [82]. The output of the MF is compared with the decision threshold to detect
the presence or absence of the PU on the licensed band [20]. If Y and λ represent the
output and the decision threshold, respectively, then Pd and Pf are given by

Pd = Pr (Y ≥ λ |H1) (2.9)

and
Pf = Pr (Y ≥ λ |H0) , (2.10)

respectively. This detection scheme requires less time to provide the sensing result, as
only O

(
1/

SNR
)

samples are required [82]. Besides having some of the benefits, it has
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also lots of limitations. The advantages and disadvantages of the matched filtering are
discussed below.
Advantages

• Coherent detection.

• Fast sensing.

• Less number of samples are required.

Disadvantages

• Requires a priori information about the PU’s signal characteristics.

• Needs proper synchronization.

• Highly computational complex.

• Large power consumption.

• Needs dedicated receiver.

• Impractical to implement.

2.3.2 Energy detection

It is a non-coherent and semi-blind detection technique, in which the energy of the
received PU’s signal is compared with the threshold to obtain the information about
the spectrum occupancy. Hence, accurate detection depends on the selection of
appropriate threshold i.e. depends on the noise floor [21]. This detection process
requires O

(
1/

SNR2
)

samples to provide SS decision [82]. However, the detection
performance degrades under noise uncertainty and SNR wall [83]. Advantages and
disadvantages of the energy detector (ED) are discussed below.
Advantages

• Easy implementation and low complexity.

• No priori information about the PU’s signal.

• Optimal for independent identically distributed (i.i.d) PU signal.

Disadvantages

• Highly susceptible to noise uncertainty.
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• Unable to differentiate the PU signal and the signal from the other sources.

• Can not detect spread spectrum signal.

• Poor performance in low SNR condition.

• Longer sensing time than MF.

2.3.3 Cyclostationary feature detection

The feature based detection method is based on extracting the specific features of the PU
signal such as cyclic prefix, pilot signals, modulation types or spreading codes. These
factors induce periodicity in the modulated signal. The cyclostationary characteristic
of the PU signal shows the repetition of the mean and correlation after regular time
interval. This introduces cyclic correlation between the widely separated frequency
components of the modulated signal. This feature is ideal in differentiating the noise
from the modulated signal [82]. It is more robust to the noise uncertainty. Besides its
advantages, it has also some limitations which are discussed below.
Advantages

• Robustness to noise uncertainty.

• Better performance under low SNR condition.

• Ability to distinguish between the PU’s signal and the signal from other sources.

• Synchronization is not required.

Disadvantages

• Requires a priori information about the cyclic features of the PU’s signal.

• Longer sensing time.

• Computationally complex.

2.3.4 Waveform-based detection

Generally, a known pattern of the sequence is required for synchronization in the
wireless system. These patterns include regularly transmitted pilot patterns, preambles,
spreading sequences, etc. If the PU’s transmitted signal pattern is known a priori, then
waveform-based SS is performed by correlating the received signal at the SU with its
own copy [23]. The pros and cons of this detection technique are
Advantages
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• Faster sensing time than energy detection.

• Lesser complex than MF.

• Less susceptible to noise uncertainty.

Disadvantages

• Requires a priori information about the PU’s signal pattern.

• Needs proper synchronization.

2.3.5 Covariance-based detection

The detection scheme is based on the spatial correlation characteristics of the PU’s
signal resulted due to the dynamically dispersive wireless channel [25]. The main
advantage is that it does not require any information about the PU signal, channel or
noise power. Different benefits and limitations of this SS technique are
Advantages

• Good for highly spatially-correlated signal.

• Blind (does not require any prior information).

• Low computational complexity.

Disadvantages

• Not suitable for uncorrelated PU’s signal.

Comparing these conventional SS techniques, ED is found to be less complex and easier
to implement. Hence, it is the most commonly used SS technique in the CRN. So, in
this thesis, we prefer to use ED technique at each SU for performing SS. The SUs are
able to find their local statistics without requiring any information about the PU’s signal.

2.4 Cooperative Spectrum Sensing

Although the non-cooperative SS techniques have the advantages of avoiding sensing
overhead, low computational complexity and easy implementation, still there are lots
of shortcomings. The single SU may fail to make a correct decision regarding the PU’s
presence due to the multipath fading and shadowing [84]. Even, instead of residing
within the PU’s transmission range, it can not detect the actual state of the PU. This
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problem leads to the concept of CSS, where more SUs cooperatively take the decision
regarding the spectrum occupancy. By exploiting the spatial diversity and multiuser
diversity, cooperative detection is a solution to combat the adversarial effect of the real
time environment. Hence, it helps in increasing the detection performance and
decreasing the false alarm probability. The final decision regarding the PU’s presence
depends on the combined decision of all the SUs. So, participation of more SUs
improves the detection performance by lowering the effect of noise uncertainty, fading
and shadowing on the wireless environment. However, CSS experiences cooperation
overhead which increases delay and energy consumption. Therefore, in CSS the SUs
should maintain the trade-off between the detection performance and energy
consumption. The cooperative network is implemented in three different ways as
shown in Figure 2.1. This shows the different methods of obtaining the global decision
by sharing the information among the SUs. The classification of CSS is also discussed
in [12, 16, 85].

• Centralized CSS:In centralized CSS, the SUs first perform SS through their
sensing channels and then, report their results to the FC through the reporting
channels. The central unit called the FC collects all the local information from
the SUs, and makes the global decision about the availability of the spectrum
band. Then, it either broadcasts the final SS decision to all the SUs or directly
controls the CR traffic.

• Distributed CSS:Instead of using the central unit, the SUs share their information
among themselves and make their own decision about the availability of spectrum
hole. The global decision is made by conversing the information from the SUs.
Based on the distributed algorithm, each SU sends its sensing decision to the other
SU. The other SU combines the received data with its own sensing decision. Then
by using the local criterion, it decides the presence of the PU on the licensed band.
If this criterion is not satisfied, the SUs send their combined decisions to the other
SUs. This process is repeated until the algorithm is converged or the SUs reach
to a final decision.

• Relay assisted CSS:The SUs with strong sensing channels but weak reporting
channels forward their information to the FC through the SUs with strong
reporting channels but weak sensing channels. The SUs with weak sensing
channels act as relays. These relays assist the other SUs to forward their sensing
decisions to the FC. Since, the individual decision is forwarded to the FC by
multiple hop, hence it is also called multi-hop CSS.

Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network 27



2.5 System Model for Cooperative Spectrum Sensing

Figure 2.1: Classification of CSS.

2.5 System Model for Cooperative Spectrum Sensing

We consider a system model consisting of M SUs each with single ED. Each SU
receives the signal from the PU and sends its local decision to the FC as shown in
Figure 2.1. Let s(n) represents the signal from the PU which is i.i.d of zero mean and
variance σs

2. xm (n) be the received signal at mth SU at nth instant.Then, the SS is
formulated by simply two binary hypothesis tests which are expressed as

xm (n) =

ηm (n) , (H0)

s(n)hpsm +ηm (n) , (H1)
(2.11)

where hpsm is the channel coefficient between the PU and the mth SU. ηm (n) denotes
AWGN with mean zero and variance σηm

2. N denotes the number of sample which is
the product of sensing time τs and the sampling frequency fs. Each SU measures the
received power over N number of samples during the sensing interval and makes the
local decision as follows

Ym =
1
N

N−1

∑
n=0
|xm (n)|2 (2.12)

According to the central limit theorem, for large value of N the local test statistic is
approximately represented as the Gaussian distribution. If PU’s signal is a binary phase
shift keying (BPSK) signal and noise is real, then Ym for the two hypotheses H0 and H1
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is distributed as [86]

E [Ym] =

σηm
2, (H0)

σηm
2 (1+ γm) , (H1)

(2.13)

Var [Ym] =


2σηm

4

N , (H0)

2σηm
4

N (1+2γm) , (H1)
(2.14)

where γm is the received SNR at the mth SU and is given by γm =
σ s

2|hpsm|2
|σηm|2 . If λ is the

decision threshold, then, the probability of detection is evaluated by comparing Ym with
the λ . Mathematically, the probability of detection Pd,m and false alarm probability Pf ,m

of the mth SU are expressed as

Pd,m = Q

(
λ −σηm

2 (1+ γm)

σηm2
√

2(1+2γm)

√
N

)
(2.15)

and

Pf ,m = Q

(
λ −σηm

2

σηm2
√

2

√
N

)
, (2.16)

respectively. The decision threshold λ is calculated from the given value of Pf ,m. Then,
the value of Pd,m in terms of Pf ,m is given by

Pd,m = Q

(
Q−1 (Pf ,m

)√
2σηm

2−σηm
2γm
√

N

σηm2
√

2(1+2γm)

)
(2.17)

So, Pd,m is the individual decision of the SU. The local decisions are sent to the FC.
The FC employs different fusion schemes for obtaining the global decision regarding
the presence of the PU.

2.6 Fusion Schemes

In CSS, fusion schemes are the process of combining individual SU’s sensing data.
There are two types of fusion schemes depending on the local observation sent to the
FC. One is HDF scheme in which the SUs send binary information to the FC in terms
of “0” and “1” representing the absence and presence of the PU, respectively. Another
fusion scheme is known as SDF scheme in which the test statistics of all the SUs are
combined at the FC. The HDF-based and SDF-based CSS system models are shown in
Figure 2.2 and Figure 2.3, respectively.
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Figure 2.2: HDF-based CSS system model.

2.6.1 Hard decision fusion scheme

In the HDF scheme, each SU sends its binary decision regarding the presence of the
PU to the FC. Specifically, the SU sends “1”, if Pr (Ym ≥ λ ), indicating the presence of
the PU. Similarly, if Pr (Ym < λ ), each SU sends “0” indicating the absence of the PU.
The FC employs three types of fundamental fusion rules to obtain the global sensing
result. This fusion process reduces the communication overhead. The HDF- based
fusion schemes are discussed in [87–89].

• K-out-of-M rule: The global decision is “1” if K SUs or more than K SUs out
of the total M SUs result “1” where K ∈ [1,M]. Therefore, the FC decides the
presence of the PU, if K SUs or more decide the same. Then, the global detection
and false alarm probabilities are given by

Qd =
M−K

∑
k=0

(
M

K + k

)(
1−Pd,k

)M−K−k(Pd,k
)K+k (2.18)

and

Q f =
M−K

∑
k=0

(
M

K + k

)(
1−Pf ,k

)M−K−k(Pf ,k
)K+k

, (2.19)

respectively. Pd,k and Pf ,k represent the detection and false alarm probability of
the kth SU, respectively. The special case of this K-out-of-M rule is known as
majority voting rule or half voting rule. In this case, final decision at the FC
depends on the local decisions obtained from the half or more than half SUs. For
this case, K =

⌈M
2

⌉
, where

⌈M
2

⌉
is the smallest integer not less than M

2 .
Substituting this value of K in (2.18) and (2.19), Qd qnd Q f are calculated for
half voting rule.

• Logical OR rule: The global decision is “1” if any one of the SUs decides “1”.
So, the FC declares H1, if a single SU reports “1”. Substituting K = 1 in (2.18)
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and (2.19), the Qd and Q f are calculated as

Qd = 1−
M

∏
k=1

(
1−Pd,k

)
(2.20)

and

Q f = 1−
M

∏
k=1

(
1−Pf ,k

)
, (2.21)

respectively. Since, the SUs tend to utilize the licensed band during the absence
of the PU, possibility of interference to the PU can be minimized by employing
logical OR rule at the FC.

• Logical AND rule: The global decision is the combination of all the local
decisions. If all the SUs go in favor of H1, then the FC declares H1. For this
scheme, K = M. Substituting the value of K in (2.18) and (2.19), Qd and Q f are
derived as

Qd =
M

∏
k=1

(
1−Pd,k

)
(2.22)

and

Q f =
M

∏
k=1

(
1−Pf ,k

)
, (2.23)

respectively. As the sensing decision depends on all the SUs, the possibility of
interference to the PU is more for logical AND decision fusion scheme.

2.6.2 Soft decision fusion scheme

In the SDF-based scheme, the energy values of the SUs are linearly combined with the
corresponding weight coefficients at the FC. So, it is also called linear weight combining
scheme. It improves the sensing performance by exploiting the diversity gains of all the
cooperative SUs. Hence, the global test statistic YG at the FC is given by

YG =
M

∑
m=1

wmYm (2.24)

where wm is the weight coefficient assigned to mth SU. An external constraint is added
to the weight vector w = [w1,w2, . . . .,wM]T such that ‖w‖ = 1. These weight
coefficients need to be optimized to improve the detection performance. For large
value of N, YG can be approximated using the central limit theorem which is given as
follows [86]

YG∼


ℵ

(
M
∑

m=1
wmσηm

2, 2
N

M
∑

m=1
wm

2σηm
4
)
, H0

ℵ

(
M
∑

m=1
wmσηm

2 (1+ γm) ,
2
N

M
∑

m=1
wm

2σηm
4 (1+2γm)

)
, H1

(2.25)
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Then, global probability of detection Qd is evaluated by comparing YG with the global
threshold λg. Mathematically, the performance metrics are expressed as follows

Qd = Q

 λg−∑
M
m=1 σηm

2 (1+ γm)wm√
2∑

M
m=1 σηm4wm2 (1+2γm)

√
N

 (2.26)

and

Q f = Q

λg−∑
M
m=1 σηm

2wm√
2∑

M
m=1 σηm4wm2

√
N

 (2.27)

If λg is calculated from the given Q f , then Qd is calculated as

Qd = Q

Q−1 (Q f
)√

2∑
M
m=1 σηm4wm2−∑

M
m=1 σηm

2wmγm
√

N√
2∑

M
m=1 σηm4wm2 (1+2γm)

 (2.28)

So, the detection performance can be improved by optimizing the weight coefficients.
However, the weight optimization is further divided into single-objective optimization
and multi-objective optimization scheme.

Figure 2.3: SDF-based CSS system model.

Single-objective optimization
Single-objective optimization schemes evaluate the optimal weight vector by
maximizing the detection probability. There are several conventional schemes such as
equal gain combining (EGC) [90], maximal ratio combining (MRC) [90], modified
deflection coefficient (MDC) [91],etc that are proposed in the literature to find the
optimal weight coefficients. The optimal weight can also be obtained by using some
evolutionary algorithms such as GA, particle swarm optimization (PSO),etc.

• EGC scheme [92]: In EGC scheme, same weight is assigned to all the SUs. If M

SUs are present in the CRN, then the weight coefficient wm assigned to mth SU
is given by

wm =

√
1
M

(2.29)

This scheme is very simple and it does not require any channel state information.
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• MRC scheme [92]: In the CRN, usually the SUs are distributed randomly and
are present at different distances from the PU. Accordingly, their received SNRs
vary and they offer different decisions regarding the PU’s presence. Generally,
the SU with high received SNR gives correct decision about the PU. In the SDF-
based fusion scheme, the weight coefficient is linearly combined with the energy
value. So, the detection performance can be improved by assigning high weight
value to the SU with high received SNR. In this way, performance degradation
can be minimized by assigning low value of weight coefficient to the poor SUs.
Thus, the MRC-based weight coefficient wm depends on the received SNR at the
mth SU which is given by

wm =

√
γm

∑
M
m=1 γm

(2.30)

• MDC maximization scheme [91]: The detection performance is further
enhanced by optimizing MDC for obtaining the optimal weight coefficients [91].
MDC is formulated based on variance-normalized distance between the centers
of two conditional probability distribution functions (PDFs). It shows the effect
of PDF on the detection performance. MDC is defined as

dm
2 (m) =

[E (YG|H1)−E (YG|H0)]
2

Var (YG|H1)

=

[
wT ψ

]2
wT ∑H1 w

.

(2.31)

where ψ = diag(γ)diag
(
ση

2), γ = [γ1,γ2, . . . ,γM]T and
ση

2 =
[
ση1

2,ση2
2, . . . ,σηM

2]T . ∑H1 is the covariance matrix for the hypothesis
H1 which is given by

∑H1
=

2
N

diag2 (
ση

2)+ 4
N

diag
(∣∣hps

∣∣2)diag
(
ση

2) (2.32)

Here,
∣∣hps

∣∣2 =
[∣∣hps1

∣∣2, ∣∣hps2
∣∣2, . . . , ∣∣hpsM

∣∣2]T
. The optimal weight vector is

found by maximizing dm
2 as

wMDC =
argmax

w
dm

2 (w) (2.33)

By solving (2.33), the weight coefficient wMDC is obtained by

wMDC = ∑
−1
H1

ψ (2.34)

• Evolutionary algorithms based weight optimization schemes: In the literature,
the authors adopted evolutionary algorithms like GA [93], binary GA [92], PSO
[94,95], Population adaptive Gbest-guided artificial bee colony (PA-GABC) [96],
etc, for optimizing the weight vector w to improve the detection probability Qd .
In [97], PSO was used to optimize w for minimizing the sensing error.
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Multi-objective optimization problem
The single objective optimization techniques maximize the detection probability for
the given value of false alarm probability. However, in the conventional SS techniques,
these two objectives probability of detection and false alarm probability are conflicting
in nature. Increasing the probability of detection increases the false alarm probability.
Hence, the system performance can be maximized by simultaneously increasing the
detection probability and decreasing the false alarm probability. To overcome the
shortcomings of single-objective optimization technique, P.Pradhan et al. proposed
multi-objective cat swarm optimization (MOCSO) in [98].

Motivated from the advantages of multi-objective algorithm, we propose
multi-objective hybrid invasive weed optimization and particle swarm optimization
(MO hybrid IWOPSO) for simultaneously maximizing the detection probability and
minimizing the false alarm probability. The interaction between the dispersion
property of the IWO algorithm and the updating velocity of PSO are combined to form
the hybrid IWOPSO optimization [99]. PSO was developed by Kennedy and Eberhart
in 1995 [100], and IWO was proposed by A.R.Mehrabian and C.Lucas in 2006 [101].
PSO is inspired from the flock movement behavior of birds whereas IWO is drawn
from the colonization of weeds. The interaction between the dispersion method of the
IWO algorithm and the velocity of the PSO controls the balance between local
exploitation and global exploration in the search space. So, hybrid IWOPSO algorithm
can be implemented as faster convergence and global optimization method. Single
objective IWO was extended to nondominated sorting (NSIWO) for solving the
optimization problems with two or more conflicting objectives [102]. In
multi-objective optimization, instead of getting a single solution, a number of solutions
are obtained which are superior to the other solutions. These solutions are called the
nondominated fronts or Pareto optimal solution. Nondominated sorting genetic
algorithm-II (NSGA-II) and multi-objective particle swarm optimization (MOPSO)
were studied in [103] and [104] respectively The integration of PSO with the NSIWO
in MO hybrid IWOPSO helps in finding the better nondominated fronts by exploring
the search space. The steps for MO hybrid IWOPSO are summarized as follows
Step 1: Randomly initialize the position of each plant over the search space i.e. the
position of the pth plant is Xp =

[
Xp1,Xp2, . . . ,XpM

]
.

Step 2: Initialize the velocity of each plant to zero.
Step 3: Evaluate the objective function of each plant. Store the nondominated
solutions, and assign the rank and crowding distance to each plant.
Step 4: Compute the weakness of each plant according to its rank and crowding
distance using the following formula [102].
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weakness(p) = rank (p)+
1

CD(p)+2
(2.35)

where rank (p) and CD(p) are the rank and crowding distance of the pth plant,
respectively.
Step 5: In each iteration, binary tournament selection is done to select suitable plants
from the current population.
Step 6: Find the maximum and minimum weakness values from the population. The
member having minimum weakness value has got its position Xgbest and the pth
member has its corresponding position Xpbest p.
Step 7: Each member generates seeds depending on their corresponding weakness
value. The number of seeds varies from maximum seed Smax for the minimum
weakness member to the minimum seed Smin for the maximum weakness member.
Step 8: For each seed calculate the velocity and position as per

Vp (t +1) =Vp (t)+C1 ∗ rand ∗
(
Xpbest p−Xp (t)

)
+C2 ∗ rand ∗

(
Xgbest−Xp (t)

) (2.36)

Xp (t +1) = Xp (t)+Vp (t +1) (2.37)

where t is the current iteration and Vp is the velocity of the pth plant. C1 and C2 are the
cognitive and social coefficient, respectively.
Step 9: Then the seeds are dispread over the problem space by normally distributed
random number with zero mean and varying standard deviation. The standard deviation
is expressed as

σt =

(
tmax− t

tmax

)κ (
σinitial−σ f inal

)
+σ f inal (2.38)

where tmax is the maximum iteration. σinitial and σ f inal are the initial and final standard
deviation, respectively. κ is the non-linear modulation index. Then the new position is
updated as

Xp (t +1) = Xp (t +1)+ rand ∗σt (2.39)

Step 10: When all the seeds find their positions, evaluate the fitness values of all the
plants and their seeds. Then, arrange them according to the nondominated sorting, and
assign rank and crowding distance to each individual.
Step 11: Compute the weakness of each individual as per (2.35).
Step 12: Finally, the individuals with lower fitness values are eliminated and a new
population is formed for next iteration. This process is repeated until the termination
condition is satisfied.
While calculating the fitness value, the position of each plant and seed has to satisfy
the constraint ‖w‖ = 1. In multi-objective optimization problem, there are a set of
nondominated solutions providing almost equal contributions in obtaining the
optimized result. Hence, fuzzy decision making is used to find the compromised
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solution providing reliability to these two optimized functions (probability of detection
and false alarm) [98].

2.7 Simulation Results and Discussion

The system models shown in Figure 2.2 and Figure 2.3 are considered for the analysis of
HDF and SDF-based CSS. The number of SUs M is set 10 and the number of samples
N is 100. The propagation channels between the PU and the SUs are assumed to be
Rayleigh distributed. The average SNR of the PU received at the SUs are γ1 = γ2 =

. . . = γM =-10 dB. We set σs
2=1. The Monte Carlo simulation goes through 10,000

iterations.

Figure 2.4 shows probability of detection Qd vs probability of false alarm Pf

comparing the HDF-based fusion schemes. For the half voting rule K=5. It is observed
that fusion scheme employing the logical OR rule outperforms the other fusion
schemes whereas the logical AND rule performs worst among all the schemes. Hence,
it is clear that detection probability is high by considering the positive decision of at
least a single SU regarding the PU’s presence. Figure 2.5 shows Qd vs Q f comparing
the conventional SDF-based fusion schemes. It is observed that both EGC and MRC
schemes show similar performance for the given parameters. The MDC scheme
performs better than EGC and MRC schemes.
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Figure 2.4: Qd vs Pf for different HDF-based fusion schemes.

Figure 2.6 compares the convergence performance of GA, PSO, IWO and hybrid
IWOPSO for the targated Q f =0.1. The probability of detection is evaluated over 100
iterations for these four methods. The hybrid IWOPSO and IWO are converged at 3
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and 2 iterations giving the values 0.8812 and 0.714, respectively. While PSO and GA
are converged at 10 and 31 iterations giving the values 0.7017 and 0.6964,
respectively. The computational time requirements for one run with 100 iterations of
hybrid IWOPSO, IWO, PSO and GA are 0.20749, 0.17887, 0.43990 and 5.40167 secs,
respectively. So, it is clearly observed that hybrid IWOPSO performs better than the
other algorithms in terms of obtaining best global optimization result at the cost of
slightly higher computational time as compared to IWO. Table 2.1 shows the control
parameter values for single objective and multi-objective evolutionay algorithms.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of false alarm Q
f

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

Q
d

 

 
EGC, theoretical
EGC, simulation
MRC, theoretical
MRC, simulation
MDC, theoretical
MDC, simulation

Figure 2.5: Qd vs Q f for EGC, MRC and MDC fusion schemes.
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Figure 2.6: Convergence comparison over 100 iterations.
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Table 2.1: Control parameters of GA/NSGA-II, PSO/MOPSO, IWO/NSIWO and
hybrid IWOPSO/MO hybrid IWOPSO.

Symbols Quantity GA PSO IWO Hybrid
IWOPSO

tmax Maximum
iterations 100 100 100 100

dim Dimension M M M M
Pmax Population

number 80 80 80 80
Smax Maximum seeds – – 5 5
Smin Minimum seeds – – 0 0
κ Non-linear

modulation index – – 3 3
σinitial Initial value of SD – – 0.1 0.1
σ f inal Final value of SD – 1e-6 1e-6
C1 Cognitive coefficient – 2 – 2
C2 Social coefficient – 2 – 2
Pc Crossover

distribution index 20 – – –
Pm Mutation

distribution index 20 – – –
tour Tournament size 2 – 2 2

Figure 2.7 demonstrates the efficacy of hybrid IWOPSO over different values of
probability of false alarm by comparing its performance with GA, PSO, IWO and
MDC schemes. It is clearly observed that hybrid IWOPSO-based SDF scheme
performs better than the other schemes. The efficiency of hybrid IWOPSO in
obtaining the best global optimization solution in the single objective domain
motivates us to propose the MO hybrid IWOPSO to solve the optimization problem in
the multi-objective domain. Following the steps Step 1 to Step 12 of subsection 2.6.2,
we evaluate the nondominated fronts of the MO hybrid IWOPSO. Its performance is
compared with the other multi-objective algorithms NSGA-II, MOPSO and NSIWO in
Figure 2.8. It is clearly observed that MO hybrid IWOPSO based method outperforms
the other algorithms, and obtains a better quality of nondominated solutions.
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Figure 2.7: Performance comparison of different evolutionary algorithms.
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Figure 2.8: Comparison of approximate Pareto fronts obtained using the four multi-
objective algorithms.

Figure 2.4 - Figure 2.8 show the performance analysis of both HDF and SDF-based
schemes. MRC scheme is used for weight optimization in further analysis. It is simple
and easy to implement, and also suitable for low SNR conditions. Hence, to avoid
more complexity by employing evolutionary algorithms for weight optimization, MRC
scheme is used in the subsequent chapters. Therefore, performance of the MRC
scheme over different system parameters is analyzed. Figure 2.9 shows the probability
of detection over different SNR conditions for different number of SUs. It is illustrated
that Qd gradually increases with increase in SNR. Further, the detection probability
can be improved by participation of more number of SUs. We set Q f is 0.1 for Figure
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2.9 and Figure 2.10. Figure 2.10 shows Qd vs M for different received SNR values.
The received SNRs of M SUs are generated randomly within the ranges given in
Figure 2.10. From Figure 2.9 and Figure 2.10 , it is concluded that probability of
detection can be improved by involving more number of SUs in SS.
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Figure 2.9: Qd vs SNR for different values of M.
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Figure 2.10: Qd vs M for different ranges of SNR.

2.8 Summary

This chapter provided a brief overview of the SS techniques. It discussed the concept
of the hypothesis testing used to identify the PU’s activity on the desired band.
Further, this chapter provided the knowledge about different conventional SS
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techniques along with their pros and cons. Energy detection method is found to be the
most commonly used spectrum detection method by the CR node due to its low
complexity and implementation cost. This chapter also discussed different CSS CRN
architectures. In CSS, global decision regarding the PU’s presence is decided by the
FC. The SUs’ local decisions are combined at the FC and the final decision is obtained
by employing different fusion schemes. A brief classification of the fusion schemes
was presented. The multi-objective optimization algorithms were adopted to overcome
the limitations of the single objective optimization schemes in SDF-based fusion
method. Simulation results demonstrated the performances of the HDF and SDF-based
CSS system models employing different fusion schemes. Evolutionary algorithms for
weight optimization in SDF-based CSS framework performed better than the
conventional schemes in terms of detection probability. This thesis focuses on
proposing novel approaches to design the energy-efficient SDF-based CRN model for
different scenarios. Specifically, evolutional algorithms need more computation and
are complex than the conventional schemes. Further, among the three conventional
schemes in SDF-based CSS model, MRC scheme is very simple and also depends on
the average received SNR at each SU, and, hence, applicable to low SNR conditions. It
is lesser complex in comparison to the MDC and evolutionary algorithms used for
weight optimization. Therefore, MRC scheme is chosen for our CRN system model in
the subsequent chapters.
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Chapter 3

Proposed Approaches for Energy-Efficient Resource
Allocation in the Cognitive Radio Network

This chapter focuses on solving the EE maximization problem both in the single and
double threshold-based SDF CSS by jointly optimizing the sensing time and the power
allocation to the SUs with suitably selecting SUs. The highlights of the chapter are

• The mathematical expression of the total interference that might occur to the PR
is derived.

• Channel gain based SUs’ selection method is proposed for both SS and data
transmission.

• Energy-efficient algorithms are proposed to obtain the optimal sensing time and
power allocation to the SUs.

42



3.1 Introduction

3.1 Introduction

THE tremendous growth of wireless application devices is leading to an insatiable
demand for more spectrum. Traditionally adopted fixed frequency allocation

policy is not able to meet this requirement rather it results in spectrum congestion
problem. CR is evolved to provide opportunistic access of the licensed spectrum to the
unlicensed users [6]. SS is a key technology for ensuring reliable communication
between the primary and secondary networks. But, accurate detection of the PU is not
always guaranteed due to presence of fading or shadowing in the practical wireless
environment. Further, in the single threshold-based CSS, false alarm probability
increases with the detection probability which ultimately reduces the spectrum usage
opportunities [55]. This problem can be overcome by employing double
threshold-based CSS. In this scheme, either the detection probability or the false alarm
probability is kept constant, then by varying the threshold difference, either the false
alarm probability or the detection probability is minimized or maximized. The area
between the two thresholds is called the confusion region or the fuzzy
region [54, 105, 106]. When the energy of the SU falls within this area, there are three
possibilities; It decides to send either no information [53, 107] or its corresponding
energy value [54, 108] to the FC. The third possibility is that the SU performs more
sensing rounds until the energy value falls on either side of the thresholds and a final
decision is made [55]. In this chapter, we employ double threshold technique at the
FC. So, all the SUs need to perform additional sensing rounds until the FC gives any
final decision.

One of the main challenging issues in the CRN is EE maximization at
low-battery-powered wireless terminals. EE depends on both system throughput and
energy consumption made by the sensing devices. It is defined as the ratio of overall
system throughput and the total power consumption at the secondary network. In CSS
network, each frame consists of one sensing slot, reporting slot and one data
transmission slot [86]. During the sensing slot, all the SUs cooperatively sense the
availability of the licensed band and then transmit their data during the data
transmission slot. Hence, accurate detection of the PU is necessary for effective
spectrum usage and for avoiding collision between the PU and SUs. This depends on
the sensing length of a frame. Longer sensing length provides more detection

Part of the contributions in this chapter are published in:
Deepa Das and Susmita Das,"Optimal Resource Allocation for Soft Decision Fusion-Based Cooperative
Spectrum Sensing in Cognitive Radio Networks," Computers & Electrical Engineering, Elsevier, vol. 52,
pp.362-378, 2016.
Deepa Das and Susmita Das, "A Novel Approach for Energy-Efficient Resource Allocation in Double
Threshold-Based Cognitive Radio Network,"International Journal of Communication Systems, Wiley,
2016.
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accuracy. On the other hand, it reduces the system throughput. Similarly, longer data
transmission duration improves the system throughput at the cost of unreliability in
sensing accuracy. Thus, an essential trade-off must be made in between the sensing
time and the data rate to enhance the system throughput achieving detection
accuracy [109]. Further, the SUs consume more energy during the data transmission
than the SS. Hence, an efficient power allocation algorithm needs to be developed to
restrict the transmission power to avoid serious interference to the primary network.
So, this chapter mainly discusses the joint optimization of sensing time and
transmission power under the different constraints associated with interference and
outage of the CRNs. The outage constraint limits the data transmission outage of the
SU below a prescribed threshold. Specifically, the constraints considered in this
chapter offer minimum interference, achieve throughput more than throughput
threshold, minimum outage with the optimal sensing time and power allocation.

3.1.1 Related works

The power allocation algorithms preserve EE by controlling the battery energy at the
wireless terminals of the system. An overview of the existing resource allocation
techniques with the associated challenges in the CRN design were discussed
in [110, 111]. In [112], an energy-efficient resource allocation under PU’s interference
constraint was discussed for orthogonal frequency division multiplexing
(OFDM)-based CR system. Bernstein approximation was used to tackle the
interference constraint, and the power allocation to the sub-channels was done through
the fast power allocation algorithm based on barrier method. Sun et al. introduced
cooperative relays nodes with amplify-and-forward (AF) protocol in the OFDM
network for maximizing EE [113]. Here, the optimization problem was formulated as
convex optimization via its equivalent hypograph form, where the computational
complexity was reduced by employing fast barrier algorithm. In [114], EE
maximization problem was formulated in single PU and single SU CRN scenario,
where the optimal sensing time and power allocation were obtained by using
Bi-Section method under the constraints of interference to the PU and transmission
delay. EE was evaluated in a CR system considering the Rayleigh fading both in the
sensing and reporting channels [115]. Hasan et al. proposed a novel distributive
heuristic channel assignment (DHCA) approach to maximize the throughput under the
constraint of minimum queuing delay in [116]. In [117], EE in the centralized CRN
was maximized by using PSO algorithm considering the spectrum switching delay and
minimum rate requirement. In [118], the optimal power allocation was obtained by
using fractional programming approach in green CRN under the PU’s interference
constraint. Then, the same method was implemented in decode-and-forward (DF)
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relaying based green CR for optimal power allocation under the interference and
outage constraints in [119]. In [120], SS, reporting, and data transmission times were
optimized to minimize the energy consumption under the constraints of minimum
achievable throughput, probability of detection and false alarm. To improve EE with
limited interference to the PU, a clustered relay based CRN was designed in [121].
In [122], the aid of fractional programming with the Lagrangian duality theorem was
applied to find the optimal power allocation for maximization of mean EE in fading
channel scenarios consisting of multiple PUs and SUs under the constraints of outage
probability of the PUs and peak transmit power of the SUs. Wu et al. maximized the
EE in CSS by optimizing both sensing time and power allocation with detection
parameters and interference constraint to the PU [123].

However, none of these methods considered the probability of PU’s appearance
during the data transmission duration while calculating the interference constraint.
Moreover, most of the schemes were based on the single threshold-based HDF CSS.
Hence, designing an energy-efficient model in both single and double threshold-based
SDF cooperative network needs to considered. In the next subsection, a brief
description of the contributions of this chapter is provided.

3.1.2 Chapter contributions and organization

The contributions of this chapter are mentioned below.

• An interference-aware CRN model for SDF CSS framework is proposed.
Interference to the PR is evaluated considering the exponential transition
probabilities of PU during the data transmission period.

• The EE maximization problem is formulated under the constraints of interference
power to the PR, minimum achievable data rate and outage of SUs.

• An efficient algorithm is proposed to select suitable SUs for both SS and data
transmission. The minimum number of SUs is chosen based on the sensing
rounds in double threshold-based CSS model. Then, a IDM algorithm is
proposed for joint optimization of sensing time and power allocation, in which
the sensing time is obtained by applying golden section search method for
maximum throughput and the power allocation to the SUs is derived by using
our proposed EPA algorithm. Further, the complexity of the proposed algorithm
is analyzed.

• The performance of our proposed algorithm is presented and compared with the
previously existing techniques for both single threshold and double threshold-
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based schemes. Further, the impact of the different network parameters on the
system performance is studied.

The Chapter is structured as follows. Section 3.2 describes the system model
illustrating the distribution of the SUs in the CRN with the detailed derivations of the
performance metrics. The total interference to the PR calculation is given in Section
3.3. The optimization problem formulation is presented in Section 3.4. Our proposed
solution approaches are discussed in Section 3.5. The detailed performance analysis is
given and discussed in Section 3.6. Finally, summary of this chapter is presented in
Section 3.7.

3.2 System Model

A CRN is considered consisting of M SUs which are uniformly distributed around the
centrally located PU. It is assumed that the SUs collaboratively perform SS on the entire
licensed band. During data transmission, the licensed band is divided into M sub-bands
so as to allow each SU to transmit its data separately in one of these sub-bands to the
corresponding secondary receiver (SR). Otherwise, the SUs continuously search for the
vacant spectrum band. Let Q number of frames are allotted to a CR system each of
length Γ as shown in Figure 3.1. Each frame consists of one sensing slot of duration

τs, reporting slot of duration τr =
M
∑

m=1
τm and one data transmission slot of duration

τd = Γ− τr− τs. τm is the reporting duration of the mth SU. During τs, the SUs detect
the availability of spectrum band, in τr they send their sensing reports to the FC and
during the last slot τd the SUs transmit their data to SRs.

Figure 3.1: Frame structure in the CRN.

The SDF-based CSS system model is same as shown in the Figure 2.3. But, in
the double threshold-based case, the FC in the system model employs double threshold
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based decision scheme. The channel coefficient between the PU and the mth SU is
distance dependent Rayleigh distributed, and is calculated as hpsm ∼ℵ

(
0, 1

dm
α

)
, where

dm is the distance between the PU and the mth SU, and α is the path-loss exponent.The
double threshold-based decision metric is shown in Figure 3.2. So, when YG falls in
between two thresholds λg1 and λg2, all the SUs need to perform sensing rounds until
the FC achieves any final decision.

Figure 3.2: Double threshold-based FC’s decision metric.

For the single threshold-based CSS system framework, Qd and Q f are same as
(2.26) and (2.27), respectively. MRC fusion scheme given in (2.30) is used for the
weight generation. In the double threshold-based energy detection scheme, let λg1 and
λg2 be the two controlling thresholds for the missed detection and false alarm
probability, respectively. When YG ≥ λg2, the frequency band is occupied by the PU,
and YG ≤ λg1 shows the absence of the PU in the spectrum band. When YG lies in
between λg1 and λg2, the SUs need to do more sensing rounds before making any final
decision. So, the target miss detection probability Q̄md at λg1 and the probability of
false alarm Q f at λg2 are given by

Q̄md
(
τs,λg1

)
= 1−Q

 λg1−∑
M
m=1 σηm

2 (1+ γm)wm√
2∑

M
m=1 σηm4 (1+2γm)wm2

√
τs fs

= 1− Q̄d
(
τs,λg1

)
(3.1)

where Q̄d is the target detection probability.Similarly,

Q f
(
τs,λg2

)
= Q

λg2−∑
M
m=1 σηm

2wm√
2∑

M
m=1 σηm4wm2

√
τs fs

 (3.2)

Then, the false alarm probability Q̃ f for the given target detection probability Q̄d is
given by

Q̃ f
(
τs,λg1

)
=Q

Q−1 (Q̄d
(
τs,λg1

))√
2∑

M
m=1 σηm4 (1+2γm)wm2 +∑

M
m=1 σηm

2γmwm
√

τs fs√
2∑

M
m=1 σηm4wm2


(3.3)

λg2 is calculated from the given value of δ such that δ = Pr
(
λg1 < YG < λg2|H1

)
=

Pr
(
λg1 < YG < λg2|H0

)
and usually, 0≤ δ < 1. If ∆ = λg2−λg1, then at λg2 threshold,
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Q f
(
τs,λg2

)
is modified as

Q f
(
τs,λg2

)
= Q

[
a+
(
∆
′+b

)√
τs fs

]
(3.4)

where a =
Q−1(Q̄d)

√
2∑

M
m=1 σηm4(1+2γm)wm2√

2∑
M
m=1 σηm4wm2

, ∆′ = ∆√
2∑

M
m=1 σηm4wm2

and

b = ∑
M
m=1 σηm

2wmγm√
2∑

M
m=1 σηm4wm2

.

In the double threshold-based SS scheme, the probability that YG falls in between λg1

and λg2 is given by [55]

ρ =
[
Q̄d
(
λg1
)
−Qd

(
λg2
)]

PH1 +
[
Q̃ f
(
λg1
)
−Q f

(
λg2
)]

PH0 (3.5)

Then, the average number of sensing rounds is SR = 1
1−ρ

. So, SR increases with
increase in ρ as well as δ . Hence, Q f

(
τs,λg2

)
can be reduced by varying δ keeping

the probability of detection upper bounded Q̄d
(
τs,λg1

)
. So, for double

threshold-based FC scheme, τd = Γ− τsSR− τr.

From the next sections, all the mathematical expressions will be for the double
threshold-based system model. For single threshold FC, λg1 = λg2 = λ and SR = 1.

3.3 Total Interference Analysis to the PR

Interference to the PR occurs when the PU is accessing the licensed band, but the SUs
can not identify its presence during τs and start transmitting their data. So, during the
data transmission period interference may be expected in two possible scenarios. In the
first scenario, the SUs correctly detect the absence of the PU during sensing period but
the PU makes a transition in the data transmission period. In the second scenario, SUs
are unable to identify the presence of PU correctly during the sensing time and start
transmitting their data.

The activity of the PU signal is modeled as an exponentially distributed ON-OFF
process which alternates between ON and OFF state. If u and v represent the busy and
idle rates, respectively, then the probability that the channel is being occupied by the PU
is PH1 =

u
u+v , and the probability that PU is absent on the licensed band is PH0 =

v
u+v . In

the exponentially distributed ON-OFF process, the transition probability Ii j (τ) of PU is
defined as the probability that the PU will move from ith state to jth state after time τ .
For the first scenario, the possibility of the PU being present during τd is given by [124]

I01 (τd) =
v

u+ v

(
τd +

(exp(−(u+ v)τd)−1)
u+ v

)
(3.6)

So, for the given value of δ , interference for this scenario when the PU is priliminary
in OFF state is calculated as

IOFF =
(
1−Q f

(
λg2
))

I01 (τd) (3.7)

In the second scenario, the probability of expected period when the PU exists during τd
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is expressed as

I11 (τd) = τd−
u

u+ v

(
τd +

(exp(−(u+ v)τd)−1)
u+ v

)
(3.8)

So, the interference in this busy state of the PU is determined by

ION = Q̄md
(
λg1
)

I11 (τd) (3.9)

The average interference introduced to the PR is defined as the ratio of total interference
occurs during τd with the persistence of PU signal during the entire frame period.

Itotal =
IOFF + ION

PH1Γ
(3.10)

3.4 Optimization Problem Formulation

3.4.1 Outage analysis

Based on the FC’s final decision, there are two possible scenarios when the SUs intend
to transmit their data to the SRs. In the first scenario, the PU is correctly detected
to be absent on the desired band. So, the channel capacity achieved due to the data
transmission from mth SU is given by

C0m = log2

(
1+
|hsrm|2Ptm

Np

)
(3.11)

where hsrm is the sub-channel coefficient between the mth SU and the corresponding
SR which is calculated as hsrm ∼ℵ

(
0, 1

dsrm
α

)
. dsrm is the distance between the mth SU

and the corresponding SR. Ptm represents the transmission power from the mth SU and
Np denotes the noise power. In the second scenario, the PU is active on the channel, but
SUs are unable to identify such weak PU signal and start transmitting their data. The
channel capacity achieved due to this case is expressed as

C1m = log2

(
1+

|hsrm|2Ptm∣∣hprm
∣∣2Pp +Np

)
(3.12)

where Pp is the interference power received at the secondary network due to the
presence of the PU and hprm is the sub-channel coefficient between the PU and the mth
SR. This interference mainly occurs due to the miss detection probability Qmd made
by the SUs. Pp can be calculated as

Pp =

(
PH1Q̄md

(
λg1
)

P
(
H0
) )

σs
2 (3.13)

where P
(
H0
)

denotes the total probability of event H0 which is given by P
(
H0
)
=

PH0
(
1−Q f

(
λg2
))

+PH1Q̄md
(
λg1
)
. Comparing these two scenarios, it is obvious that
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C0m >C1m, hence the average throughput of the secondary CRN is given by [86]

R(τs,Pt) =
M

∑
m=1

R1m (τs,Ptm)+
M

∑
m=1

R2m (τs,Ptm)∼=
M

∑
m=1

R1m (τs,Pt) (3.14)

where R(τs,Pt) is the function of sensing time τs and transmission power Pt , and

R1m (τs,Ptm) =
τd

Γ

(
1−Q f

(
τs,λg2

))
PH0C0m (3.15)

R2m (τs,Ptm) =
τd

Γ

(
1− Q̄d

(
τs,λg1

))
PH1C1m (3.16)

From (3.14), it is obvious that longer sensing time reduces the system throughput. On
the other hand, false alarm probability for the given value of Qd is a decreasing function
of τs. Hence, by increasing the sensing time, spectrum accessibility possibility can be
maximized. If Rth denotes the minimum achievable data rate for each SU, then the
minimum transmission power of that SU is represented as

Ptm ≥
(
2Rth−1

)
Np

|hsrm|2
(3.17)

Then, we analyze the overall outage performance to examine the effect of interference
on the system throughput. An outage occurs when the channel capacity of the SU falls
below the threshold Rth. So, from APPENDIX A, the outage at mth SU is calculated as

Poutm =
τd

Γ

[
PH0

(
1−Q f

(
λg2
)){

1− exp
(
− γ th

σ srm2

)}
+

PH1Q̄md
(
λg1
){

1− σ srm
2

σ prm2γ pγ th +σ srm2 exp
(
− γ th

σ srm2

)}]
(3.18)

where γ p =
Pp
Np

and γ th =
(2Rth−1)Np

Ptm
. σsrm

2 and σprm
2 are the variances of the channel

gains |hsrm|2 and
∣∣hprm

∣∣2,respectively. Then the outage probability constraint of the mth
SU is expressed as

Poutm ≤ Oth (3.19)

where Oth is the outage threshold.

3.4.2 Problem formulation

EE is maximized by jointly optimizing the sensing time and power allocation Pt =

[Pt1,Pt2, . . . . . . ,PtM] in the CRN. So, we divide the joint optimization problem into two
sub-optimization problems. Firstly, the sensing time is evaluated for maximum system
throughput. Secondly, the exact power allocation to the SUs is evaluated. The first
sub-optimization problem is formulated as

maximize : R(τs) (3.20)
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Sub ject to : Qd
(
τs,λg1

)
= Q̄d (3.20 a)

: Q f
(
τs,λg2

)
≤ Q̄ f (3.20 b)

: 0≤ τs ≤ Γ (3.20 c)

: (3.17) and (3.19) (3.20 d)

For any value of Pt , R(τs) is a unimodal function of τs. It increases monotonically from
0≤ τs < τs

∗ and decreases from τs
∗ < τs ≤ Γ. So, there exist a local maximum sensing

time τs
∗ at which R(τs) is maximum.

Theorem 1. R(τs) is a concave function of τs, where τs
∗ gives the maximum average

throughput.

Proof. Proof of this theorem is given in Appendix B.

So, it is proved that R(τs)is a unimodal function in the range 0 ≤ τs ≤ Γ. Hence,
golden section search algorithm is employed to get optimal sensing time for maximum
throughput [125]. The second optimization problem is the main concern i.e. to
maximize EE. Energy consumption depends on the SUs’ decision on the PU’s
availability on the licensed band. If the PU is present or the SUs falsely detect the
presence of the PU, no data transmission takes place. In this case, energy consumption
occurs only due to the SS. Data transmission is possible in two scenarios; when the PU
is absent on the licensed band and missed detection occurs. So, the total power
consumption in the CR system is given by (neglecting the circuit power consumption)

PT (τs,Pt) = SRτsMPs + τdP
(
H0
) M

∑
m=1

Ptm (3.21)

where Ps is the sensing power and assumed to be same for all the SUs. Then, EE
(bit/s/joule) of the CRN is defined as the ratio of average throughput given in (3.14) and
the total power consumed by the secondary network given in (3.21) which is expressed
as

EE (τs,Pt) =
R(τs,Pt)

PT (τs,Pt)
(3.22)

Then, the EE maximization problem is formulated under the constraints of the following
parameters

Maximize

τs, Pt
:

R(τs,Pt)

PT (τs,Pt)
(3.23)
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Sub ject to : Ptmax−
M

∑
m=1

Ptm ≥ 0 (3.23 a)

: Ith− Itotal

M

∑
m=1
|hsdm|2Ptm ≥ 0 (3.23 b)

: Oth−Poutm ≥ 0 (3.23 c)

: C0m ≥ Rth (3.23 d)

: Ptm ≥
(
2Rth−1

)
Np

|hsrm|2
(3.23 e)

: 0≤ τs ≤ Γ (3.23 f)

Ptmax is the maximum allowable transmission power from SUs and Ith represents the
interference power threshold. The total interference power below Ith will not affect the
PR. Here, hsdm is the sub-channel coefficient between the mth SU and the PR.

3.5 Proposed Solution Approaches

This section includes the selection of suitable SUs for both SS and data transmission.
Further, an efficient algorithm called IDM is proposed for joint optimization of sensing
time and transmission power within which the sub-problem associated with the exact
power allocation is solved by the aid of Lagrangian dual problem using KKT condition.

3.5.1 Selection of suitable SUs

From (3.21), it is observed that power consumption increases with the sensing rounds.
But the number of sensing rounds decreases with increase in the number of SUs; the
proof is given in APPENDIX C. However, after a certain number of SUs the decrease
rate is so negligible that it does not show any significant change though the number of
SUs increases. Let total K SUs are present in the CRN, then the suitable number of SUs
M < K after which decrease in SR is negligible. By doing this the number of sensing
rounds and the number of SUs can be decreased simultaneously. Meanwhile, it helps
in increasing the data transmission duration. Hence, both R(τs,Pt) and EE (τs,Pt) can
be improved by selecting suitable M SUs with minimum sensing rounds SRmin. Here,
we divide the Algorithm 3.1 into three Steps. In the first Step, suitable number of
SUs M is selected based on the sensing rounds. In the subsequent steps, eligible M

SUs are selected to maximize the detection probability and system throughput. During
the sensing period, the problem of finding the suitable M SUs is based on the MDC
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algorithm which is given as follows [91].

Maximize

w
: dm

2 (m)

Sub ject to : ‖w‖= 1

(3.24)

where d2 (w) = [E(YG|H1)−E(YG|H0)]
2

Var(YG|H1)
=

(∑
M
m=1 σηm

2γmwm)
2

2
N ∑

M
m=1 σηm4(1+2γm)wm2 . If the average SNR

received at each SU is same, then d2 (w) is modified as

d2 (w) =

(
∑

M
m=1

∣∣hpsm
∣∣2σs

2wm

)2

2
N ∑

M
m=1 σηm2

(
σηm2 +

∣∣hpsm
∣∣2σs2

)
wm2

(3.25)

From (3.25), it is found that M SUs with larger channel gains produce accurate detection
performance as compared to the randomly selected M SUs. It is observed from (3.14)
that throughput increases with channel gain between the SU and SR. Similarly, for the
given value of Ith and Itotal in (3.23 b), the total transmission power depends on the
channel gain between the SU and the PR. Hence, the SUs closer to the SR in relative to
the PR are selected for the data transmission. The proposed SUs’ selection algorithm is
described as follows. m represents the number of users and m ∈ [1,K] and u = 50 (it is
chosen based on the maximum sensing rounds possible considering both low and high
SNR).So, K SUs are arranged in the descending order of their profit to loss ratio |hsrm|2

|hsdm|2
, and first M SUs are chosen for data transmission.

Algorithm 3.1 Selection of suitable SUs.
Input:

K← total number of SUs.
m← 1,z← 50,Di f f ← 1,ε ← 0.01

Output:
Eligible M

1: while (Di f f > ε) do
2: J← z;
3: find SR (m);
4: z← SR (m);
5: Di f f ← J− z;
6: m← m+1;
7: end while
8: M← m−1.
9: For SS, select M SUs such that m = argmax

m∈K

∣∣hpsm
∣∣2.

10: For data transmission, select M SUs such that m = argmax
m∈K

|hsrm|2
|hsdm|2

.
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3.5.2 Iterative Dinkelbach Method (IDM) for resource allocation

This subsection presents a novel iterative resource allocation algorithm using the
Dinkelbach method which is based on the parametric transformation. As per
parametric programming, if f1 (s) and f2 (s) are continuous and real valued functions
and s ∈ S, where S is a subset containg all possible values of s, then, max

s∈S

{
f1(s)
f2(s)

}
can be transformed to max

s∈S
{ f1 (s)−ϒ f2(s)}. This transformation relies on the

following theorem.

Theorem 2. If S is the feasible set, then there exists an optimal objective function such
that

ϒ
∗ =

f1 (s∗)
f2 (s∗)

= max
s∈S

{
f1(s)
f2(s)

}
(3.26)

If and only if
max
s∈S
{ f1 (s)−ϒ

∗ f2(s)}= f1 (s∗)−ϒ
∗ f2 (s∗) = 0 (3.27)

Proof. Proof of this theorem is given in [126].

As per this theorem, our optimization problem is formulated as; ϒ∗ = R(τs
∗,Pt
∗)

PT (τs∗,Pt
∗) =

max
Pt∈P

{
R(τs,Pt)
PT (τs,Pt)

}
and max

Pt∈P
{R(τs,Pt)−ϒ∗PT (τs,Pt)}= R(τs

∗,Pt
∗)−ϒ∗PT (τs

∗,Pt
∗) = 0

Here, τs
∗ and Pt

∗ represent the optimal sensing time and power allocation, respectively.
Our proposed IDM algorithm presents the steps for joint optimization of sensing time
and power allocation with suitable SUs from Algorithm 3.1.

Algorithm 3.2 IDM algorithm for resource allocation.
Input:

Pt satisfying the constraints (3.23 a - 3.23 f) and find out τs using golden section
search method.
Dinkelbach parameter(ϒ)← 0;
Acceptance tolerance value ξ ≤ 10−5;
Current iteration t← 1;

Output:
Optimal sensing time τs

∗ and transmission power Pt
∗.

1: while |ϒ(t)−ϒ(t−1)| ≥ ξ do
2: For the given value of τs, evaluate power Pt (t)from EPA algorithm such that;

Pt = argmax
Pt

{R(τs,Pt)−ϒ(t)PT (τs,Pt)}

3: For the given Pt (t), find corresponding sensing time τs;
4: t← t +1;
5: ϒ(t)←

{
R(τs,Pt)
PT (τs,Pt)

}
;

6: end while
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According to Algorithm 3.2, at each iteration t, Pt (t) is calculated from the sub-
problems associated with the convex optimization which is given in the next subsection.
Then, for the given transmission power, corresponding sensing time is found out by
using golden section search method for maximum throughput. The proposed algorithm
is terminated when ϒ(t) converges. In Appendix D, we prove the convergence of such
type of fractional programming transformation algorithm.

3.5.3 Exact power allocation to the SUs

The main objective of this subsection is to maximize step 2 of Algorithm 3.2 meeting
all the constraints (3.23 a-3.23 f). In (3.22), it is seen that R(τs,Pt) is a concave and
PT (τs,Pt) is an affine function of SUs’ transmitting power Pt . Also the constraints
given in the optimization problem (3.23) are either linear or convex. Hence, for the
given τs, the optimal power allocation problem {R(τs,Pt)−ϒ(t)PT (τs,Pt)} can be
formulated using the convex theory subject to the (3.23 a), (3.23 b) and (3.23 d)
constraints. Then, this suboptimization problem is solved by Lagrangian duality
theorem which is expressed as

L(θ , µ,ϑ) =C
′ M

∑
m=1

log2

(
1+
|hsrm|2Ptm

Np

)
−ϒ(t)

(
SRMτsPs + τdP

(
H0
) M

∑
m=1

Ptm

)

+θ

(
Ptmax−

M

∑
m=1

Ptm

)
+µ

(
Ith− Itotal

M

∑
m=1
|hsdm|2Ptm

)
+ϑ m (log2 (1+νmPtm)−Rth) (3.28)

Sub ject to : Ptmax−
M

∑
m=1

Ptm ≥ 0 (3.28 a)

: Ith− Itotal

M

∑
m=1
|hsdm|2Ptm ≥ 0 (3.28 b)

: log2 (1+νmPtm)−Rth ≥ 0 (3.28 c)

where θ , µ and ϑ = [ϑ 1,ϑ 2, ....,ϑ M] are the non-negative Lagrangian multipliers,
νm = |hsrm|2

Np
and C

′
= τd

Γ

(
1−Q f

(
λg2
))

PH0. In each iteration t of Algorithm 3.2, the
Lagrangian dual problem is solved such that min

θ ,µ,ϑ
max
τs,Pt

L(θ ,µ,ϑ). Then by applying

KKT condition to this dual problem we have [127]

C′νm

(1+νmPtm)(ln2)
−ϒ(t)τdP

(
H0
)
−θ −µItotal

M

∑
m=1
|hsdm|2 +ϑ mC0m

′
= 0 (3.29)
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θ

(
Ptmax−

M

∑
m=1

Ptm

)
= 0 (3.29 a)

µ

(
Ith− Itotal

M

∑
m=1
|hsdm|2Ptm

)
= 0 (3.29 b)

ϑ m (log2 (1+νmPtm)−Rth) = 0 (3.29 c)

where C0m
′
= νm

(1+νmPtm)ln2 . It is clearly noticed from (3.29 a), (3.29 b) and (3.29 c) that
each condition generates two cases; either the dual variable is zero or the corresponding
constraint is zero. So, we have summarized these possibilities into four cases, and
accordingly calculate Pt (t) for the current iteration t of Algorithm 3.2.
Case-1: θ = µ = 0 and ϑ m = 0 for all m ∈M. So, (3.29) reduces to

C′νm

(1+νmPtm)(ln2)
−ϒ(t)τdP

(
H0
)
= 0 (3.30)

Sub ject to : Ptmax−
M

∑
m=1

Ptm ≥ 0 (3.30 a)

: Ith− Itotal

M

∑
m=1
|hsdm|2Ptm ≥ 0 (3.30 b)

: log2 (1+νmPtm)−Rth ≥ 0 (3.30 c)

The power solution of the mth SU of (3.30) is obtained by using water filling solution
which is expressed as

Ptm
1 =

[
C′

ϒ(t)τdP
(
H0
)

ln2
− 1

νm

]+
(3.31)

where [.]+ = max [0, .]. Then, by substituting the value of (3.31) in (3.30 a), (3.30 b)
and (3.30 c), following three conditions (3.32 a), (3.32 b) and (3.32 c) are evaluated,
respectively, which are as follows

C′

ϒ(t)τdP
(
H0
)

ln2
≤ Ptmax

M
+

1
M

M

∑
m=1

1
νm

(3.32a)

C′

ϒ(t)τdP
(
H0
)

ln2
≤

I∗+∑
M
m=1

|hsdm|2
νm

∑
M
m=1 |hsdm|2

(3.32b)

C′

ϒ(t)τdP
(
H0
)

ln2
≥
(
2Rth
)

νm
(3.32c)

where I∗ = Ith
Itotal

. If (3.32 a), (3.32 b) and (3.32 c) are satisfied, then (3.31) is the power
allocation solution.
Case-2: θ 6= 0,µ = 0 and ϑ m = 0 for all m ∈M. Similar to the Case-1, (3.29) reduces
to

C′νm

(1+νmPtm)(ln2)
−ϒ(t)τdP

(
H0
)
−θ = 0 (3.33)

Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network 56



3.5 Proposed Solution Approaches

Sub ject to :
M

∑
m=1

Ptm = Ptmax (3.33 a)

: (3.30b)and(3.30c) (3.33 b)

For this case, the exact solution for power allocation is obtained as

Ptm
2 =

[
C′(

θ +ϒ(t)τdP
(
H0
))

ln2
− 1

νm

]+
(3.34)

When (3.32 b) and (3.32 c) are satisfied, and (3.32 a) is reduced to equality constraint
which is given by

C′

ϒ(t)τdP
(
H0
)

ln2
=

Ptmax

M
+

1
M

M

∑
m=1

1
νm

(3.35)

The water filling solution given in (3.34) consists of the dual variable θ in the
denominator which is updated by sub-gradient method as per the following
expression [127]

θ (it +1) =

[
θ (it)−ψ (it)

(
Ptmax−

M

∑
m=1

Ptm

)]+
(3.36)

where ψ (it) is non-negative step size for the current iteration it and is set at 1√
it

. So,
ψ (it) decreases with the number of iterations and θ converges to the optimal value
when ψ (it) is sufficiently small.
Case-3: θ = 0,µ 6= 0, ϑ m = 0 for all m ∈M. Then the KKT condition given in (3.29)
is reduced to

C′νm

(1+νmPtm)(ln2)
−ϒ(t)τdP

(
H0
)
−µItotal

M

∑
m=1
|hsdm|2 = 0 (3.37)

Sub ject to : (3.30a)and(3.30c) (3.37 a)

: Ith = Itotal

M

∑
m=1
|hsdm|2Ptm (3.37 b)

After solving (3.37), the power allocation solution is given by

Ptm
3 =

 C′(
ϒ(t)τdP

(
H0
)
+µItotal ∑

M
m=1 |hsdm|2

)
ln2
− 1

νm

+ (3.38)

With the conditions (3.32 a) and (3.32 c) are satisfied, and (3.32 b) is given with equality

C′

ϒ(t)τdP
(
H0
)

ln2
=

I∗+∑
M
m=1

|hsdm|2
νm

∑
M
m=1 |hsdm|2

(3.39)

Similar to Case-2, the solution (3.38) consists of the dual variable µ in the denominator
which is updated by sub-gradient method as per the following expression

µ (it +1) =

[
µ (it)−ψ (it)

(
Ith− Itotal

M

∑
m=1
|hsdm|2Ptm

)]+
(3.40)
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So, µ converges to the optimal value when ψ (it) is sufficiently small.
Case-4: ϑ m 6= 0 for all m ∈M, θ = 0 and µ = 0. For this case, (3.29) reduces to

C′νm

(1+νmPtm) ln2
−ϒ(t)τdP

(
H0
)
+ϑ mC0m

′
= 0 (3.41)

Sub ject to : (3.30a)and(3.30b) (3.41 a)

: log2 (1+νmPtm) = Rth (3.41 b)

After Solving (3.41), we have the water filling solution

Ptm
4 =

 C′(
ϒ(t)τdP

(
H0
)
−ϑ mC0m

′
)

ln2
− 1

νm

+ (3.42)

So, Ptm
4 in (3.42) consists of the dual variable ϑ m in the denominator. But it is clear

that there is no common water level for this solution. However, we have approached
this solution in a clever way. In this case, the optimal solution occurs on the plane in
(3.41 b) which is equivalent to

Ptm
4 =

[
C′

ϒ(t)τdP
(
H0
)

ln2
− 1

νm

]+
or Ptm

4 =

[(
2Rth
)

νm
− 1

νm

]+
(3.43)

We have checked all the inequalities conditions given in (3.32 a), (3.32 b) and (3.32
c). Also, we have evaluated the exact power allocations for the four cases. Then,
we incorporate these four cases into a single Algorithm 3.3 to decide transmission
power Pt for Algorithm 3.2. For convenience, we consider that P1 = C′

ϒ(t)τdP(H0)ln2
,

P2 = Ptmax
M + 1

M ∑
M
m=1

1
νm

, P3 =
I∗+∑

M
m=1
|hsdm|2

νm

∑
M
m=1 |hsdm|2

, P4 =
(2Rth)

νm
. Algorithm 3.3 defines the

power allocation to the mth SU. By following the same steps the power allocations to
all the M SUs are calculated. A flowchart is given in Figure 3.3 that summarizes our
proposed approaches for optimal resource allocation in designing the energy-efficient
CRN.
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Algorithm 3.3 EPA algorithm.
Input:

ϒ(t) from Algorithm 3.2.
Output:

Power allocated to the mth SU Ptm (t).

1: Evaluate
(

C′

ϒ(t)τdP(H0)ln2

)
.

2: if ((P1 < P2)&&(P1 < P3)&&(P1 > P4)) ‖ ((P1 == P2)&&(P1 == P3)) then .
(Here, the condition (3.32c) is excluded because ϑm for all m ∈M does not satisfy
the water level solution.)

3: Ptm = Ptm
1;

4: else
5: if (P1 = P2) && (P1 < P3)&&(P1 > P4) then
6: Ptm = Ptm

2;
7: else
8: if (P1 < P2) && (P1 = P3)&&(P1 > P4) then
9: Ptm = Ptm

3;
10: else

11: Ptm =

[
C′

(ϒ(t)τdP(H0)+θ+µItotal ∑
M
m=1 |hsdm|2)ln2

− 1
νm

]+
;

12: end if
13: end if
14: end if

3.5.4 Complexity analysis

In IDM algorithm, let NA and NB be the number of iterations required to converge the
fractional programming based on Dinkelbach method and to update the Lagrangian
multipliers θ and µ , respectively. Therefore, the overall complexity is
O(NANBlog2

∣∣∣∆τ

φ

∣∣∣), where ∆τ is the difference between lower and upper bound of the

sensing time and φ = 10−6 is a small integer representing the minimum accuracy
allowed in golden section search algorithm. The joint optimization through exhaustive
search method has polynomial time complexity. Further, at each iteration of IDM
algorithm, complexity may vary depending upon the Cases in Algorithm 3.3. If
Ptm = Ptm

1, then NB = 0. So, the complexity is reduced to O(NAlog2

∣∣∣∆τ

φ

∣∣∣). Hence, the
aid of Algorithm 3.3 in Algorithm 3.2 can be employed for solving EE maximization
problem with considerably low complexity.
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Figure 3.3: Flowchart that summarizes our proposed approach.

3.6 Simulation Results and Discussion

In this section, we present the extensive simulation results to evaluate the performance
of our proposed algorithm over different system key parameters. We consider a CRN,
where K=20 SUs are distributed around the centrally located PU in a circular area of
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radius 1000m. Out of this K SUs suitable M SUs are chosen. The PR is present within
the circular radius of 200m. The SRs are distributed randomly around the PU over the
circular ring of radius in between 1000m to 1500m. We assume that σs

2=1. In the
simulation results, some common parameters are used which are summarized in Table
3.1.

Table 3.1: Simulation Parameters

Simulation Parameters Value
Noise power Np -80 dBm
Sensing power Ps -20 dBm
Path-loss coefficient α 3
u 0.5
v 0.5
Frame duration Γ 0.01sec
Reporting duration τr 5µs
Target detection probability Q̄d 0.9
γm∀ ∈M -20dB
Sampling frequency fs 6MHz

Figure 3.4 illustrates the benefits of selecting suitable SUs for improving the
detection performance. Based on the channel gains between the PU and the SUs,here,
M=6 SUs are chosen out of the total 20 SUs by employing step-9 of Algorithm 3.1.
Further, the comparisons of double threshold-based SDF scheme (Scheme-I) with the
existing single threshold-based SDF scheme [91] (Scheme-II), double threshold-based
OR fusion HDF scheme [128] (Scheme-III) and double threshold-based AND fusion
HDF scheme [128] (Scheme-IV) are demonstrated. Though at the low SNR condition,
OR fusion-based SS scheme performs better than the other techniques but after
SNR=-20 dB double threshold-based SDF scheme outperforms the other schemes. At
SNR=-18 dB, Scheme-I offers approximately 7% improvement in detection
performance over Scheme-II. Further, in Scheme-I, Qd is improved by 14% at
SNR=-18 dB by the inclusion of suitable SUs. However, the selected SUs based on
their channel gains provide better detection performance in all the schemes. For this
plot, we set target false alarm probability Q̄ f

(
λg2
)
=0.001 and δ=0.5.

For rest of the figures, we set Q̄d
(
λg1
)
=0.9 from which Q̃ f

(
λg1
)

and Q f
(
λg2
)

are calculated. Figure 3.5 shows optimal M and SRmin for different SNR conditions
at δ=0.05, δ=0.1 and δ=0.5. It is clearly observed that by employing Step 1-8 of
Algorithm 3.1, M and SRmin decrease as SNR increases. When SNR is increased by 20
dB (-30 dB to -10 dB), M and SRmin are reduced by 66% and 36%, respectively. So,
for the given value of SNR, the unnecessary involvement of all K SUs can be avoided
by choosing only M SUs. At the high SNR, the PU can easily be detected, hence the
number of SUs requirement is very less.
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Figure 3.4: Qd vs SNR for selected and random SUs.
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Figure 3.5: Variation of optimal number of SUs and minimum sensing rounds SRmin
against SNR.

Figure 3.6 illustrates the optimal sensing time versus SNR for M=6 and M=15
considering δ=0 and δ = 0.5. The M SUs are chosen randomly from the total K SUs.
It is clearly noticed that at higher SNR more number of SUs require less sensing time.
Further, at SNR= -24 dB nearly 3.4 msec out of 10 msec is spent for SS, hence at low
SNR larger portion of the total frame period has been allocated for SS than at high
SNR. So, system throughput is less at low SNR condition. Further, it is noticed that
both single and double threshold-based FC decision making schemes show similar
performance.
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Figure 3.6: Optimum sensing time vs SNR for M=6 and M=15.

Figure 3.7 shows the convergence comparison of our proposed scheme with the
other existing schemes. In Scheme I, the iterative process discussed in [119] is used
for optimizing both sensing time and power allocation. In Scheme II, IDM algorithm
is used for joint optimization of sensing time and transmission power but the exact
power allocation for step-2 of Algorithm 3.2 is calculated directly from the water
filling solution given in step 11 of Algorithm 3.3. In Scheme III, PSO algorithm is
used for evaluating the optimal power allocation as in [117]. In Scheme IV, the method
of optimizing both sensing time and transmission power allocation is obtained by
employing Bi-Section search method as discussed in [114] . In our proposed scheme,
both Algorithm 3.2 and Algorithm 3.3 are used. For this simulation, we set SNR = -
20 dB, Ith = -70 dBm, Rth = 2 bits/s/Hz and Oth =0.05. For double threshold-based
scheme we take δ=0.5. We set M=6 for both single and double threshold-based
detection. It is clearly noticed that our proposed scheme outperforms the other existing
schemes. After convergence in the proposed scheme, for double threshold method, EE
is improved by 27% compared to the single threshold-based detection method.
Further, EE obtained by the proposed scheme is improved by 3% with respect to
Scheme II in single threshold-based detection scheme.

Though our proposed scheme performs almost same as Scheme II, but the
complexity of our proposed algorithm lies between Scheme I and Scheme II. The
resource allocation procedure in Scheme II has a constant complexity of
O(NANBlog2

∣∣∣∆τ

φ

∣∣∣). But the complexity of our proposed scheme may be same or less
than Scheme II depending upon the conditions given in Algorithm 3.3. Though the
complexity of our proposed method is more than Scheme I which is O

(
NAlog2

∣∣∣∆τ

φ

∣∣∣)
but in terms of performance our method gives significant improvement in EE with the
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same simulation parameters. Hence, both Algorithm 3.2 and Algorithm 3.3 jointly
provides better performance with considerably less complexity.
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Figure 3.7: Convergence comparison of our proposed scheme with the other existing
schemes.

Figure 3.8 demonstrates the benefit of selecting suitable SUs employing step 10 of
Algorithm 3.1. In Scheme-I and in Scheme-II, the SUs are distributed in a circular
area of radius 1000m and 500m, respectively. It is reasonable that the SUs present
nearear to the PU consume less power because the minimum and maximum allowable
powers are inversely proportional to the channel gains which ultimately depend on the
distance between the terminals. So, when distance between the PU and the SU
decreases, its corresponding channel gain increases, hence power assigned to the SU
decreases which decreases the system throughput. Therefore, system throughput is
decreased by 24% in Scheme-II at SNR=-11 dB. Further, it is observed that at
SNR=-11 dB, system throughput using selected SUs is increased approximately by 8%
when compared to the randomly selected SUs in Scheme-I.
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Figure 3.8: Effect of SNR on R(τs,Pt) for selected and randomly chosen SUs.

Figure 3.9 illustrates the impact of interference threshold Ith on the maximum EE
and maximum system throughput for two different SNR conditions in both double and
single threshold-based FC decision making schemes. It is observed that as Ith increases,
EE (τs,Pt) decreases but R(τs,Pt) increases. This indicates that with the increase in Ith,
maximum allowable transmission power increases as per (3.23 b), so EE decreases but
throughput increases as transmission power increases. From Figure 3.9a, it is observed
that the R(τs,Pt) is slightly higher in SNR= -20 dB than the SNR= -10 dB. This is
because by employing Algorithm 3.1 for double threshold scheme, the number of SUs
decreases with increase in SNR as shown in Figure 3.5. More SUs consume more
power, hence throughput increases. But, in Figure 3.9b, we set M=6, and it shows the
actual impact of SNR on system throughout. So, with rise in Ith by 4 dBm i.e from -60
dBm to -56 dBm, EE is reduced by 6% but throughput is increased by 8% for SNR=-10
dB. For, Figure 3.9, we take Np=-100 dBm.
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(a) Double threshold-based FC decision making scheme
employing Algorithm 3.1.
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(b) Single threshold-based FC decision making scheme M=6.

Figure 3.9: Variation of EE (τs,Pt) and R(τs,Pt) against the interference threshold Ith
for SNR=-20 dB and -10 dB.

Figure 3.10 shows the effect of Rth on the maximum EE and system throughput for
δ=0.3 and δ=0.8. It is observed that EE decreases with increase in Rth. This is because
as Rth increases, minimum required transmission power increases which leads to
minimization of EE. So, at δ=0.8, when Rth is increased by 0.4 bits/s/Hz from 1.1
bits/s/Hz to 1.5 bits/s/Hz, EE is reduced by approximately 13%. Meanwhile, system
throughput shows very gradual increase with Rth. Further, as δ increases both
EE (τs,Pt) and R(τs,Pt) increase. Hence, when δ is raised from 0.3 to 0.8 at Rth=1.5
bits/s/Hz, both EE and system throughput are improved by 8% and 84%, respectively.
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Figure 3.10: Effect of Rth on EE (τs,Pt) and R(τs,Pt) for different values of δ .

Figure 3.11 presents the effect of the number of cooperative SUs on maximum EE,
system throughput and total power consumption for Ith=-70 dBm and -40 dBm
considering the single threshold-based detection scheme. It is obvious that EE (τs,Pt)

decreases with increase in the number of SUs but both R(τs,Pt) and PT (τs,Pt)

increase. This is reasonable because more SUs lead to more power consumption.
However, the rate of decrease in EE does not change significantly after a certain
number of SU though the transmission power increases. It is observed that when
number of SUs increases from 5 to 10 at Ith=-70 dBm, EE decreases by only
approximately 11% but both system throughput and power consumption increase by
44% and 73%, respectively. Hence, an energy-efficient model can be designed by
selecting suitable number of SUs to avoid unnecessary power consumption. For this
figure, the SUs are chosen randomly from the total SUs. We set Np=-100 dBm.

Figure 3.12 presents the variation of EE and system throughput for different values
of Q̄d comparing the single and double threshold-based fusion schemes. We set M=6.
It is clearly observed from (3.14) and (3.21) that both R(τs,Pt) and PT (τs,Pt) are
decreasing functions of Q̄d . This is because as Q̄d increases, Q f also increases for the
given value of δ . Hence,

(
1−Q f

)
decreases, so both throughput and total power

consumption decrease. As EE is the ratio of R(τs,Pt) and PT (τs,Pt), hence variation of
EE with respect to Q̄d depends on the rate of decrease of these parameters. Further, we
can have 10% and 17% improvements in EE and throughput by employing double
threshold-based detection scheme if we set Q̄d=0.9.
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Figure 3.11: Variation of EE (τs,Pt), R(τs,Pt) and total sum of transmitting power w.r.t
the number of SUs.

0.7 0.75 0.8 0.85 0.9 0.95
3000

3500

4000

4500

5000

Q̄d

E
E

 (
bi

ts
/s

/jo
ul

e)

 

 
δ=0
δ=0.5

0.7 0.75 0.8 0.85 0.9 0.95
26

28

30

32

34

36

Q̄d

T
hr

ou
gh

pu
t (

bi
ts

/s
/H

z)

 

 
δ=0
δ=0.5

Figure 3.12: Variation of EE (τs,Pt) and R(τs,Pt) w.r.t Q̄d .

3.7 Summary

This chapter focused on maximization of EE for single and double threshold based
CSS schemes satisfying the constraints of interference to the primary network, outage
to the secondary network, maximum secondary transmission power and minimum
achievable data rate considering the target detection probability. In double
threshold-based detection scheme, the final decision was obtained at the cost of more
sensing rounds made by the SUs. An efficient algorithm was proposed to select the
suitable number of SUs based on the sensing rounds. The eligible SUs both for SS and
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data transmission were selected based on their channel gains. The non-linear and
non-convex EE maximization problem was solved by parametric transformation based
on Dinkelbach method. A novel IDM algorithm was proposed for joint optimization of
sensing time and power allocation. The exact power allocation to the SUs for the given
sensing time was obtained by our proposed EPA algorithm. Further, the performances
of our proposed schemes were validated by comparing with the other existing
schemes, and it is observed that our scheme can solve the EE maximization problem
with less complexity. Thus, it can be concluded that EE increases with SNR and
threshold difference, and the system throughput increases with throughput threshold,
number of SUs, SNR, threshold difference and interference threshold. So, with the
proper selection of the system parameters a trade-off between EE and throughput
could be obtained in the CRN. In this chapter, the system model did not consider any
effect of the MUs in the CR environment. The characteristics of CR allow more active
attackers in the CRN. Those attackers either degrade the CR performance or use the
spectrum by deception for their own purposes. The attacker signal may cause
interference to the secondary transmission. Hence, power allocation to the SUs
considering the negative impacts of the attacker is one of the challenging issues which
needs to be addressed.
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Chapter 4

Proposed Approaches for Energy-Efficient Resource
Allocation in the CRN with the Primary User Emulation
Attack

This chapter focuses on solving the EE maximization problem both in the single and
double threshold-based SDF CSS CRN considering the presence of PUEA. The
highlights of the chapter are

• The negetive impact of the attacker on the secondary transmission is investigated.

• A suitable SUs’ selection algorithm is proposed for both SS and data
transmission.

• An efficient algorithm is proposed to obtain the sensing time maintaining the
trade-off between throughput, transmission delay and false alarm probability.

• A novel iterative method is proposed for joint optimization of sensing time and
power allocation to the SUs.
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4.1 Introduction

4.1 Introduction

IN the DSA environment, the PU always uses the authorized frequency band, and
the SUs can utilize this spectrum band when the PU is not using it. So, SS process

facilitates the SUs to identify the unoccupied bands and vacate the bands as the PU
returns. However, correct decision of the SUs can not be guaranteed in the hostile
wireless environment always. One of the serious attacks in the CRN is PUEA. In
PUEA, the attacker generates the similar type of signal as the PU to make an error in
the frequency band and to confuse the SU. So that the SUs erroneously identify the
attacker as the PU, and vacate the spectrum band immediately. PUEA can produce
serious interference to the SS and significantly reduces the available channel resources.
It also imposes an excessive interference to the SUs transmission, thus forcing the SUs
to transmit with high power thereby causing interference to the PU. Mainly, the attack
is characterized as malicious/obstructive attack and selfish/greedy attack [36].

• Malicious Attack:- The attacker only launches PUEA on the spectrum band.

• Selfish Attack:- The attacker prevents other SUs from using the idle spectrum
band by launching PUEA and reserves those bands for its own profit.

In the multi-hop channel environment, if PUEA is launched and there is no idle
channel for SU, then the call is dropped or delayed [129]. A dropped call results

in unreliable communication and the delayed call degrades the QoS. In the adverse
environment, almost all the channels are affected by both MUs and greedy users [130].
Prevention of PUEA is vital in CRNs. On the other hand, complete elimination of these
attacks is impossible in the real-time wireless environment. Another important aspect
in CR system is the EE maximization for enhancing the battery life of low-powered
cognitive terminals. So, for reliable data transmission with sensing accuracy, proper
resource allocation in the presence of MUs is not only an important task but also is
very difficult to solve. These can be achieved by carefully chosing the sensing time and
eligible SUs for enhancing both EE and detection probability.

Part of the contributions in this chapter are accepted in:
Deepa Das and Susmita Das, "An Intelligent Resource Management Scheme for SDF-Based Cooperative
Spectrum Sensing in the Presence of Primary User Emulation Attack,"Computers & Electrical
Engineering, Elsevier (Accepted).
Deepa Das and Susmita Das, "An Intelligent Resource Allocation Scheme for the Cognitive Radio
Network in the presence of Primary User Emulation Attack," IET Communications (Provisionally
accepted, revision submitted).
Deepa Das and Susmita Das, "Primary user emulation attack in cognitive radio networks: A
survey,"International Journal of Computer Networks and Wireless Communications, vol. 3, no. 3, pp.
312-318, 2013.
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4.1.1 Related works

As far as the reliability is concerned, it is a challenging task to detect the PU accurately
in the event of a PUEA [131]. So, several methods have been proposed in the literature
to differentiate the PUEA and the PU signal. In [132], detection probability of the PU
was maximized by optimally combining the weights with the received signal under the
constraint of false alarm probability. The performance metrics for the CSS considering
the presence of smart PUEA were derived in [133] and an optimal weight combining
scheme was proposed to improve the detection performance in the same scenario
in [134]. In [135], the authors presented an analytical model to detect the attacker.
Here, Fenton’s approximation was used to calculate the mean and variance of the
received signal at the SUs from both PU and the attacker, and Wald’s sequential
probability ratio test (WSPRT) was used to detect PUEA. A location verification
scheme was proposed in [136], where the Time Difference of Arrival (TDoA) method
was used to detect the difference of time of arrival of the signals at the receiving
terminals. However, this method required the deployment of extra anchor nodes.
When the attacker was present nearer to the PU, Dang et al. proposed a new two-phase
detection algorithm in [137], which distinguished between the PU and the attacker
from the characteristics of the transmitted signal from the PU and difference of
received power in the presence of attacker and noise. Further, in the presence of
multiple PUE attackers, the authors proposed optimal weight combining scheme to
improve the detection performance [138]. It is obvious that spurious signal from the
PUEA increases the probability of error in the CRN. This can be minimized by
obtaining the optimal threshold [139].

For power allocation in the presence of the attacker, Haghighat et al. in [140] and
Du et al. in [141] proposed an optimal power allocation scheme in OFDM based CR
for maximizing system throughput under the constraint of interference power to the PU.
In [142], the detection performance and the system throughput were maximized in the
multiband CSS scenario under the constraint of interference to the primary network. For
the soft combination scheme, the detection performance was improved by optimizing
the decision threshold and the weight coefficients. In the hard combination scheme,
probability of detection was maximized by the optimal number of SUs and the decision
threshold. Then, the system throughput was improved by considering the optimized
parameters. In order to effectively distinguish between the PU and PUEA, the authors
proposed an advanced encryption standard (AES) algorithm in the OFDM-based CRN,
and the transmission rate was maximized through the suboptimal energy harvesting
technique [143].

However, none of these methods discussed joint optimization of sensing time and
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power allocation for EE maximization considering the attacker’s presence. Further,
delay in data transmission is not considered anywhere. Hence, energy-efficient resource
allocation schemes in the presence of PUEA need to be explored to meet the challenges
of successful deployment of CR in the adversarial environment.

4.1.2 Chapter contributions and organization

The main contributions are summarized below.

• The SDF-based system model is designed in the presence of an attacker for single
and double threshold-based sensing schemes.

• Different constraints are evaluated considering different issues arise in the
presence of the attacker.

• The solution approach to the EE maximization problem is started with the
selection of eligible SUs for SS and data transmission.

• The non-linear optimization problem with non-convex constraints are solved by
the novel iterative algorithm called NIRA in which the sensing time is obtained
for maximum throughput, minimum false alarm probability, and minimum
delay. The power allocation is obtained from an efficient algorithm which is the
combination of fractional programming, dual decomposition method, and DC
programming.

• To further reduce the complexity, the EE maximization problem with the
associated constraints is solved by NARA algorithm which is based on
well-established NLMS algorithm.

• The performances of our proposed algorithms are validated through the
simulation results. The impact of different system parameters on EE and
throughput is studied in detail for both single and double threshold-based SS
schemes.

The chapter is structured as follows. Section 4.2 describes the system model with the
detailed analysis of the performance metrics for both single and double
threshold-based decision-making schemes. The problem formulation along with the
different constraints is given in Section 4.3. Section 4.4 presents our proposed solution
approaches. Comparative study and simulations results are demonstrated in Section
4.5. A summary of the chapter is presented in Section 4.6.
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4.2 System Model

Let K SUs are distributed randomly in the CRN, out of which only M SUs are chosen.
The attacker coexists with the other users and tries to emulate the PU’s characteristics.
So, it is present nearer to the PU. The CSS is performed by the M SUs each consisting
of single ED for deriving individual decision regarding the presence of the PU. The
PUE attacker purposely follows the same distribution as PU to prevent the SUs from
accessing the licensed band. Each SU receives the signal from the PU and the PUE
attacker.

4.2.1 Single threshold-based SS scheme

The CSS system model employing single threshold-based FC decision making scheme
is shown in Figure 4.1. Let sa (n) be the transmitted signal from the attacker at nth
instant. The received signal at each mth SU is expressed as four hypothesis tests which
are as follows

xm (n) =



s(n)hpsm +β sa (n)hasm +ηm (n) , (H1,A1)

s(n)hpsm +ηm (n) , (H1,A0)

β sa (n)hasm +ηm (n) , (H0,A1)

ηm (n) , (H0,A0)

(4.1)

Figure 4.1: SDF-based detection scheme in the presence of PUEA.

A0 and A1 represent the absence and presence of the attacker, respectively. β is the
probability of attacker’s presence in the licensed band. The attacker tends to follow the
similar type of signal as PU with zero mean and variance σa

2. hasm is the sub-channel
coefficient between the attacker and the mth SU. The sub-channel between the terminal
is assumed to follow the Rayleigh fading distribution and is given by hasm∼ℵ

(
0, 1

dm
α

)
.

The summary statistic of each SU is same as (2.12). The SNR of the PU received at
mth SU in the absence of the attacker is given by γm. However, γm gets reduced due
to superimposition of the PUE attacker signal on the licensed band, and the attacker’s
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signal acts as the noise to the received signal. So, the SINR γam is given by

γam =
σs

2
∣∣hpsm

∣∣2
σηm2 +β |hasm|2σa2

(4.2)

According to the central limit theorem, for the large value of N the local test statistic is
approximated by the Gaussian distribution. So, mean and variance of the test statistic
for the four possible hypotheses are given by

E [Ym] =



σaηm
2 (1+ γam) , (H1,A1)

σηm
2 (1+ γm) , (H1,A0)

σaηm
2, (H0,A1)

σηm
2, (H0,A0)

(4.3)

and

Var [Ym] =



2σaηm
4

N (1+2γam) , (H1,A1)

2σηm
4

N (1+2γm) , (H1,A0)

2σaηm
4

N , (H0,A1)

2σηm
4

N , (H0,A0) ,

(4.4)

respectively. Here, σ2
aηm = σηm

2 +β |hasm|2σa
2. It is assumed that the distances of the

PU and the attacker from the SUs are known to the SUs. Thereby full channel state
information is known to the SUs prior to the SS and data transmission. It is assumed
that the attacker is present all the time during the SS and data transmission. So, the Qd

and Q f are represented by (2.26) and (2.27), respectively but γm and σηm
2 are replaced

by γam and σaηm
2, respectively.

4.2.2 Double threshold-based SS scheme

In Chapter 3, double threshold was employed at the FC. Accordingly, all the SUs
perform sensing round, and the final decision is made. To further improve the
detection performance, double threshold-based ED is employed at each CR. Let there
are total K SUs are present in the CRN and if the test statistic of the kth SU Yk lies on
either side of the thresholds, it sends “0” or “1” depending on its decision to the
OR-logical FC. But, when Yk lies in the confusion area, the kth SU sends its
corresponding Yk to the SDF-based FC. In constrat to [144], here, double threshold is
applied in the SDF-based FC to make the final decision in term of “0” or “1”. Finally,
all the binary decisions are combined through the OR-logic. So, this technique is
termed as Hybrid MRC-OR double threshold technique which is shown in Figure 4.2.
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Figure 4.2: Double threshold-based CSS scheme in the presence of PUEA.

If λ1 and λ2 be the two local thresholds, then, Yk ≤ λ1 and Yk ≥ λ2 represent the idle
and busy state of the licensed band, respectively. So, the detection probability and false
alarm probability of the kth SU are given by

Pd,k = Q

(
λ1−σaηk

2 (1+ γak)

σaηk
2
√

2(1+2γak)

√
N

)
(4.5)

and

Pf ,k = Q

(
λ2−σaηk

2

σaηk
2
√

2

√
N

)
, (4.6)

respectively. λ2 is evaluated to keep Pf ,k < 0.5. When λ1 <Yk < λ2, the kth SU confuses
between the signal and noise and sends Yk to the FC. If Hk represents the decision
statistic of each SU, then

Hk =


0, Yk ≤ λ1

1, Yk ≥ λ2

Yk, λ1 < Yk < λ2

(4.7)

Let M̂ SUs send hard decision bits, then, the energy values of the K−M̂ SUs are linearly
combined with the respective weight coefficients to evaluate the global test statistic YG.
At the single threshold SDF-based FC, the detection probability QSD for K− M̂ SUs is
given by

QSD = Q

 λg−∑
K−M̂
k=1 σaηk

2 (1+ γak)wk√
2∑

K−M̂
k=1 σaηk

4wk
2 (1+2γak)

√
N

 (4.8)

where wk is the weight coefficient assigned to the kth SU. λg is calculated by taking
QSD=0.9. Hence the corresponding false alarm probability QFD is given by

QFD = Q
[
a+b

√
τs fs

]
(4.9)
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where a =
Q−1(Q̄SD)

√
2∑

K−M̂
k=1 σaηk

4(1+2γak)wk
2√

2∑
K−M̂
k=1 σaηk

4wk
2

and b =
∑

K−M̂
k=1 σaηk

2wkγak√
2∑

K−M̂
k=1 σaηk

4wk
2
. To further

improve the SS efficiency, the SDF-based FC employs double threshold-based
detection technique. So, if YG lies between the two thresholds λg1 and λg2, the K− M̂

SUs need to perform more sensing rounds until they reach to any final decision “0” or
“1”. So, SDF-based FC shows

DI =


0, YG ≤ λg1

1, YG ≥ λg2

sensingrounds, λg1 < YG < λg2

(4.10)

Let, δ0k = Pr {λ1 < Yk < λ2|H0} and δ1k = Pr {λ1 < Yk < λ2|H1} be the probabilities
that Yk lies between λ1 and λ2 in the absence and presence of the PU, respectively.
Similarly, δg0 = Pr

{
λg1 < YG < λg2|H0

}
and δg1 = Pr

{
λg1 < YG < λg2|H1

}
represent

the probabilities that YG lies between the two global thresholds at SDF-based FC. Then,
the overall detection probability Qd is given by

Qd = 1−
[

K

∑
M̂=0

(
K

M̂

)
M̂

∏
k=1

(
1−Pd,k

)K−M̂

∏
k=1

δ1k

(
1−QSD(K−M̂)

)]
or

Qd = 1−
[

K

∑
M̂=0

(
K

M̂

)
M̂

∏
k=1

(
1−Pd,k

)K−M̂

∏
k=1

δ1kδg1

(
1−QSD(K−M̂)

)]
(4.11)

Similarly, the overall false alarm probability Q f is given by

Q f = 1−
[

K

∑
M̂=0

(
K

M̂

)
M̂

∏
k=1

(
1−δ0k−Pf ,k

)K−M̂

∏
k=1

δ0k

(
1−QFD(K−M̂)

)]
or

Q f = 1−
[

K

∑
M̂=0

(
K

M̂

)
M̂

∏
k=1

(
1−δ0k−Pf ,k

)K−M̂

∏
k=1

δ0kδg0

(
1−QFD(K−M̂)

)]
(4.12)

So, the final test statistic is evaluated from the number of reporting bits from the M̂ out
of the K SUs and from the decision of the SDF-based FC. Hence, the global decision is
obtained by employing the OR logic at the FC. This indicates the presence of the PU if
any one of the SUs gives “1” i.e

GD =


1,

(
DI +

M̂
∑

k=1
Hk

)
≥ 1

0, otherwise

(4.13)

4.3 Problem Formulation

Similar to Chapter 3, EE of the secondary network is given by (3.22). But, the
secondary transmissions are interrupted due to the fake signal transmitted by the
attacker. The presence of PUEA signal acts as an interference to the secondary
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network, hence average system throughput decreases. We choose M SUs out of the K

SUs for data transmission. For the given value of β , there are two possible scenarios
when the SUs intend to transmit their data.

• If the PU is absent, and β=0 or β = c(0 < c≤ 1): Data transmission takes place
when the SUs correctly identify the absence of the PU but the constant presence
of the attacker introduces interference to the SRs.

R1 (τs,Pt) =
τd

Γ
PH0

(
1−Q f

) M

∑
m=1

log2

(
1+

|hsrm|2Ptm

Np +β |harm|2σa2

)
(4.14)

• If the PU is present, and β=0 or β = c(0 < c≤ 1): Data transmission takes place
when the SUs fail to identify the PU on the licensed band. So, system throughput
obtained due to this missed detection Qmd is given by

R2 (τs,Pt) =
τd

Γ
PH1 (Qmd)

M

∑
m=1

log2

(
1+

|hsrm|2Ptm

Np +β |harm|2σa2 +
∣∣hprm

∣∣2σs2

)
(4.15)

where harm is the sub-channel coefficient between the attacker and the mth SR. Due to
presence of both the PU and the attacker, SINR gets reduced in (4.15), hence the system
throughput R(τs,Pt) can be represented as

R(τs,Pt) = R1 (τs,Pt)+R2 (τs,Pt)≈ R1 (τs,Pt) (4.16)

PT (τs,Pt) is different for single and double threshold based system model shown in
Figure 4.1 and Figure 4.2, respectively. For single threshold-based system model,

PT (τs,Pt) = τsMPs + τdP
(
H0
) M

∑
m=1

Ptm (4.17)

For double threshold-based system model,

PT (τs,Pt) = Ps
(
M̂τs +SRτs

(
K− M̂

))
+ τdP

(
H0
) M

∑
m=1

Ptm (4.18)

Since the attacker always follows the PU, the secure EE maximization in the presence
of potential attacker is very crucial. If the SUs have to achieve the minimum data rate
threshold Rth both in the presence and absence of the attacker, then it is obvious that in
the presence of the attacker, the SUs need to transmit with high power. This may induce
interference to the primary network. So, in the next sub-sections, the adverse effects of
the attacker during the data transmission are analyzed and accordingly the constraints
are formulated while designing the optimization problem.
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4.3.1 Total interference constraint

If Ith represents the interference power threshold to the PR, then the transmitted power
assigned to the M SUs in such a manner that

Ith− Itotal

M

∑
m=1
|hsdm|2Ptm ≥ 0 (4.19)

where Itotal is given in (3.10).

4.3.2 Transmission delay constraint

Delay refers to the transmission delay of the SUs which mainly occurs due to the longer
sensing time or incorrect identification of PU. Here, an effective delay De f f is calculated
which measures the excess delay caused by the SUs in the presence of the attacker.
Based on De f f , τs is evaluated to minimize De f f . The transmission delay occurs in the
following cases.

• D1: SUs need to perform SS before their data transmission thereby requires τs
/
Γ

of duration.

• D2 and D3: In the absence of the attacker, delay in data transmission takes place
in two possible scenarios. When the PU is absent but falsely detected to be
present, the corresponding delay is Pr (YG ≥ λg|H0,E0)τd

/
Γ. Similarly, when the

PU is present and correctly detected by the SUs, the corresponding delay is
Pr (YG ≥ λg|H1,E0)τd

/
Γ.

• D4 and D5: In the presence of the attacker, delay in transmission occurs when
the PU is absent but SUs falsely classifies the attacker signal as PU signal and no
data transmission takes place. So, the corresponding delay is
Pr (YG ≥ λg|H0,E1)τd

/
Γ. Similarly, when both the PU and the attacker are

present, and are correctly detected by the SUs; then the corresponding delay is
Pr (YG ≥ λg|H1,E1)τd

/
Γ.

Hence, the effective delay due to the presence of the attacker is given by

De f f (τs) = DP (τs)−DA (τs) (4.20)

where DP (τs) =D1+D2+D3 and DA (τs) =D1+D4+D5 represent the delay occurred
in the absence and presence of the attacker, respectively. The main objective is to choose
τs such that sensing duration is same as if there is no attacker present in the CRN. From
(4.20), it is clear that De f f (τs) is neither a concave nor convex function of τs. Hence,
we analyze each part with respect to τs to find an effective solution (4.20).

Theorem 3. For the given target detection probability Qd , DP (τs) and DA (τs) are the
convex function of τs.
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Proof. Proof of this theorem is given in Appendix E.

So, the purpose is to evaluate sensing time so as to meet

τoptP ≈ τoptA (4.21)

where τoptP =
argmin

τs
DP (τs) and τoptA =

argmin

τs
DA (τs). The detail evaluation

procedure is discussed in Algorithm 4.6.

4.3.3 Throughput balancing power allocation constraint

The system throughput is reduced due to presence of the attacker’s signal. So, the SUs
need to transmit with more power to achieve the minimum Rth in the presence of the
attacker. Hence, we add an extra constraint to the EE maximization problem which
balances between the throughput achieved in the absence and presence of an attacker.
Let RPA (τs,Pt) and RAA

(
τs, P̃t

)
represent the throughput obtained in the presence and

absence of an attacker, respectively. P̃t is the power assigned to the SUs in the absence
of an attacker. If same power is assigned to the SUs under these two conditions, then,
it is obvious that RAA

(
τs, P̃t

)
> RPA (τs,Pt). The SUs need to transmit with more power

to make RAA
(
τs, P̃t

)
≈ RPA (τs,Pt). Hence, we employ an adaptive power assignment

scheme which not only balances RPA (τs,Pt) and RAA
(
τs, P̃t

)
but also controls the

excessive growth of transmission power. Then, the power balance equation is
expressed as

CAm
(
τs, P̃t

)
≈CPm (τs,Pt) (4.22)

where CAm
(
τs, P̃t

)
= log2

(
1+ |hsrm|2P̃tm

Np

)
and CPm (τs,Pt) = log2

(
1+ |hsrm|2Ptm

Np+β |harm|2σa2

)
.

4.4 Proposed Solution Approaches Towards the Secure EE
Maximization

In this Section, we discuss the solution approaches towards the problems arise in the
presence of an attacker discussed in Section 4.3. There are several factors that directly
affect the EE such as the SUs, the sensing time and the transmission power.
Furthermore, these SUs directly influence the detection probability and system
throughput. Thus, we propose an efficient algorithm to evaluate the lower and upper
bound of the number of SUs and also the eligible SUs that balance between the
probability of detection and system throughput under the interference constraint.
Further, we propose the resource allocation algorithms for maximizing EE satisfying
the defined constraints.

Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network 80



4.4 Proposed Solution Approaches Towards the Secure EE Maximization

4.4.1 SUs selection method

Let P̃tmin and Ptmin be the minimum transmission power of each SU in the absence and

presence of the attacker, respectively, where P̃tmin =
(2Rth−1)Np

|hsr|max
2 and

Ptmin =
(2Rth−1)(Np+β |har|min

2
σa

2)
|hsr|max

2 . |hsr|max
2 = max

[
|hsr1|2, |hsr2|2, . . . , |hsrM|2

]
and

|har|min
2 = min

[
|har1|2, |har2|2, . . . , |harM|2

]
. Following the constraint (4.19), if the

CRN consists of only a single SU, then the maximum transmission power is
Pt max = Ith

Itotal |hsd |2
, then the maximum channel capacity and the maximum power

consumption are given by TRmax = log2

(
1+ |hsr|max

2Ptmax

Np+β |har|min
2
σa2

)
and

TPmax = Psτs + τdP
(
H0
)

Ptmax, respectively. However, if we select M SUs, then the
maximum allowed transmission power of each SU is Pt max = Ith

MItotal |hsd |min
2 , where

|hsd|min
2 = min

[
|hsd1|2, |hsd2|2, . . . , |hsdM|2

]
. The minimum required SUs ML is

evaluated so as to maintain a trade-off between the system throughput and EE. The EE
and throughput tradeoff metric is given by

[TR]
l×
[
E f
](1−l)

=
[TR]

[TP]
(1−l)

(4.23)

where l ∈ [0,1]. Let ML SUs participate in data transmission each with transmitting
power Ptmin. We assume that all ML SUs achieve Rth, then

MLRth

[ML]
(1−l)[Psτs + τdP

(
H0
)

Ptmin
](1−l)

>>
TRmax

TPmax
(4.24)

ML >>


[

TRmax
[
Psτs + τdP

(
H0
)

Ptmin
](1−l)

TPmaxRth

] 1
l

 (4.25)

If equal importance is given to the system throughput and EE, then l=0.5. Indeed, the
SUs has straightforwardly affected on the spectrum detection and throughput. Since
more SUs lead to more power consumption; spectral efficiency directly degrades with
the number of SUs. The upper bound of SUs MU is evaluated to find the maximum
number of SUs required to achieve the scenario of without an attacker. Let ML is
calculated taking the equality (4.25), then MU is calculated from

(MU +ML)Rth−MLlog2

(
1+
|hsr|max

2Ptmax

Np

)
∼=Cout (4.26)

Cout is user defined integer variable. In the course of system design Cout can be varied
so as to decide the maximum number of SUs. The purpose of (4.26) is to find the
maximum number of SUs required in the presence of an attacker. We assume that
(MU +ML) SUs, each achieves with minimum throughput threshold Rth in the
presence of the PUE attacker and ML SUs each achieves with the maximum
throughput in the absence of the attacker. Then, MU is the maximum number of SUs
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that balances between the minimum and maximum throughput achieved in the
presence and absence of the attacker, respectively. Since, all the SUs do not transmit
with exactly Ptmin or Ptmax, hence, (4.26) can be reformed as

MU << bC̄th

Rth
c (4.27)

where C̄th =Cout +ML

(
log2

(
1+ |hsr|max

2Ptmax
Np

)
−Rth

)
.

Specifically, the sensing accuracy and EE maximization depend on the locations of the
SUs with respect to the PU, the attacker, the PR, and the SRs. So, a common approach
is proposed which considers the conflicting scenarios of detection performance and
maximum EE. It is obvious that the SUs with high SNR have to be chosen to nullify
the effect of interference from the attacker. Hence, it is preferred to choose the SUs that
are closer to the PU in relative to the attacker. Another important aspect is to maximize
the system throughput with limited interference to the PR. From (4.16) and (4.19), it is
clearly noticed that the SUs closer to the SR in relative to the PR enhance the system
throughput causing minimum interference to the PR. So, a compromising factor bk is
introduced to measure the balancing efficiency E f fk of the kth SU, where

E f fk =
bk

∑
K
k=1 bk

(4.28)

and bk =

 σηk
2

σηk
2+υ

|hask|2

|hpsk|2
+y |hsdk|2
|hsrk|2

. Here, υ and y control the detection performance and

the system throughput, respectively and υ +y=1. The pseudocode for the SUs selection
is described in Algorithm 4.4 .
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Algorithm 4.4 Eligible SUs selection method.
Input:

Decide M.
F = [1 2]
1← during SS
2← during data transmission

Output:
Eligible M SUs.

1: for f = 1 : length(F) do
2: for k = 1 : K do
3: if ( f == 1) then
4: υ > y;
5: else
6: Check the values of υ and y;
7: end if
8: Evaluate bk;
9: end for

10: Evaluate E f fk from (4.28).
11: Arrange K SUs in the descending order of their E f fk and choose first M SUs.
12: end for

But, this algorithm does not consider the value of β in the compromising factor bk,
so, for double threshold-based scheme during the data transmission, we define E f fk as

per (4.28) where bk =

 1

1+β
|hark|2
|hsrk|2

+
|hsdk|2
|hsrk|2

. The pseodocode is provided in Algorithm

4.5. This compromising factor bk is meant for only data transmission.

Algorithm 4.5 Eligible SUs selection method considering the value of β .
Input:

Decide M between ML and MU .
Output:

Eligible M SUs.

1: for k = 1 : K do

2: Evaluate bk =

 1

1+β
|hark|2
|hsrk|2

+
|hsdk|2
|hsrk|2

;

3: end for
4: Evaluate E f fk from (4.28).
5: Arrange K SUs in the descending order of their E f fk and choose first M SUs.
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4.4.2 Resource allocation

The resource here indicates the obtaining of optimal sensing time and the power
allocation to the SUs. The EE maximization problem for the single and double
threshold-based detection schemes is solved by taking different constraints.
Single threshold-based detection

In accordance to the constraints discussed in Section 4.3, EE maximization problem
is formulated as

Maximize

τs, Pt
:

R(τs,Pt)

PT (τs,Pt)
(4.29)

Sub ject to : Ptmax−
M

∑
m=1

Ptm ≥ 0 (4.29 a)

: Ith− Itotal

M

∑
m=1
|hsdm|2Ptm ≥ 0 (4.29 b)

: Cth−
(
R̃
(
τs, P̃t

)
− R̄(τs,Pt)

)
≥ 0 (4.29 c)

: τoptP ≈ τoptA (4.29 d)

: Q f ≤ 0.5 (4.29 e)

: 0≤ τs ≤ Γ (4.29 f)

where Cth is the user defined integer variable. R̃
(
τs, P̃t

)
= ∑

M
m=1CAm

(
τs, P̃t

)
and

R̄(τs,Pt) = ∑
M
m=1CPm (τs,Pt). EE is maximized by jointly optimizing the sensing time

and transmission power. In the optimization problem (4.29), the numerator is concave
and the denominator is an affine function of Pt . The combinatorial nature of the
constraints makes the optimization problem little difficult to solve. Hence, we separate
out the nondependent power constraints (4.29 d), (4.29 e) and (4.29 f) from the
optimization problem. Further, it has already been proved from Appendix B that the
system throughput is a concave function of τs, so there exists a unique value of sensing
time at which throughput is maximum. Hence, an efficient algorithm is proposed to
evaluate optimal sensing time for maximum throughput, minimum delay with lower
value of false alarm probability. The pseudo-code for sensing time evaluation is
described in Algorithm 4.6.

In the practical CR communication environment, Q f ≤ 0.5, hence
(a

b

)2 1
fs
≤ τs. So,

the minimum sensing time is obtained from the equality constraint. This sensing time
ts̄ is used in the further evaluation of the power allocation. The constraint (4.29 c) in
the EE maximization problem (4.29) is neither a concave nor a convex function of Pt .
So, we propose an efficient algorithm which is the combination of fractional
programming based on parametric transformation, dual decomposition and DC
programming for adaptive power allocation. Following the Theorem 2, the NIRA
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algorithm is proposed for joint optimization of τs and Pt .

Algorithm 4.6 Evaluation of sensing time.

1: Select most eligible SUs M from Algorithm 4.4 taking f =2.
2: Randomly generate transmission power Pt satisfying the constraints (4.29 a) and

(4.29 b).
3: τmin1 =

(a
b

)2 1
fs

.

4: Evaluate τoptA =
argmin

τs
DA (τs) by using golden section search method.

5: Evaluate τopt =
argmax

τs
R(τs,Pt) by using golden section search method.

6: Calculate Tmin = min
{

τmin1,τopt ,τoptA
}

.
7: Calculate Tmax = max

{
τmin1,τopt ,τoptA

}
.

8: Take Ts = Tmin : ∆1 : Tmax. . (∆1 is the small incremental factor depending on Tmin
and Tmax.)

9: for t1 = Tmin : ∆1 : Tmax do
10: Calculate DP (t1);
11: end for
12: Find τoptP =

argmin
t1

DP (t1).

13: [A,B] = min
∣∣Ts− τoptP

∣∣.
14: Return ts̄ = Ts (B).

Algorithm 4.7 NIRA algorithm for joint optimization of sensing time and power
allocation.
Input:

Select suitable M SUs using Algorithm 4.4.
Find out ts̄ using Algorithm 4.6.
Dinkelbach parameter ϒ← 0;
Acceptance tolerance value ξ ≤ 10−5;
Current iteration t← 1;

Output:
Optimal sensing time τs

∗ and transmission power Pt
∗.

1: while |ϒ(t)−ϒ(t−1)| ≥ ξ do
2: For the given value of ϒ(t) and ts̄, find power Pt (t) from Algorithm 4.8 .
3: For the given Pt (t), find corresponding sensing time τopt , then find ts̄ from

Algorithm 4.6.
4: t← t +1;
5: ϒ(t)←

{
R(t s̄,Pt)
PT (t s̄,Pt)

}
;

6: end while

At each iteration t in Algorithm 4.7 , Pt (t) is evaluated from the Algorithm 4.8.
The while loop continues until ϒ(t) converges to its optimal ϒ∗. The summary of our
proposed approaches is concisely presented in Figure 4.3 .
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Figure 4.3: Representing the summary of our novel approaches for energy-efficient
resource allocation in single threshold-based FC with the PUE attacker.

Dual decomposition and DC programming based power allocation

The optimization problem (4.29) consists of the constraint (4.29 c), which is neither
convex nor concave w.r.t Pt . So, the optimization problem for Step 2 in Algorithm 4.7
is formulated as

Maximize

Pt
: R(ts̄,Pt)−ϒ(t)PT (ts̄,Pt) (4.30)
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Sub ject to : R̃
(
τs, P̃t

)
− R̄(τs,Pt)≤Cth (4.30 a)

: Itotal

M

∑
m=1
|hsdm|2Ptm ≤ Ith (4.30 b)

After applying Lagrangian duality theorem, the optimization problem (4.30) is
expressed as

L(θ ,ϑ) = R(ts̄,Pt)−ϒ(t)PT (ts̄,Pt)+θ
(
Cth− R̃

(
ts̄, P̃t

)
+ R̄(ts̄,Pt)

)
+ϑ

(
Ith− Itotal

M

∑
m=1
|hsdm|2Ptm

)
(4.31)

where θ and ϑ are the non-negative Lagrangian multipliers. So, the dual problem
(4.31) is formulated as min

θ≥0,ϑ≥0
max

Pt
L(θ ,ϑ). The solution to (4.31) involves two steps.

The first step involves the updations of θ and ϑ for the given Pt by using sub-gradient
method which are expressed as

θi+1 =
[
θi−ψi

(
Cth− R̃

(
ts̄, P̃t

)
+ R̄(ts̄,Pt)

)]+ (4.32)

ϑ j+1 =

[
ϑ j−κ j

(
Ith− Itotal

M

∑
m=1
|hsdm|2Ptm

)]+
(4.33)

where ψi and κ j are the non-negative step sizes for the current iteration values i and j,
respectively, and they are updated as ψi = 1/

i and κ j = 1/
j, respectively. So, θ and ϑ

converge when ψi and κ j are sufficiently small, respectively. The second step involves
the evaluation of Pt for the given values of ψi and κ j. So, (4.31) can be formulated as
maximization of

L
(
θi,ϑ j,Pt

)
= G

(
θi,ϑ j,Pt

)
−H

(
θi,ϑ j,Pt

)
(4.34)

where

G
(
θi,ϑ j,Pt

)
=−θiR̃

(
ts̄, P̃t

)
−ϒ(t)PT (ts̄,Pt)+θiCth−ϑ jItotal

M

∑
m=1
|hsdm|2Ptm (4.35)

and
H
(
θi,ϑ j,Pt

)
=−(θi +Ω) R̄(ts̄,Pt)−ϑ jIth (4.36)

where Ω = τd
Γ

PH0
(
1−Q f

)
. Both R̄(ts̄,Pt) and R̃

(
ts̄, P̃t

)
are the concave functions of Pt

and P̃t , respectively, hence −R̄(ts̄,Pt) and −R̃
(
ts̄, P̃t

)
are the convex functions of Pt and

P̃t , respectively. So, the optimization problem (4.34) is represented by the difference of
two convex functions G

(
θi,ϑ j,Pt

)
and H

(
θi,ϑ j,Pt

)
. The details of DC programming

are given in [145]. In the previous literature, this DC programming was used for power
allocation in [146], [147]. According to the DC programming, the optimization problem
max

Pt
L
(
θi,ϑ j,Pt

)
is solved by the following convex programming [146]

max
Pt

{
G
(
θi,ϑ j,Pt

)
−H

(
θi,ϑ j,Pt (q)

)
−
〈
∇H

(
θi,ϑ j,Pt (q)

)
,Pt−Pt (q)

〉}
(4.37)

where Pt (q) is the power obtained at qth iteration. The Frank-and-Wold (FW) type
procedure is used to generate the sequence of power Pt such that L

(
θi,ϑ j,Pt

)
always
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converges [146]. H
(
θi,ϑ j,Pt

)
shows very gradual convexity w.r.t Pt , hence it is

approximated by its first order gradient such as
H
(
θi,ϑ j,Pt (q)

)
+
〈
∇H

(
θi,ϑ j,Pt (q)

)
,Pt−Pt (q)

〉
for the power Pt (q). Therefore,

H
(
θi,ϑ j,Pt (q+1)

)
≥ H

(
θi,ϑ j,Pt (q)

)
+
〈
∇H

(
θi,ϑ j,Pt (q)

)
,Pt (q+1)−Pt (q)

〉
(4.38)

As the convergence goes on, Pt (q+1) is the optimal solution and Pt (q) is the feasible
solution of the power allocation at qth iteration. Therefore,

G
(
θi,ϑ j,Pt (q+1)

)
−H

(
θi,ϑ j,Pt (q+1)

)
(4.39)

≥
[
G
(
θi,ϑ j,Pt (q+1)

)
−H

(
θi,ϑ j,Pt (q)

)
−
〈
∇H

(
θi,ϑ j,Pt (q)

)
,Pt (q+1)−Pt (q)

〉]
≥ G

(
θi,ϑ j,Pt (q)

)
−H

(
θi,ϑ j,Pt (q)

)
So, the optimal solution at the next iteration q+ 1, Pt (q+1) is always better than the
previous Pt (q). Thus, the convergence of DC programming is proved. The pseudo-code
for the power allocation algorithm is described in Algorithm 4.8.

Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network 88



4.4 Proposed Solution Approaches Towards the Secure EE Maximization

Algorithm 4.8 Power allocation algorithm based on DC programming.
Input:

Dinkelbach parameter ϒ(t) at t th iteration.
ζ ← non-improvement parameter of ϑ .
ς ← non-improvement parameter of θ .
ι ← non-improvement parameter of L

(
θi,ϑ j,Pt

)
.

ζ ,ς , ι ← 10−4

Output:
Return θ ∗, ϑ ∗ and Pt (ϒ(t)).

1: Initialize ϑ0, κ0 ;
2: j← 1;
3: while |ϑ ( j)−ϑ ( j−1)| ≥ ζ do
4: Initialize θ0, ψ0;
5: i← 1;
6: while |θ (i)−θ (i−1)| ≥ ς do
7: Initialize Pt (0), Pt (1). Find L(Pt (0)) and L(Pt (1));
8: q← 1;
9: while

∣∣L(θi,ϑ j,Pt (q)
)
−L

(
θi,ϑ j,Pt (q−1)

)∣∣≥ ι do
10: Find Pt (q) from (4.37) by using gradient method.
11: q← q+1;
12: Calculate L

(
θi,ϑ j,Pt (q)

)
;

13: end while
14: Update θi using (4.32);
15: i← i+1;
16: end while
17: Update ϑ j using (4.33);
18: j← j+1;
19: end while

If we calculate the overall complexity, then, our proposed approach for single
threshold-based detection scheme is mainly based on Algorithm 4.4, Algorithm 4.7
and Algorithm 4.8. In Algorithm 4.6, the sensing times τoptA, τopt are obtained by
employing golden section search method for minimum delay and maximum
throughput, respectively. The computational complexity of the golden section search
method is O

(
log2 |∆τ

φ
|
)

, where ∆τ denotes the difference between the upper and lower
bound of the sensing time and φ represents the non-improvement threshold. The
computational complexity of Algorithm 4.7 and Algorithm 4.8 depends on the
number of iterations required to converge the parameter in each layer. Let NA, NB, NC,
ND and NE are the number of iterations required to converge the convex programming
(4.37), L, θ , ϑ and ϒ respectively, then the computational complexity is roughly given
by O

(
NENDNCNB

(
1/

NA

)
log2

∣∣∣∆τ

φ

∣∣∣).

However the aid of dual decomposition method with the DC programming requires
more number of iterations. Hence, an adaptive method is proposed to maximize EE for

Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network 89



4.4 Proposed Solution Approaches Towards the Secure EE Maximization

double threshold-based detection scheme. It maximizes EE by reducing the total energy
consumption with lesser complexity than NIRA algorithm.
Double threshold-based detection scheme
As per the constraints discussed in Section 4.3, EE maximization problem is formulated
as (transmission delay constraint is not considered)

Maximize

τs, Pt
:

R(τs,Pt)

PT (τs,Pt)
(4.40)

Sub ject to : Ptmax−
M

∑
m=1

Ptm ≥ 0 (4.40 a)

: Ith− Itotal

M

∑
m=1
|hsdm|2Ptm ≥ 0 (4.40 b)

: CPm (τs,Pt)≈CAm
(
τs, P̃t

)
(4.40 c)

: Q f ≤ 0.5 (4.40 d)

: 0≤ τs ≤ Γ (4.40 e)

The constraints in (4.40 a-4.40 e) are the mixture of non-convex integer problem. This
makes the EE maximization problem very difficult to solve. First, we minimize the
search area of τs s.t. it ranges between τs ∈

(
τsmin,

Γ

2

]
. The minimum sensing time τsmin

is calculated as per the following expression

τsmin ≥
1
fs

(
ã
b̃

)2

(4.41)

where ã =
Q−1(Pd,k)σaηk

2
√

2(1+2γak)√
2σaηk

2 and b̃ =
(∆+γakσaηk

2)√
2σaηk

2 . The constraint (4.40 c) is
neither a convex nor a linear function of Pt . So, we propose an adaptive power
assignment scheme based on NLMS algorithm to solve this type of mixed integer
problem. Here, the EE maximization problem is separated out into two parts; (a)
minimizing PT (τs,Pt) under the constraint of interference to the PR (b) maximizing
R(τs,Pt) through the balancing power constraint. So, the objective problem (4.40) is
transformed to the minimization of total power consumption PT (τs,Pt) satisfying the
constraints (4.40 b) and (4.40 c) which is represented as

Minimize

Pt
: PT (τs,Pt) (4.42)

Sub ject to : Ptm
( j){

ϒ̂m
}
≥ 2−Cm( j−1) (4.42 a)

: Itotal

M

∑
m=1
|hsdm|2Ptm

( j) ≤ Ith (4.42 b)

Here, ϒ̂m =

{
1

P̃tm

(
Np

Np+β |harm|2σa2

)}
and
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Cm
( j−1) = log2

(
|hsrm|2P̃tm

Np

)
− log2

(
|hsrm|2Ptm

( j−1)

Np+β |harm|2σa2

)
. These are obtained by assuming

log2 (1+ x) ∼= log2 (x). The inequality nonlinear problems (4.42-4.42 b) are
transferred to equivalent linear problem as

M

∑
m=1

Ptm
( j)+ZU =

M

∑
m=1

Ptm
( j−1) (4.43)

Ptm
( j){

ϒ̂k
}
+ZH = 2−Cm( j−1) (4.44)

M

∑
m=1
|hsdm|2Ptm

( j)+ZL =
Ith

Itotal
(4.45)

Here, ZU , ZH and ZL are the negative, positive and negative random numbers,
respectively. The values are obtained from ZU ∼ ℵ(0,0.001), ZH ∼ ℵ(0,0.01) and
ZL ∼ ℵ(0,0.01). If Pt is a sequence of dimension [1×M], thereby we consider
ω (i) =

[
Pt1

(i) Pt2
(i) Pt3

(i)......PtM
(i)
]
. If we represent (4.43-4.45) in their equivalent

sequences, then

W (i) =



Q, mod (M+2)

Q̄1, mod (M+2)

Q̄2, mod (M+2)

.

.

Q̄M, mod (M+2)

Q̃, mod (M+2)

(4.46)

where Q and Q̃ are matrices of dimension [M×M], and are give by

Q =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 (4.47)

and

Q̃ =


|hsd1|2 0 · · · 0

0 |hsd2|2 · · · 0
...

... . . . ...
0 0 · · · |hsdM|2

 (4.48)

Q̄1 =
[
ϒ̂1 0 0 . . .0

]
, Q̄2 =

[
0 ϒ̂2 0 0...0

]
, and so on, each of dimension [1×M]. At ith
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iteration, Z sequence is defined as

Z (i) =



ZU ,

ZH1,

ZH2,

.

.

ZHM,

ZL,

(4.49)

If S (i) sequence is given by

S (i) =



M
∑

m=1
Ptm

( j−1),

2−C1( j−1),

2−C2( j−1),

.

.

2−CM( j−1),

Ith
Itotal

,

(4.50)

Then, following (4.43-4.50), we have

S (i) =
M

∑
m=1

ωm
( j) (i)gm(i)

T +Z (i) (4.51)

gm (i) is the corresponding mth row of W (i). If the proposed method is solved by using
the NLMS algorithm, then the desired output of the system is given by [148].

d (i) = S (i)−
M

∑
m=1

ωm
( j) (i−1) v̂m(i)

T (4.52)

V (i) is the random matrix of same size of W (i) and its generation is similar to the
mean and variance of ZU , ZH and ZL. If v̂k (i) is the mth vector of the matrix V̂ (i) =

W (i)−V (i), then the error is given by

e(i) = d (i)−
M

∑
m=1

ωm
( j) (i−1)vm(i)

T (4.53)

where vm is the corresponding mth vector of matrix V (i). Here, ω( j) (i) is the power
allocation matrix, and is evaluated from

ωm
( j) (i)← ωm

( j) (i−1)+
µ̄

‖vm‖2 vm (i)e(i) (4.54)

where µ̄ is the step size and its ranges between 0 < µ̄ < 2 for NLMS algorithm. The
steps describing our proposed NARA algorithm are given below.
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Algorithm 4.9 NARA algorithm.
Input:

Find suitable M and eligible SUs using Algorithm 4.5.
Decide τs in between τs ∈

(
τsmin,

Γ

2

]
.

ξ ← minimum tolerence threshold.
Randomly generate Pt satisfying the constraints (4.40 a) and (4.40 b) .

Output:
Return optimal EE and optimal power P∗t = ω j.

1: j← 1;
2: while |PT ( j)−PT ( j−1)| ≥ ξ do
3: ω j← ω( j−1);
4: i← 1;

5: A1 (i)←
M
∑

m=1
ωm

( j);

6: B1 (i)← Itotal
M
∑

m=1
|hsdm|2ωm

( j);

7: Cm (i)← log2

(
|hsrm|2P̃tm

Np

)
− log2

(
|hsrm|2ωm

( j)

Np+β |harm|2σa2

)
;

8: while (A1 (i)> A1 (i−1))&&(B1 (i)> Ith)&&
((

2−Cm(i) < 2−Cm(i−1)
)
∀m
)

do
9: d (i)← S (i)−

M
∑

m=1
ωm

( j) (i−1) v̂m(i)
T ;

10: e(i)← d (i)−
M
∑

m=1
ωm

( j) (i−1)vm(i)
T ;

11: for m = 1 : M do
12: ωm

( j) (i)← ωm
( j) (i−1)+ µ̄

‖vm‖2 vm (i)e(i);
13: end for;
14: i← i+1;
15: Calculate A1 (i), B1 (i) and Cm (i)∀m;
16: end while
17: j← j+1;
18: ω j← ω j (i);

19: PT
( j)← Ps

(
M̂τs +SRτs

(
K− M̂

))
+P

(
H0
) M

∑
m=1

ωm
( j);

20: end while
21: EE∗← R( j)(τs,ω

j)
PT

( j)(τs,ω j)
;

If we analyze the computational complexity of our proposed algorithm, let NA and
NB be the maximum number of iterations required for the inner while loop and the
outer while loop of the NARA algorithm, respectively. Then, the overall complexity is
O(NANB).
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4.5 Simulation Results and Discussion

We consider the CRN consisting of K=20 SUs which are distributed around the
centrally located PU in a circular area of radius 1000m. The PR and the attacker are
present within the circular radius of 200m and 300m, respectively. The SRs are
distributed randomly around the PU within the radius 1000m to 1500m. The system
model given in Figure 4.1 and Figure 4.2 are used for the analysis of single and double
threshold-based SDF CSS, respectively. To show the performances of the proposed
approaches efficiently, separate algorithms are applied for single and double
threshold-based methods. Algorithm 4.4, 4.6, 4.7 and 4.8 are used for single
threshold-based SDF CSS model but by not employing (4.25) and (4.27) for deciding
the value of M SUs. Similarly, Algorithm 4.5 and 4.9 are used for double
threshold-based SDF model in which the number of SUs M is chosen from (4.25) and
(4.27). For double threshold-based scheme we assume that
δ0 = δ1 = δg0 = δg1 = δ .The common simulation parameters are listed in Table 4.1.

Table 4.1: Simulation Parameters in the presence of an attacker.

Simulation Parameters Value
Np -100 dBm
Ps -20 dBm
α 3
Γ 0.01sec
τr 5µs
Q̄d 0.9
γm∀ ∈M -20dB
fs 6MHz
σs

2 1

Figure 4.4 illustrates the variation of the probability of detection over different SNR
values considering the system model Figure 4.1. The benefits of choosing suitable
SUs using Algorithm 4.4 is clearly observed from this figure. We set M=8, υ=0.9
and y=0.1. In the absence of the attacker, M SUs present closer to the PU are chosen
following step-9 of Algorithm 3.1 . Further, it is clearly observed that selected SUs
show almost similar performance in the presence and absence of the attacker but provide
30% improvement in detection probability as compared to randomly selected SUs in the
presence of an attacker at SNR=-15 dB. The detection performance is reduced by 22%
in the presence of an attacker compared to in the absence of an attacker by selecting
random SUs. So, the SUs present closer to the PU relative to the attacker perform
better than the randomly selected SUs. β value is set 0.99. Similarly, Figure 4.5 shows
the performance comparison of the schemes; Scheme-I, Scheme-II and Scheme-III at
different SNR conditions. In Scheme-I, the CSS framework in Figure 4.2 consists of
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a double threshold-based SDF FC. In Scheme-II, the CSS framework in Figure 4.2
consisting of a single threshold-based SDF FC [144]. In Scheme-III, each SU consists
of a double threshold-based ED and the binary decisions of all K SUs converge at the
FC using OR logic. It is observed that probability of detection increases with employing
double threshold-based FC in Figure 4.2. So, for the given value of Pf and δ=0.05 at
SNR=-23 dB, Scheme-I offers improvement in Qd by 3 times and 6 times as compared
to Scheme-II and Scheme-III, respectively.This shows that any information lost due to
∆g0 or ∆g0 can be avoided. Further, with increase in δ from 0.05 to 0.1, Qd increases
by 22% in Scheme-I at -23 dB SNR. The results are verified for Pf =0.1 and 0.001. It is
reasonable that Qd increase with increase in Pf .
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Figure 4.4: Effect of PUE attacker on the probability of detection.
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Figure 4.5: Probability of detection vs SNR for Figure 4.2.
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Figure 4.6 shows the variation of sensing time over different values of SNR. The
sensing times are ts̄ , τopt and τoptA from Algorithm 4.6. It is observed that our
proposed sensing time ts̄ maintains a trade-off between minimum transmission delay
and maximum throughput. But at high SNR conditions, these three sensing times
coincide with each other. Furthermore, at low SNR conditions the sensing time is
usually more leaving a very short period of data transmission. Hence,it can also be one
of the reasons that system throughput is less at low SNR. We set M=8, Ith=-70 dBm,
Rth=2 bits/s/Hz, β=0.99 and Cth=6 which are used for the analysis of Figures
(4.6-4.11) based on single threshold-based FC.
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Figure 4.6: Variation of sensing times over different SNR values.

Figure 4.7 illustrates the convergence of maximum EE for different values of υ and
y. These different values signify the dependance of EE on the channel gains between
the PU and the SUs, between the SUs and the SRs, between the attacker and the SRs
and also between the SUs and the PR. So, we evaluate EE for different values of υ and
y to find the suitable value at which EE is maximum. It is found that EE with υ=0.9
and y=0.1 exhibits better result than the other combinations and is used in the further
evaluation of simulation results. Further, the maximum EE is compared with the other
existing scheme (Scheme-I) [142] in which power allocation was made on the basis of
maximizing the system throughput without considering the power balancing constraint
(4.29 c). It is obvious that data rate increases at the expense of power consumption,
hence Scheme-I shows least EE for the same given parameters.

The benefit of selecting suitable SUs over randomly selected SUs for two different
values of β is clearly observed in Figure 4.8. Further, it is observed that throughput is
higher for the lower probability of attacker’ presence. As β increases from 0.7 to 0.99,
throughput is reduced by 6% at SNR=-11 dB. This is because the attacker’s
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interference power decreases the SINR of the secondary transmission. It is also
verified that throughput can be improved approximately by more than 2 times by
employing Algorithm 4.4 for selecting suitable SUs.
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Figure 4.7: Convergence analysis of EE for different values of υ and y.
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Figure 4.8: Validation of Algorithm 4.4 by showing R(τs,Pt) vs SNR.

The impact of Ith on EE and total power consumption for SNR=-20 dB and -10 dB is
shown in Figure 4.9. It is obvious that increase in Ith increases the maximum allowable
transmission power from the SUs. Hence, EE decreases but PT increases. Figure 4.10
shows the variation of EE and throughput over different values of Rth for Cth=6 and 10.
It is reasonable that EE decreases and throughput increases with increase in Rth, but
here both of these parameters show very gradual changes. So, when Rth increases from
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0.3 to 1.1 bits/s/Hz for Cth=10, EE is reduced by 4% but throughput remain unchanged.
Further, large value of Cth helps in reducing the transmission power from SUs, thereby
increases EE but throughput decreases.Comparing Cth at 10 and 6 for Rth=1.1 bits/s/Hz,
the relative differences between EE values and throughputs are approximately 5% and
29%, respectively.
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Figure 4.9: Impact of Ith on EE (τs,Pt) and PT (τs,Pt).
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Figure 4.10: Impact of Rth on EE (τs,Pt) and R(τs,Pt) for Cth=6 and 10.

The variation of R(τs,Pt) and PT (τs,Pt) over different values of Q̄d considering the
presence and absence of the attacker is analyzed in Figure 4.11. Both, system
throughput and power consumption behave same as Figure 3.11. But, we observe that
power consumption increases but the system throughput decreases in the presence of
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the attacker. For Q̄d=0.9, the presence of an attacker reduces the system throughput by
76% but increases the power consumption by 15%. Hence, the attacker’s interference
power greatly affects the secondary network by increasing their power consumption.
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Figure 4.11: Variation of R(τs,Pt) and PT (τs,Pt) w.r.t Q̄d .

While analyzing the double threshold-based detection scheme, we use (4.25) and
(4.27) for selecting the suitable number of SUs. The eligible SUs for data transmission
is selected by using Algorithm 4.5. The sensing time τs is calculated by using (4.41)
and the power allocation to the SUs is obtained by the proposed NARA algorithm. For
the given values of target detection probability and δ , Q f is calculated.

Figure 4.12 illustrates the lower and upper bound of the number of SUs for different
values of Ith, Rth and Cout . It is observed that MU decreases with increase in Rth. This
is due to the fact that when Rth increases, less SUs is required to achieve the maximum
throughput as per (4.27). Further, MU increases with increase in Ith and Cout . As Ith
increases, the maximum allowed transmission power Ptmax increases, therefore as per
(4.27) more SUs are required to achieve the given Cout . Similarly, MU increases with
Cout . As Ith rises from -71 dBm to -59 dBm, MU increases from 11 to 13. Similarly, MU

reduces from 34 to 13 when Rth increases from 0.7 to 1.7. The increase in Cout from 1.7
to 3.8 increases MU by 1 user i.e 11 to 12. For this figure, we set SNR=-20 dB, δ=0.01
and target detection probability=0.9.

Figure 4.13 illustrates the performance comparison of our proposed scheme with the
DC programming. For DC programming analysis, we set Cth=6 and M=8. For NARA
algorithm we set SNR=-20 dB, δ=0.01, target detection probability is 0.9, Cout=6, Rth=2
bits/s/Hz, Ith=-70 dBm and M=8. Further, this algorithm is evaluated for µ̄=0.1, 0.5 and
1. It is observed that NARA algorithm provides a significant improvement in EE even
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in the presence of an attacker and obviously with lesser complexity. After convergence,
it provides improvement approximately by 9 times at µ̄=0.1 when compared to DC
programming method. µ̄=0.1 value will be used for further analysis.

−75 −70 −65 −60 −55
0

10

20

Ith in dBm

M
U
an

d
M

L
 

 
MU

ML

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

50

100

Rth (bits/s/Hz)

M
U
an

d
M

L

 

 
MU

ML

1 2 3 4 5 6 7 8 9 10
0

10

20

Cout

M
U
a
n
d
M

L

 

 
MU

ML

Figure 4.12: Variation of ML and MU against different values of Ith, Rth and Cout .
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Figure 4.13: Convergence performance of NARA algorithm for different values of µ̄ .

Figure 4.14 illustrates the benefit of employing Algorithm 4.5 for selecting suitable
SUs for data transmission. Selected SUs provide better performance than the randomly
chosen SUs. Further, system throughput is also analyzed for different values of δ . For
δ=0.01 and SNR=-17 dB, we can have the improvement in throughput by 8% with the
inclusion of suitable SUs.It is obvious that as δ increases Q f decreases. So,

(
1−Q f

)
increases which improves R(τs,Pt). It can be concluded that system throughput can be
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maximized by employing double threshold-based scheme rather than single threshold-
based scheme. The simulation parameters are same as Figure 4.13.
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Figure 4.14: Variation of R(τs,Pt) against the SNR for different values of δ .

Figure 4.15 shows the effect of Ith on EE, system throughput and the total power
consumption for Cout=2 and Cout=6. As discussed before, EE decreases, throughput
and total power consumption increase with increase in Ith. As Ith decreases, EE shows
better performance at Cout=2 than Cout=6 and is increased by 10% for Ith=-71 dBm. But
Cout shows very least effect on the system throughput and power consumption. For this
figure we set M=8 and other simulation parameters are same as Figure 4.13.

Figure 4.16 illustrates the characteristics of EE and system throughput towards the
increased value of Rth for Ith=-70 dBm and -60 dBm. Both EE (τs,Pt)and R(τs,Pt) are
analyzed taking M=8 and M = MU . In different from the discussion for Figure 3.10,
where throughput increases with increase in Rth, Figure 4.16 shows decrease in R(τs,Pt)

after certain value of Rth. This is because the maximum number users MU is dependent
on Ith and Rth at the same time, which variations bring changes to the characteristics of
EE and system throughput.

Figure 4.17 depicts the effect of target detection probability on the total power
consumption R(τs,Pt) and PT (τs,Pt) for δ=0.01 and 0.05. It is obvious that with
increase in detection probability false alarm increases, which decreases both power
consumption and system throughput. So, system throughput and total power are the
decreasing functions of detection probability. Further, it is also observed that when δ

reduces from 0.05 to 0.01, both system throughput and power consumption are
reduced by 1.5% and 1.4%, respectively when target detection probability is set at 0.9.
The simulation parameters are same as Figure 4.13.
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Figure 4.15: Effect of Ith on EE (τs,Pt), R(τs,Pt) and PT (τs,Pt).
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Figure 4.16: Effect of Rth on EE (τs,Pt) and R(τs,Pt) taking M=8 and M = MU .
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Figure 4.17: Effect of target detection probability on R(τs,Pt) and PT (τs,Pt) for δ=0.01
and 0.05.

4.6 Summary

This chapter proposed the energy-efficient resource allocation technique in the CRN
considering the presence of PUE attacker for both single and double threshold-based
detection schemes. The interference, transmission delay and throughput balancing
power allocation were considered as the constraints. The solution approach towards
the EE maximization problem was achieved by optimizing the sensing time and power
allocation with suitable SUs selection. For the single threshold-based detection
technique, the EE maximization problem with non-convex constraints was solved by
combining parametric transformation with the dual decomposition and DC
programming method. As it was computationally complex requiring more iterations,
an adaptive scheme based on NLMS algorithm was proposed which performed better
than the DC programming method with lesser complexity. Further, with suitable
algorithms eligible SUs were selected. It was observed that there was a significant
enhancement in system throughput by employing both the proposed algorithms
(Algorithm 4.4 and Algorithm 4.5) for data transmission purpose. The performances
of all the algorithms were analyzed over different network parameters. It is concluded
that NARA algorithm performed better than the NIRA algorithm with considerably
lesser complexity and higher EE. In this chapter, it was assumed that the SUs are fixed,
so the channel gains and the assigned power remain fixed for the entire data
transmission duration. But in vehicular network, the constant power allocation to the
moving SUs will not be valid due to the continuous change in distances of the VSUs
from the PU, PR and the SRs with the vehicular motion. So, there is necessity of
adaptive power allocation algorithms with time-varying channel gains.
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Chapter 5

Proposed Approaches for Energy-Efficient Resource
Allocation in the Cognitive Radio Vehicular Ad Hoc Network
(without and with PUEA)

This chapter presents our novel proposed approaches for power allocation to the VSUs
for maximizing EE in the SDF-based cooperative CR-VANET considering the absence
and presence of PUEA. The highlights of the chapter are

• A new SDF-based cooperative CR-VANET is designed for a typical vehicular
network scenario.

• The probability of detection and false alarm are derived considering the spatial
correlation between the local decisions of the VSUs.

• Adaptive power allocation algorithms are proposed to solve the EE maximization
problem associated with the non-convex and time-varying constraints.
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5.1 Introduction

5.1 Introduction

WITH the substantial rise in the number of moving vehicles on the road, the
demand for employing new applications and services in the vehicular wireless

communication has increased. Specifically, these applications are meant for the route
selection, collision avoidance, road safety, data collection, vehicle-to-vehicle (V2V),
infrastructure-to-vehicle (I2V), vehicle-to-infrastructure (V2I) communication,
etc [37,149]. Hence, VANET is introduced as an emerging technology to support these
types of applications. As far as only the road safety is concerned, IEEE 1609
developed IEEE 802.11p standard and assigned 5.9 GHz band to support short-range
communication in the time-varying vehicular environment. However, significant rise
in the use of vehicular devices leads to spectrum congestion problem in this band
resulting degradation of the vehicular communication efficiency. On the otherhand,
FCC identified that nearly 15% to 85% of the licensed band is unutilized in temporal
and spatial domain. Therefore, spectrum congestion problem in the vehicular
communication can be solved partially by deploying VANET in TV licensed band.
This enables the application of CR technology in VANET to exploit the unutilized
licensed spectrum in an opportunistic manner for vehicular communications. Thus, the
available bandwidth can be virtually broadened to achieve the QoS requirement for
VANET without adding more spectral resources to the network. Due to the traffic
intensity of the PUs and the mobility of the SUs, it is a challenging issue to find the
under-utilized spectrum band, and to access that band without affecting the PUs. In
VANET, data communication may occur either among the vehicles or between the
vehicles and nearby APs. So, the communication is classified based on three such
types of scenarios; V2I [150, 151], V2V [152, 153], and I2V [154] communications.

5.1.1 Related works

In the CR-VANET, the channel availability to the SUs dynamically varies with time
and speed of the SUs. So, to enhance the detection performance, a variety of spectrum
sensing techniques were proposed in the CR-VANET. In [155], the authors evaluated
the miss detection probability considering the velocity of the SU, sensing range of the
SU, and the protecting range of the PUs. The TV/WiMAX network users were
considered as the PUs which were deployed on the roadside. Xu et al. used maximum
likelihood ratio (MLR) detection scheme for local wideband SS in OFDM-based

Part of the contributions in this chapter are published in:
Deepa Das and Susmita Das, "An intelligent Approach for Resource Allocation in the Cognitive Radio
Vehicular Ad Hoc Network," Transactions on Emerging Telecommunications Technologies, Wiley, 2017.
Deepa Das and Susmita Das, "An Adaptive Resource Allocation Scheme for Cognitive Radio Vehicular
Ad Hoc Network in the Presence of Primary User Emulation Attack," IET Networks, 2016.
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CR-VANET. The global decision was made using the OR fusion rule with square-law
selection (SLS) scheme [156]. However, this method did not consider the effect of the
velocities of the SUs on the detection performance. A weighted CSS scheme in
CR-VANET was proposed in [157], where the detection performance was evaluated
considering the temporal and spatial diversity of the SUs and different weight
coefficients were assigned to the different SUs to improve the detection probability.
Also, the system performance was evaluated in terms of throughput and transmission
delay. A CSS scheme using symmetry property of cyclic autocorrelation function
(SP-CAF) method for each vehicle was proposed to detect the available channels in
ISM band in [158]. The opportunistic spectrum access in the CR-VANET was
formulated by using game theory, where the availability of the licensed band to the
vehicles was based on the spatial and temporal behaviors of the primary
transmitter [159]. Qian et al. used the most popular energy detection based SS for the
evaluation of the miss detection probability under correlated Rayleigh fading sensing
channel and binary symmetric reporting channel in [160].

Green CR has been introduced as an effective approach to meet the demands of
high data rate traffic utilizing the limited energy resources. Further, in CR enhanced
VANET, the CR nodes in vehicles being either electric-powered or powered by other
sources, energy consumption minimization is one of the major challenges. Energy
expenditure increases with the data rate. Since, the transmitted power affects both the
system throughput and energy consumption, an adaptive power allocation scheme need
to be designed to improve both spectral efficiency and EE. However, EE is an
important aspect in battery-powered wireless terminals. Adapting energy harvesting
techniques in CR transmitter not only prolongs life time of battery-powered terminals
but also obviates the need of periodical battery replacement. An energy-efficient
CR-VANET was introduced for the V2I uplink scenario in [150] . The overall energy
consumption was minimized by jointly optimizing the sensing time and power
allocation satisfying the minimum required throughput and interference power
constraint to the PU. In [154], the throughput in the I2V scenario was maximized by
selecting the route for both spectrum overlay and spectrum underlay model. The
transmission power of the static vehicular base station was evaluated based on its
distance from the VSUs and from the TV base station. The power allocation was also
introduced for V2I scenario in [151] and for the I2V scenario in [161] in vehicular
communications. Most of the existing works in the literature derived the system
performance either in terms of detection probability or in terms of the system
throughput. Even, those papers have not considered the presence of any malicious
attack in the CR-VANET.

Though several resource allocation schemes are addressed in the existing literature
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for the CRN, more exhaustive studies are required for designing the energy-efficient
CR-VANETs. Hence, this chapter focuses on obtaining the interference-aware
resource allocation in the CR-VANET model for V2I scenario in the spatial correlation
environment both in the absence and presence of the PUE attacker.

5.1.2 Contributions and organization

The main contributions of this chapter are described as follows.

• Firstly, a new SDF-based CSS CR-VANET model is designed for a typical
vehicular network scenario.

• Performance metrics are evaluated in the presence and absence of the PUEA
considering the spatial correlation among the local decisions of the VSUs.

• The EE maximization problem is formulated under the constraints of total
transmission power, interference to the PR and target detection probability.

• In the presence of PUEA, a power controlling constraint is added to control the
transmitting power from the VSUs.

• In the absence of PUEA, the NLMS algorithm with the parametric transformation
method is used to obtain the power allocation to the VSUs. In the presence of
PUEA, the GA with the parametric transformation method is used to obtain the
power allocation to the VSUs. The complexities of the proposed algorithms are
also discussed.

• The detail simulation results based study are provided and compared with the
existing scheme. The impact of different network parameters on the proposed
algorithms is studied.

The chapter is organized as follows. Section 5.2 presents the CR-VANET system model
and the detection performance is analyzed. The EE maximization problem formulation
is discussed in Section 5.3. Our proposed solution approach is provided in Section 5.4.
Simulation results are discussed in Section 5.5, followed by the conclusion in Section
5.6.

5.2 CR-VANET System Model

CR-VANET system model showing the distribution of the PU and the VSUs is given in
Figure 5.1. The VSUs jointly perform SS on the entire licensed band but transmit their
data on their respective sub-bands to the nearest SR deployed on the road side. The
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sub-bands are assumed to be orthogonal to each other to avoid interference. We assume
that the location of the PU and the SR are known to the VSUs. The PU is fixed, and let
it be at the coordinate [0,0]. The VSUs are moving along the road. Let the coordinate
of the mth VSU at τth instant be [Xmτ ,Ymτ ]. The transmission range/protective range of
the PU is denoted by DR. Any vehicles fall inside the DR are not allowed to transmit
their data. The sensing range of the PU is denoted by DS. ST is the shortest distance
between the PU and the edge of the road segment. It is obvious that DS > DR. The PUE
attacker always tries to falsify the SUs, and prevents the SUs from transmitting their
data. So, attacker is present in the sensing region on the road side. The PR is present in
the protective region of the PU on the road side.

Figure 5.1: CR-VANET system model showing distribution of the CR users.

Let a1 and a2 be the average rates of arrival of the vehicles or the traffic flows in
vehicles/sec into the sensing region and protective region, respectively. If the speed of
the vehicle V is uniformly distributed between the minimum and maximum velocity
Vmin and Vmax, respectively, then the PDF of V is given by

PV =
1

Vmax−Vmin
(5.1)

Therefore, the expected velocity E [V ] is computed as
(

Vmax+Vmin
2

)
. Then the average

vehicle densities vd1 and vd2 for the given a1 and a2 are given by vd1 =
a1

E[V ] and vd2 =
a2

E[V ] , respectively. If Area1 denotes the area of sensing region, then the number of VSUs
expected in zone 2 can be computed as

M1 =

⌈
vd1

dS
Area1

⌉
(5.2)

where dS is the safety distance between the vehicles to avoid collision. Similarly, the
number of vehicles expected only in the protective region is

M2 =

⌈
vd2

dS
Area2

⌉
(5.3)

where Area2 represents the area of zone 1. Therefore, total number of VSUs is M =
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M1 +M2. Then, the binary hypotheses for the presence and absence of the attacker is
same as (2.11), respectively. In SDF-based sensing scheme, the energy value of each SU
is linearly combined with the respective weight coefficient to give the global decision
as in YG. Here, the spatial correlation between the VSUs are represented in terms of
weight coefficient. The spatial difference ρmm1 between the mth and m1th vehicle is
ρmm1 = e−εdmm1 . Thus, the weight coefficient is calculated as

wmm1 =
ρmm1

∑
M
m1=1 ρmm1

(5.4)

If the PU uses a BPSK signal, and the noise is real, then the global Qd and global Q f

are evaluated taking the spatial correlation based weight coefficient which are given by

Qd =
1
M

M

∑
m=1

Q

 λg−∑
M
m1=1 wmm1 (1+ γm)σηm

2√
2∑

M
m1=1 wmm1

2 (1+2γm)σηm4

√
N

 (5.5)

and

Q f =
1
M

M

∑
m=1

Q

λg−∑
M
m1=1 wmm1σηm

2√
2∑

M
m1=1 wmm1

2σηm4

√
N

 (5.6)

In the presence of the attacker, the probability of detection Qd and the false alarm
probability Q f are obtained by replacing σηm

2 by
(

σηm
2 +β |hasm|2σa

2
)

and γm by
γam as in (4.2). The distance between the PU and the mth SU at time τs is given by

dm (τs) =
√

Xmτs
2 +Ymτs

2. If the initial velocity of the mth vehicle is VIm, then the
distance travelled by this vehicle in time τs is computed as (assuming that all the
vehicles move in a straight path with moving angle zero)

Xmτs =VImτs +
1
2

νamτs
2 (5.7)

where am is acceleration of the mth vehicle, and ν is uniformly distributed random
number ν ∈ [−1,1], provides acceleration or deceleration to the mth vehicle.

5.3 EE Maximization Problem Formulation

The VSUs present in zone 3 can transmit their data with peak power. They have no
effect on the PU. Hence, the system performance is analyzed considering the vehicles
present inside the sensing region. Each SU transmits its data as long as dm > DR. The
location of each vehicle is recorded in the global positioning system (GPS) installed in
it. It is obvious that τd > τs. So, the vehicles may not move with a same velocity during
τd . Hence, we divide the τd into K slots, and at each kth instant, the velocity of the
vehicle is assumed to be varied between Vmax and Vmin. Accordingly, the distances of
the mth vehicle from the SR, PU and the PR are calculated.
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In the absence of the attacker, the system throughput R
(
P̃t
)

is approximately given by

R
(
P̃t
)
=

PH0

Γ

(
1−Q f

)
∑

k∈Γt

M1

∑
m=1

log2

(
1+

P̃tm|hsrm (k)|2
Np

)
(5.8)

Here, Q f is the false alarm in the absence of the attacker. Similarly, in the presence of
the attacker, (5.8) is modified as

RA (Pt) =
PH0

Γ

(
1−Q f

)
∑

k∈Γt

M1

∑
m=1

log2

(
1+

Ptm|hsrm (k)|2

Np +β |har|2σa2

)
(5.9)

Here, Q f is the false alarm in the presence of the attacker.
Γt

∆
=
{

τs + τr + ∆̄,τs + τr +2∆̄, .....,τs + τr +K∆̄
}

and ∆̄ = τd
/
K. hsrm (k) is the

distance dependent Rayleigh channel distributed sub-channel coefficient between the
mth SU and the SR at kth instant. har is the sub-channel coefficient between the
attacker and the SR. Here, we denote P̃t and Pt as the transmitted power allocated to
the SUs in the absence and presence of the attacker, respectively.

More specifically, energy consumption occurs during SS and data transmission.
Data transmission takes place when the VSUs correctly identify the vacant band and
when the occupied band is identified to be vacant. Further, we assume that the
reporting channels between the VSUs and the FC are perfect, so, τr is taken very very
less than Γ and τd . Therefore, energy consumption during the reporting is very very
less, and hence it is neglected. The VSUs present in zone 1 and zone 2 that is M VSUs
perform SS but the VSUs present only in zone 2 M1 participate in data transmission.
Hence, the average energy consumption can be evaluated without and with the attacker
as

Ec
(
P̃t
)
= PsMτs + τdP

(
H0
) M1

∑
m=1

P̃tm (5.10)

and

EcA (Pt) = PsMτs + τdP
(
H0
) M1

∑
m=1

Ptm, (5.11)

respectively. The propagation channel coefficient between any terminals is defined as
h ∼ ℵ(0,d−α), d is the distance between the corresponding terminals. The overall
system throughputs (5.8) and (5.9) consider the time-varying channel gains between
the VSUs and the SR. The VSUs start transmitting their data just after τs and continue
till the end of the frame period Γ (neglecting τr as τr << τs, so, distance moved by
the VSUs during τr can be neglected). Hence, the average system throughputs are
calculated by taking the distant dependent channel gains at the strating and ending time
of the data transmission. If, we consider the average system throughput in the absence
of the attacker, then R

(
P̃t
)

is rewritten as

RV
(
P̃t
)
=

τd

Γ
PH0

(
1−Q f

) M1

∑
m=1

log2

(
1+

P̃tm|hsrm|av
2

Np

)
(5.12)
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Similarly, average system throughput in the presence of the attacker is modified as

RVA (Pt) =
τd

Γ
PH0

(
1−Q f

) M1

∑
m=1

log2

(
1+

Ptm|hsrm|av
2

Np +β |har|2σa2

)
(5.13)

where |hsrm|2av =
|hsrm(τs)|2+|hsrm(Γ)|2

2 . Here, the EE is defined as the ratio of the average
system throughput to the average power consumption. In the absence and presence of
the attacker, the EE is denoted by EE

(
P̃t
)

and EEA (Pt), respectively which are given
as follows

EE
(
P̃t
)
=

RV
(
P̃t
)

Ec
(
P̃t
) (5.14)

and
EEA (Pt) =

RVA (Pt)

EcA (Pt)
(5.15)

So, the optimization problem without PUEA is formulated as

Maximize

P̃t
:

RV
(
P̃t
)

Ec
(
P̃t
) (5.16)

Sub ject to :
M1

∑
m=1

P̃tm ≤ Ptmax (5.16 a)

: Itotal

M1

∑
m=1
|hsdm (k)|2P̃tm ≤ Ith (5.16 b)

: Pd ≥ P̄d (5.16 c)

: 0≤ τs ≤ Γ (5.16 d)

where P̄d is the local target detection probability. hsdm (k) is the sub-channel coefficient
between the mth SU and the PR at kth instant. If we compare the scenario of attacker’s
presence and absence with the given Rth, in the presence of the attacker, the VSUs
need to transmit with more power to achieve the minimum throughput. Hence, a
constraint is added to the EE maximization problem. So, our objective problem under
the interference and power constraints considering the PUE attacker is formulated as

Maximize

Pt
:

RVA (Pt)

EcA (Pt)
(5.17)

Sub ject to :
M1

∑
m=1

Ptm ≤ Ptmax (5.17 a)

: Itotal

M1

∑
m=1
|hsdm (k)|2Ptm ≤ Ith (5.17 b)

: R̃(k)− R̄(k)≤Cth (5.17 c)

: Pd ≥ P̄d (5.17 d)

: 0≤ τs ≤ Γ (5.17 e)
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where R̃(k) =
M1
∑

m=1
log2

(
1+ P̃tm|hsrm(k)|2

Np

)
and R̄(k) =

M1
∑

m=1
log2

(
1+ Ptm|hsrm(k)|2

Np+β |har|2σa2

)
. The

constraint (5.17 c) is added to control the power of secondary transmission, so that the
effect of the attacker can be minimized to some extent. Cth is the user defined integer
variable as mentioned in (4.29 c).

5.4 Solution Approach Towards the Designing of CR-VANET
Without and With the PUEA

The variation of channel response with the movement of vehicular is considered in our
optimization problem, which makes our proposed algorithms more comprehensive.The
average system throughputs RV

(
P̃t
)

and RVA (Pt) in the objective functions (5.16) and
(5.17) are the approximation of the exact system throughputs (5.8) and (5.9),
respectively . Further, the constraints (5.16 b) and (5.17 b) consist of the channel
response hsdm (k) which varies with the time instant k. The constraint (5.17 c) also
consists of the time-varying channel response hsrm (k). Therefore, the proposed
solution approaches to the objective fuctions (5.16) and (5.17) with these time-varying
constraints are achieved by maximizing EE

(
P̃t
)

and EEA (Pt) in Algorithm 5.10 in
which the adaptive power allocations for maximization of system throughputs
satisfying the constraints are derived from Algorithm 5.11 and Algorithm 5.12 in the
absence and presence of the attacker, respectively.

If Rth is the minimum threshold need to be achieved by each VSU, then the
minimum transmission powers P̃tmin and Ptmin of the mth SU at the kth instant in the
absence and presence of the attacker are represented as

P̃tminm (k)≥
(
2Rth−1

)
Np

|hsrm (k)|2
(5.18)

and

PtminmA (k)≥
(
2Rth−1

)(
Np +β |har|2σa

2
)

|hsrm (k)|2
, (5.19)

respectively. From (5.18) and (5.19), it is observed that P̃tminm (k) and PtminmA (k) vary
with the VSUs and are different at different instants. Instead of taking different P̃tmin

for different VSUs,P̃tmin (k) is decided by considering the farthest vehicle from the SR.
The same concept is also applicable to PtminA. Similarly, instead of generating different
P̃tmin and PtminA at different kth instants, we take P̃tmin = P̃tmin(τs)+P̃tmin(Γ)

2 and
PtminA = PtminA(τs)+PtminA(Γ)

2 . From (5.14), it is clear that EE
(
P̃t
)

is a non-convex
function of P̃t . Hence, this problem can be solved by using the parametric
transformation based on Dinkelbach method, the way described in Theorem 2. Based
on this theorem, our objective problem (5.16) is represented as

ϒ∗ = max
P̃t∈P̃

{
RV(P̃t)
Ec(P̃t)

}
=

RV(P̃∗t )
Ec(P̃∗t )

if and only if
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max
P̃t∈P̃

{
RV
(
P̃t
)
−ϒ∗Ec

(
P̃t
)}

= RV
(
P̃∗t
)
− ϒ∗Ec

(
P̃∗t
)
= 0. P̃∗t denotes the optimal

transmission power allocation to the SUs without the PUE attacker, and
P̃∗t =

[
P̃∗t1, P̃

∗
t2, . . . , P̃

∗
tM1

]
. The solution approach to find the optimal power allocation is

described in Algorithm 5.10.

Algorithm 5.10 Power allocation in CR-VANET.
Input:

Randomly generate P̃t between P̃tmin and the constraint (5.16 a).
Dinkelbach parameter(ϒ)← 0;
Acceptance tolerance value ξ ≤ 10−5;
Current iteration t← 1;

Output:
Transmission power P̃∗t .

1: while |ϒ(t)−ϒ(t−1)| ≥ ξ do
2: For the given value of τs, evaluate power P̃t (t)from Algorithm 5.11 such that;

P̃t = argmax
P̃t

{
RV
(
P̃t
)
−ϒ(t)Ec

(
P̃t
)}

3: t← t +1;

4: ϒ(t)←
{

RV(P̃t)
Ec(P̃t)

}
;

5: end while

The same Algorithm 5.10 is repeated for the EE maximization in the presence of
the PUE attacker, where the power assigned to the VSUs in the step 2 is obtained from
Algorithm 5.12.

5.4.1 Interference-aware power allocation without PUEA

Algorithm 5.10 describes the method of solving the EE maximization problem but the
power allocation to the VSUs satisfying the constraints (5.16 b) with the maximization
of RV

(
P̃t
)

is obtained by our proposed adaptive scheme Algorithm 5.11.
Maximization of the overall system throughput RV

(
P̃t
)
of the CR-VANET is equivalent

to the maximization of RV (P̃t) = ∑
k∈Γt

M1
∑

m=1
log2

(
1+ P̃tm|hsrm(k)|2

Np

)
. RV

(
P̃t
)

can be

approximately represented as RV (P̃t) ∼=
M1
∑

m=1
∑

k∈Γt

log2

(
P̃tm|hsrm(k)|2

Np

)
. Hence, R

(
P̃t
)

can

be maximized by improving RV
(
P̃t
)

which is equivalent to maximizing{
M1
∑

m=1
P̃tmR1m

}
, where R1m = ∑

k∈Γt

|hsrm(k)|2
Np

. So, the objective function for the power
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allocation is expressed as

Maximize

P̃t
:

M1

∑
m=1

P̃( j)
tm R1m ≥ ST H

( j−1) (5.20)

Sub ject to : Itotal

M1

∑
m=1

P̃( j)
tm |hsdm (k)|2 ≤ Ith ∀k ∈ Γt (5.20 a)

where ST H
( j−1) =

M1
∑

m=1
P̃( j−1)

tm R1m. The objective function (5.20) with the constraint

(5.20 a) is a mixed integer and non-linear problem. So, NLMS algorithm is applied to
find the power allocation satisfying the time-varying constraint (5.20 a). The inequality
constraints (5.20) and (5.20 a) can be converted to equality constraints as given below

M1

∑
m=1

P̃( j)
tm R1m +ZU =

M1

∑
m=1

P̃( j−1)
tm R1m (5.21)

M1

∑
m=1

P̃( j)
tm |hsdm (k)|2 +ZL =

Ith
Itotal

(5.22)

where ZU and ZL are positive and negative random variables, respectively with mean
zero and their variances depends on R1m and |hsdm (k)|2, respectively. Let us consider

U ( j) (i) =


P̃( j)

t1 0 · · · 0

0 P̃( j)
t2 · · · 0

...
... . . . ...

0 0 · · · P̃( j)
tM1

 (5.23)

Let W (i) sequence at ith iteration is given by W (i) =

{
Q1

Q2
, where

Q1 =


R11 0 · · · 0
0 R12 · · · 0
...

... . . . ...
0 0 · · · R1M1

 (5.24)

and

Q2 =


|hsd1|2 0 · · · 0

0 |hsd2|2 · · · 0
...

... . . . ...

0 0 · · ·
∣∣hsdM1

∣∣2

 (5.25)

Z is a sequence consisting of ZU and ZL, and Z =

{
ZU

ZL
. Similarly, for the ith iteration

the right hand portions of the equality constraints (5.21) and (5.22) are represented as

S (i) =

{
ST H

( j−1)

Ith
Itotal

(5.26)
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Hence, S (i) can be expressed as

S (i) =
M1

∑
m=1

ωm
( j) (i)gm(i)

T +Z (i) (5.27)

ω( j) (i) is the corresponding mth row for the ith and jth iteration of U ( j) (i). gm (i) is the
mth row of either Q1 or Q2 depending on the evaluation of (5.21) or (5.22). Applying
NLMS algorithm, let the desired output is represented as

d (i) = S (i)−
M1

∑
m=1

ωm
( j) (i−1) v̂m(i)

T (5.28)

V (i) is the random matrix of same size of W (i) and its generation is similar to Z (i).
So, v̂k (i) is the mth vector of the matrix V̂ (i) =W (i)−V (i). So, the error is given by

e(i) = d (i)−
M1

∑
m=1

ωm
( j) (i−1)vm(i)

T (5.29)

where vm is the corresponding mth vector of matrix V (i). Here, ω( j) (i) is the power
allocation matrix, and is evaluated from [148]

ωm
( j) (i)← ωm

( j) (i−1)+
µ̄

‖vm‖2 vm (i)e(i) (5.30)

where µ̄ is the step size and it ranges between 0 < µ̄ < 2. The steps for interference-
aware power allocation in the absence of the attacker are illustrated in Algorithm 5.11.
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Algorithm 5.11 Interference-aware power allocation in CR-VANET.
Input:

ξ ← minimum tolerence threshold.
Randomly generate P̃t between P̃tmin and the constraint (5.16 a).

Output:
Return power allocation P̃t = P̃( j)

t .

1: A← in f inity;
2: B← 0;
3: j← j+1;
4: while A≥ B do
5: A= B;
6: j← j+1;
7: ω( j)← ω( j−1);
8: for k = 1 : length(Γt) do

9: C( j)← Itotal
M1
∑

m=1
P̃( j)

tm |hsdm (k)|2;

10: i← 1;
11: while C( j) ≥ Ith do
12: Generate W (i), Z (i) and V (i);

13: d (i) = S (i)−
M1
∑

m=1
ωm

( j) (i−1) v̂m(i)
T ;

14: e(i) = d (i)−
M1
∑

m=1
ωm

( j) (i−1)vm(i)
T ;

15: for m = 1 : M1 do
16: ωm

( j) (i)← ωm
( j) (i−1)+ µ̄

‖vm‖2 vm (i)e(i);
17: end for;
18: i← i+1;
19: end while
20: j← j+1;
21: ω j← ω j (i);
22: P̃( j)

t (k)← ω( j);
23: end for
24: for m = 1 : M1 do

25: P̃( j)
t (1,m) =

∑
k∈Γt

P̃( j)
tm (k)

M1
;

26: end for
27: B=

M1
∑

m=1
P̃( j)

tm R1m;

28: end while

If we analyze the complexity, then the complexity of our proposed approach is
calculated as O(NANBNC), where NA, NB and NC are the iterations required in the
while loops in Algorithm 5.11 and in the while loop in Algorithm 5.10, respectively.
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5.4.2 Interference-aware power allocation with PUEA

The main objective is to maximize {RVA (Pt)−ϒ(t)EcA (Pt)} satisfying the constraints
(5.17 b) and (5.17 c). Here, we apply heuristic algorithm for solving this type of
non-convex combinatorial optimization problem. Previously, GA and PSO were used
to solve the adaptive power allocation in [162] and [163], respectively. However, the
scenarios and the methods of solving were different. Further, those papers did not
consider any malicious attack in the CRN. The purpose of using an adaptive algorithm
like GA is that, it can adaptively modify the population to handle a variety of
optimization problems. The fitness function of our optimization problem is given by

Λ1 =−{RVA (Pt)−ϒ(t)EcA (Pt)} (5.31)

The negative sign indicates the minimization of the objective function. The constraints
(5.17 b) and (5.17 c) are solved by employing our proposed rank assignment scheme in
GA. As per the constraint (5.17 b),

Ith−
(

Itotal

M1

∑
m=1

Ptm|hsdm (k)|2
)
≥ 0 (5.32)

Then, we consider a parameter to represent (5.32) as follows

Λ2 (k) =


0, if Ith ≥ Itotal

M1
∑

m=1
|hsdm (k)|2Ptm

1, if Ith < Itotal
M1
∑

m=1
|hsdm (k)|2Ptm

(5.33)

The first outcome of each chromosome is evaluated as O1 = ∑
k∈Γt

Λ2 (k). Similarly,

considering the constraint (5.17 c),

Cth−
(

R̃(k)− R̄(k)( j)
)
≥ 0 (5.34)

where Cth = R̃(k)− R̄(k)( j−1) and j is the current iteration. Representing the (5.34)
with the following parameter as

Λ3 (k) =

0, if Cth ≥
(

R̃(k)− R̄(k)( j)
)

1, if Cth <
(

R̃(k)− R̄(k)( j)
) (5.35)

Then the second outcome for each chromosome is evaluated as O2 = ∑
k∈Γt

Λ3 (k). We

take the third outcome O3 = Λ1. The first priority is to provide sufficient protection
to the PR. So, the individual with less O1 is given rank 1. The detail steps for the
adaptive power allocation algorithm employing GA are described in Algorithm 5.12.
Our proposed approach is summarized in Figure 5.2.
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Algorithm 5.12 Proposed GA aided power allocation algorithm.

1: Initialize the chromosomes randomly of size D and dimension M1 over the search
space. Each chromosome represents the transmitting power distribution to the M1
VSUs.

2: Find out the fitness function Λ1 of each chromosome.
3: j← 1.
4: Repeat
5: Assign a rank to each chromosome as per the following steps.
6: if (O1d < O2d) then . O1d is the first outcome of dth parent chromosome.
7: Assign rank 1 to the dth individual;
8: else
9: if (O1d == O2d) then

10: Assign rank 2 to the dth chromosome;
11: else
12: if (O2d < O1d) then
13: Assign rank 3 to the dth chromosome.
14: end if
15: end if
16: end if
17: For the chromosomes assigned with the same rank, one extra scaling factor is

determined for each chromosome to select the best chromosome for offsprings
reproduction. The scaling factors Bd (1), Bd (2) and Bd (3) of the dth chromosome
for the ranks 1, 2 and 3 are given by Bd (1) = 1

1+ 1
O2d

+ 1
O3d

, Bd (2) = 2
2+ 1

O3d

and

Bd (3) = 3
3+ 1

O1d
+ 1

O3d

, respectively.

18: The selection process is based on the tournament selection. The tour size is pre-
decided by the user. The chromosome with lowest rank is selected, and if the rank
of the chromosomes are same, then the chromosome with lowest scaling factor is
selected.

19: Simulated binary crossover and polynomial mutation are used to generate the
offspring chromosomes.

20: Add the offsprings with the parent chromosomes to generate the new parent
chromosomes.

21: Calculate the fitness function (5.31) of each chromosome. Sort the chromosomes
in ascending order of their fitness functions and choose first D chromosomes for
the next generation.

22: j← j+1;
23: The process is continued until the maximum number of iterations is achieved.

Let NA be the iterations required to converge the Algorithm 5.10. The
computational complexity of the GA with tournament selection is O(NBDM1), where
NB is the number of generation required in GA. Hence, the overall complexity of our
proposed algorithm is O(NAKNBDM1).
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Figure 5.2: Schematic flow chart of our proposed approach for resource allocation.
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5.5 Simulation Results and Discussion

The system model shown in Figure 5.1 is used as the main framework for doing the
performance analysis. In GA aided power allocation algorithm, we set D=80,
tournament size is 2, and both crossover distribution index and mutation distribution
index are 20. The maximum number of generation is 100. Some common parameters
used in the simulation results are provided in Table 5.1.

Table 5.1: Simulation parameters for CR-VANET.

Parameter Value Parameter Value
DS 1000m Γ 100ms
DR 300m τs 10%ofΓ
ST 80m τr 5µs
dS 20m PH0 0.7
Vmin 5 km

/
hr PH1 0.3

Vmax 60 km
/

hr α 3
fs 6 MHz σs

2 30 dBm
a1 0.0025 vehicles

/
s Ps -20 dBm

a2 0.001 vehicles
/

s Np -100 dBm

Figure 5.3 shows effect of the attacker on the global probability of detection over
different SNR conditions. We set β=0.99 for all the figures. It is observed that the
presence of the attacker decreases Qd . Pf is the local false alarm probability. Total M

number of VSUs participate in SS.
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Figure 5.3: Qd vs SNR for Pf =0.01 and 0.1 in absence and presence of the PUE attacker.

Figure 5.4a illustrates the convergence comparison of our proposed algorithm (the
aid of Algorithm 5.10 and Algorithm 5.11) with the other existing schemes. In
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Scheme-I, we adopt the Dinkelbach method for maximizing EE
(
P̃t
)

without
considering any constraints. The iterative method is same as discussed in [119]. In
Scheme-II, the iterative method discussed in [123] is adopted for power allocation to
the VSUs. This scheme maximizes EE

(
P̃t
)

under the constraints (5.16 a) and (5.16 b)
without considering the variations of channel gains with the velocity of the vehicles at
different instances. For this scheme, we take average hsdm considering the starting and
ending transmission time τs and Γ, respectively. Therefore, |hsdm|2 for Scheme-II is
replaced by |hsdm|2av =

|hsdm(τs)|2+|hsdm(Γ)|2
2 . It is observed that EE increases by

introducing the constraints into the optimization problem. This is because, the
interference constraint controls the transmitting power of the VSUs. So, our proposed
scheme with different values of µ̄ performs better than the Scheme-I. Though,
Scheme-II performs better than our proposed scheme but it is not suitable for vehicular
scenario. The simulation parameters used for this Figure 5.4a are SNR=-15 dB,
Pf =0.01, Rth=2 bits/s/Hz, Ptmax=30 dBm and Ith=-70 dBm. Similarly, in the presence
of the PUE attacker, Figure 5.4b illustrates the convergence comparison of our
proposed algorithm (Scheme-I) with the existing schemes in the literature. But, those
schemes did not consider the time-varying channel responses and the power balancing
constraint which are newly introduced in our optimization problem formulation. In
Scheme-II, we employ the iterative method used in [119] for maximization of EEA (Pt)

(5.17) without considering any constraints. In Scheme-III and Scheme-IV, we adopt
the methods used in [164] and [142], respectively for maximizing EEA (Pt) (5.17)
satisfying the constraints (5.17 a) and (5.17 b). But, the time varying channel
responses in (5.17 b) Itotal ∑

M1
m=1 |hsdm (k)|2Ptm ≤ Ith is replaced by

Itotal ∑
M1
m=1 |hsdm|2avPtm ≤ Ith, where |hsdm|2av =

|hsdm(τs)|2+|hsdm(Γ)|2
2 . It is obvious that EE

can be maximized by including constraints into the optimization problem, hence
Scheme-I and Scheme-III perform better that Scheme-II. Though Scheme-III performs
better than our proposed algorithm but it provides the approximate solution to the
optimization problem. In Scheme-IV, throughput is maximized to find the power
allocation which is obtained by increasing the transmission power, hence, EE
decreases. The exact solution for typical vehicular scenario in which the distances of
the VSUs from the PU vary with the velocities and time, is obtained by our proposed
approach Scheme-I. However, from these two figures it is observed that adding the
constraints into the optimization problem, our proposed approaches offer improvement
in EE approximately by 1.5 times for µ̄=0.01 and 14% compared to without taking any
constraints in the absence and presence of PUEA, respectively. For Figure 5.4b,
Ptmax=40 dBm and all other parameters remain same as Figure 5.4a .
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Figure 5.4: Convergence comparison of our proposed scheme with the iterative method
discussed in Algorithm 5.10.

For rest of the figures, we set P̄d=0.9. Ptmax is 30 dBm and 40 dBm in the absence
and presence of the attacker, respectively. Figure 5.5a and Figure 5.5b illustrate the
effect of SNR on the average system throughput RV

(
P̃t
)

and RVA (Pt), respectively for
different values of τs. For Figure 5.5, we take Ith=-60 dBm. As SNR increases Q f

decreases with the given value of Pd . This increases
(
1−Q f

)
, and hence throughput

increases. Further, it is observed that at low SNR condition, longer sensing time
produces less Q f , but at high SNR when the PU can be easily detected shorter sensing
time is required. Analyzing Figure 5.5a, it is observed that at low SNR i.e SNR=-23
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dB, when τs=20% of Γ,throughput increases by 64% compared to when τs=5% of Γ

but at high SNR i.e SNR=-9 dB, for τs=20% of Γ, throughput is decreased by 19%
compared to τs=5% of Γ.
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Figure 5.5: Average system throughput vs SNR for different values of τs.

Figure 5.6a and Figure 5.6b illustrate the effect of Ith on EE and the system
throughput for different values of Ptmax in the absence and presence of the PUE
attacker, respectively. As Ith increases, according to the constraints (5.16 b) and (5.17
b), the maximum allowable transmission power from the VSUs increases, accordingly,
system throughput increases but EE reduces. Further, tightly bounded total
transmission power Ptmax increases the EE but decreases the throughput. In Figure
5.6a, for Ith=-63 dBm, with increase in Ptmax by 4 dBm from 31 dBm to 35 dBm, EE
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decreases by 40% but throughput increases by 39%. When Ith increases from -75 dBm
to -51 dBm, for Ptmax=31 dBm, EE decreases by 78%. In Figure 5.6b, for Ith=-63 dBm
when Ptmax increases from 40 dBm to 50 dBm, throughput increases by 0.05%, but EE
does not show any significant changes.
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Figure 5.6: Effect of Ith on EE and average system throughput.

The impact of Rth on EE
(
P̃t
)

and Ec
(
P̃t
)
, and on EEA (Pt) and EcA (Pt) are

demonstrated in Figure 5.7a and Figure 5.7b , respectively. From (5.18) and (5.19), it
is clearly observed that P̃tmin and PtminA increase with increase in Rth, so EE decreases
but total power consumption increases. Hence, analyzing Figure 5.7a, when Rth

increases from 0.3 to 2.5 bits/s/Hz,EE decreases by 6% but power consumption
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increases by 24% for SNR=-10 dB. In Figure 5.7b, it is verified that for Rth=2.1
bits/s/Hz, EE of the system model without PUEA is increased by 12 times over the
system model with PUEA. This is because, power consumption with PUEA increases
by 80% over the system model without PUEA for the same Rth. For Figure 5.7, Ith is
set at -55 dBm.
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Figure 5.7: Effect of Rth on EE and the total power consumption.

The variations of RV
(
P̃t
)

and Ec
(
P̃t
)

for different target detection probability P̄d

values are shown in Figure 5.8a. Similarly, The variations of RVA (Pt) and EcA (Pt)

for different target probability of detection P̄d values are shown in Figure 5.8b. In the
conventional SS technique, false alarm probability increases with increase in detection
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probability. Hence,
(
1−Q f

)
decreases with increase in P̄d .So, both system throughput

and total power consumption decrease. In Figure 5.8b, it is clearly observed that power
consumption will be more for higher value of β . For P̄d=0.9, throughput is reduced by
12% but power consumption increases by 3.5% when β is increased from 0.8 to 0.99.
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Figure 5.8: Effect of P̄d on the system throughput and the total power consumption.

5.6 Summary

This chapter proposed adaptive approaches for power allocation in the CR-VANET. A
system model consisting of PU, PR, VSUs, SR and the attacker was designed for a
typical vehicular scenario where the protective region of the PU and the sensing region
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of the VSUs covered a small portion of the road segment and the vehicles were
moving unidirectional. Accordingly, number of possible VSUs in different zones were
evaluated. The EE maximization problem was formulated under the constraints of
maximum transmission power, minimum achievable data rate, target probability of
detection and interference to the PR. In the presence of PUEA, an extra constraint was
added to control the additional increase of the transmitting power from the VSUs. The
non-linear and non-convex optimization problem was solved by the well-known
parametric transformation. The power allocation to the VSUs was achieved by the
proposed adaptive algorithm based on NLMS. In the presence of PUEA, a GA based
power allocation algorithm which maximized EE with the defined constraints was
verified to be efficient. Performance assessment through simulation studies showed
that the EE can be maximized by including power limiting constraints. The effects of
interference threshold, throughput threshold, SNR and probability of PUEA presence
on the performance parameters such as EE, throughput and power consumption were
studied in detail. Upto this chapter, CR application in the licensed TV band was
considered in the study. Recently, considering the limited spectrum availability due to
heavily deployed wireless devices and applications, the unlicensed ISM band has
attracted the researchers worldwide to consider the CR deployment in this band. As,
there is no concept of PUs or SUs, the CR devices must operate in such a way so as to
avoid interference or collision to other coexisting devices. With the concept of the CR
user (CRU) occupying the underutilized sub-band and using that band for its data
transmission without interrupting the coexisting devices, an extensive study and
analysis is extended to the next chapter.
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Chapter 6

Spectrum Occupancy Prediction and Optimal Power
Allocation to the CRU-A Study in the 2.4 GHz ISM Band

This chapter presents the spectrum occupancy statistics of the ISM band evaluated from
real measurement data. The highlights of the chapter are

• An occupancy prediction algorithm based on FLANN is proposed to forecast the
future spectrum usage profile.

• A double threshold-based sub-band selection scheme is proposed for the CRU.

• An inference-aware power allocation technique is proposed for the CRU so that
collision to the coexisting devices can be avoided.

128



6.1 Introduction

6.1 Introduction

NOW-A-DAYS, an efficient spectrum utilization is one of the major issues,
where the wireless technologies must compete to investigate the underutilized

frequency band for their use. To make the CR deployment successful in the near
future, an effective measurement in different bands assigned for several services is
essential to provide detailed characteristics of the PU activity. Several measurement
campaigns have been conducted in various locations worldwide, covering a wide
frequency range, to assess the potential bands available for secondary usage in the
context of CR. It has been observed that spectrum occupancy varies with the locations
and duration of measurements taken, as well as with the type of licensed band. The
increasing demands of more spectrum attract the researchers to incorporate the CR on
the unlicensed band; where, the users can not be distinguished as PU and SUs, and all
the devices have equal rights to use this spectrum band [165]. The unlicensed band
includes ISM band and Unlicensed National Information Infrastructure (U-NII) band.
The ISM band is often shared by various unlicensed electronic devices such as IEEE
802.11 standard WLAN, 802.15.1 standard Bluetooth devices, 802.15.4 standard
ZigBee, cordless phones, microwave ovens (emits frequency mostly in 2.45 GHz),
etc., with approximately no coordination amongst them. The operation of these
devices in the same band increases the potential interference between them. Hence, it
is worth to exploit the capability of CR i.e. to find the less occupied frequency bands
which improve the spectral efficiency with limited unpredictable interference with the
co-existing devices.

6.1.1 Related works

Most of the papers address spectrum occupancy in the licensed band for CR
application but there are few papers which discuss the idea of CR implementation in
ISM band by investigating the occupancy statistics in different locations and in
different scenarios [166]. In Cambridge, UK, a measurement campaign was conducted
in three different areas in the presence of different interfering devices. The results
showed that the occupancy statistics varied with the measurement locations and types
of interfering devices [167]. Another measurement was conducted in eight different

Part of the contributions in this chapter are published in:
Deepa Das and Susmita Das, "A Survey on Spectrum Occupancy Measurement for Cognitive Radio,"
Wireless Personal Communications, Springer, vol. 85, no. 4,pp. 2581-2598,2015.
Deepa Das and Susmita Das, "A Novel Approach for Cognitive Radio Application in 2.4 GHz ISM
Band,"International Journal of Electronics,Taylor & Francis, 2016.
Deepa Das, David W. Matolak and Susmita Das, "Spectrum Occupancy Prediction Based on Functional
Link Artificial Neural Network (FLANN) in ISM Band," Neural Computing and Applications, Springer,
2016.
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locations of Oulu, Finland each with one week of observation revealed the lower
occupancy status i.e 0 - 3 % in ISM band [168]. Here, a novel method named
transmission encapsulation based on the connected component labeling (TECCL) was
proposed to find the number of free channels per time instant. A distributed and
directional spectrum occupancy model was presented to study the impact of spatial
dimension on the measurement system [169]. In that paper, two measurement devices
each with 3 directional antennas were placed in the office to measure occupancy from
all the directions. A dynamic channel selection algorithm was proposed in the
coexistence of IEEE 802.11 WLAN and IEEE 802.15.4 sensor networks in [170]. A
Wi-Fi Cognitive Radio Learning (CORAL) platform was conducted in downtown
Ottawa to identify the spectrum holes, and also occupancies of all the channels and
their transmission rate were investigated [171]. Most of the popular SS techniques
employ EDs for simplicity, where the judgment of PU activity is based on a threshold
value. During the spectrum occupancy measurement, the threshold value was chosen
to be a certain number of dB above the noise floor [172], or was calculated from
allowable false alarm probability [173] (with some underlying assumptions regarding
noise and signal distributions). This chapter introduces an optimum threshold
evaluation approach from the real data to enhance the efficiency of all the channels
available in this band by avoiding interference to the coexisting devices in a particular
channel.

Several spectrum occupancy prediction models mentioned in the existing literature
were mostly based on multi-layer perceptron (MLP)-based neural networks [174] and
hidden Markov models (HMM) [175]. In [174], hour long data records were divided
into 60 intervals each consisting of 360 data samples, and these records were
processed through a MLP predictor to show the prediction accuracy. A neural network
based prediction model was developed to measure the cooperative spectrum occupancy
in Abuja, Nigeria for different bands including the 875 MHz broadcasting band, a
GSM downlink at 905 MHz, a 3G downlink at 1865 MHz, and a GSM uplink at 890
MHz band [176]. In that paper, the authors used two spectrum analyzers (SAs) for
signal reception so as to improve the reliability of the prediction; also, the prediction
accuracy was improved by employing GA for optimizing weights of the MLP model.
The probability of incorrect prediction using the MLP predictor for busy and idle
channel status were verified under different traffic characteristics of PU, and this was
reduced to 4.07 % by taking perfect training and testing samples [177]. Further, the
prediction error was reduced to 14% by employing multi-secondary users each having
a channel status predictor [178].

In the literature, the spectrum occupancy measurement was based on the single
threshold, and the detailed analysis regarding the CR deployment in ISM band was not
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studied. This chapter introduces novel approaches for spectrum occupancy prediction
and implementation of CR technology in ISM band utilizing the real time measurement
data.

6.1.2 Chapter contributions and organization

The main contributions of the chapter are briefly discussed as follows.

• The spectrum occupancy is estimated using different thresholds in 2.4 GHz ISM
band based on the real indoor measurement data.

• Furthermore, a novel forecasting algorithm using FLANN is proposed to predict
the future occupancy statistics from previous data sets.

• This chapter further introduces a novel concept of deploying CR technology in the
ISM band with least interference to the coexising electronic devices by selecting
suitable sub-band and power allocation.

• This is achieved by double threshold-based sub-band selection method in which
the CR will select the appropriate sub-band for its data transmission.

• Considering the maximum and minimum transmission power from the various
devices in the ISM band, the lower and upper bound of the transmitting power of
the CR node is decided.

• Further, an interference-aware power allocation scheme is proposed, so that the
CRUs can communicate with each other without causing any interference to other
existing devices.

• Experimental results are provided to validate our proposed schemes.

The rest of the chapter is structured as follows. The measurement setup is discussed in
detail in Section 6.2. Section 6.3 explains the structure of FLANN and its application
toward spectrum occupancy measurement. Different threshold adaptations for spectrum
occupancy are evaluated in Section 6.4. Our proposed prediction algorithm is discussed
in Section 6.5. The implementation CR technology in the ISM band based on double
threshold-based sub-band selection scheme and proper power allocation considering
the propagation channel model in the indoor environment are given in Section 6.6. The
performances of our proposed approaches are evaluated and discussed in Section 6.7.
Finally, Section 6.8 presents the chapter summary.
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6.2 Measurement Setup

Our measurement campaign was conducted in different positions of four indoor
hallways present in the first through third floors (mostly on the second and third floors)
of the Swearingen Engineering Center, University of South Carolina, Columbia, SC,
USA over 5 working days (Monday - Friday) from 9 AM to 5 PM during Fall 2014
semester from October 13th to October 17th in 2014. For our experiment, the
measurement equipment consisted of an omnidirectional monopole antenna for the 2.4
GHz frequency band which received Wi-Fi signals from the APs installed behind the
ceiling (spaced approximately 80-120 m apart from each other), from WLAN
terminals, and from various electronic devices such as Bluetooth and microwave
ovens, etc. The received signal was input to an Agilent N9342C portable SA. The SA
stored the received signal power across the entire frequency range during the
measurement periods. Finally, all the stored raw data was processed through
MATLABr to evaluate the spectrum occupancy statistics. Figure 6.1 shows the
measurement setup diagram in the hallways of Swearingen Engineering building. The
measurement setup parameters of the SA are listed in Table I.

The SA and antenna were placed on a movable plastic equipment cart, and the
received power was continuously recorded and stored in the SA over the measurement
periods of duration 8 hours, from 9 AM to 5 PM. The data was gathered over a time span
Tspan=8 hours for 5 working days and along a frequency span Fspan=100 MHz. If Npoints

is the number of frequency points measured by the SA, then the discrete frequency point
fn in the range of Fspan is given by

fn = fstart +(n−1) . fr (6.1)

where n = [1, 2, . . . ., 461]. fstart is the starting frequency. fr is the frequency
resolution and is determined by fr =

Fspan
Npoints

. Here, Fspan is 100 MHz and Npoints is the
number of sweep/trace points in the Agilent N9342C handheld SA, which is fixed at
461 (regardless of center frequency and span).
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Figure 6.1: Measurement setup in the hallway of Swearingen Engineering Center.

Table 6.1: SA parameters used for spectrum occupancy measurements.

SA parameters Values
Frequency range 2.4-2.5GHz
Number of trace points 461
Resolution bandwidth (RBW) 1MHz
Video bandwidth (VBW) 1MHz
Sweep time 18.103 msec(Auto selected)
Reference level -5dBm
Impendance 50 ohms
Attenuation 0 dB
Preamplifier OFF

6.3 Functional Link Artificial Neural Network Structure

Neural Networks have been good candidates for learning in the CRNs. There are
different types of neural network models such as Feed-forward MLP, Recurrent MLP,
radial basis function (RBF), etc., which perform the same function but with high
computational cost and complexity due to the presence of a hidden layer. Hence, a
better prediction model with lower complexity is desirable to make the SS faster in the
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CRNs. FLANN may be a good solution to fulfill these objectives. This alternate ANN
structure was first proposed by Pao [179] to replace MLP since FLANN has a faster
convergence rate and lower complexity. It is a novel single layer ANN model which
eliminates the need of a hidden layer. In contrast to MLP, FLANN acts on the entire
input pattern by using a set of linearly dependent functional expansions [180], [181].
In this chapter, we consider Trigonometric and Chebyshev polynomials for functional
expansions, and the output node is followed by the typical sigmoid transfer function
that provides a nonlinear mapping between input and output.

The Trigonometric polynomial basis function comprises orthogonal sine and
cosine functions and is given by the set
{In,cos(πIn) ,sin(πIn) ,cos(2πIn) ,sin(2πIn) , ...,cos(DπIn) ,sin(DπIn)} for any
arbitrary input In, and D depends on the dimension of the functional expansion [181].
The generalized structure of the Trigonometric functional expansion based on FLANN
is presented in Figure 6.2.

Figure 6.2: General structure of Trigonometric polynomial based on FLANN.

Another set of polynomials called Chebyshev polynomials, derived from the
solution of the Chebyshev differential equation, offer less computation time than the
Trigonometric expansions. These polynomials are generated by using this recursive
formula [182]

Tl+1 (In) = 2InTl (In)−Tl−1 (In) (6.2)

where l is the order of the Chebyshev polynomial. For example, zero and first order
polynomials are given by T0 (In) = 1 and T1 (In) = In respectively, and higher order
polynomials are given by T2 (In) = 2I2

n − 1, T3 (In) = 4I3
n − 2In and so on. Let χ be an

input vector consisting of M parameters χ = [χ1χ2...χm...χM ]T where each parameter
χm consists of K elements. Then, for the Trigonometric expansion, the kth element of
the mth parameter of χ vector is expanded using D cosine terms, D sine terms plus the
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sample χm (k) itself, yielding a vector of length J = 2D+1 which is given by

T (k) = {χm (k) ,cos(πχm (k)) ,sin(πχm (k)) ,cos(2πχm (k)) ,sin(2πχm (k)) , ...

...,cos(Dπχm (k)) ,sin(Dπχm (k)) (6.3)

If the Chebyshev polynomial expansion is used, then the expanded pattern of the kth
element of the mth parameter is expressed as

C (k) =
{

1,χm (k) ,2χm(k)
2−1,4χm(k)

3−3χm (k) , ....
}

(6.4)

of length J = 2D+1. For our experiment, the number of elements in the Trigonometric
polynomial function is the same as that in the Chebyshev functional expansion. Hence,
the total number of basis functions is J = 2D+1. In contrast to MLP, here the weight
vector W is linearly combined with the expanded polynomial basis function. Let t be
the current iteration number, then the weight vector W is represented as

W (t) =
{

w1 (t) ,w2 (t) , .....,w j (t) , .....,wJ (t)
}T (6.5)

At the output, a logistic sigmoid function is used to provide a nonlinear mapping
between the output and input. So, the predicted output of the FLANN model is
calculated as

O(k, t) =
1

1+ exp(R(k, t))
(6.6)

where R(k, t) represents the internal output of the kth element at iteration t, which is
given by

R(k, t) = T (k)W or C (k)W (6.7)

If d (k) = {d1 (k) ,d2 (k) , ...,dm (k) , ...,dM (k)} is the desired output, then the error for
kth element at iteration t is calculated by subtracting the predicted output from the
desired output;

e(k, t) = d (k)−O(k, t) (6.8)

For the training process, weights are updated by using the back propagation algorithm
as per the following expression [180]

W (t +1) =W (t)+ϕβ̄ (k, t)(T (k))T (6.9)

Here, ϕ is known as the learning rate and its range is 0 < ϕ < 1 and β̄ (k, t) is given by

β̄ (k, t) =
(

1−O(k, t)2
)

e(k, t) (6.10)

6.4 Signal Detection and Spectrum Occupancy

The spectrum occupancy is calculated by separating out the information signal from the
noise in the desired band. The information signal is detected by comparing its received
signal energy with a predefined threshold λ . If P is the average power of the PU signal
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received at the SU, then probability of detection and false alarm are given by

Pd = Q

 λ −
(
P+ση

2)
(P+ση

2)
√

2/
N

 (6.11)

and

Pf = Q

 λ −ση
2

ση
2
√

2/
N

 , (6.12)

respectively. Here, false alarm probability means the probability that the noise samples
are present above the selected threshold. Similarly, the probability of detection refers
to the probability that the received samples present above the threshold.

6.4.1 Threshold evaluation

Selection of threshold is a critical aspect in separating the signal from the noise. A low
value of threshold gives overestimation of the channel occupancy. Similarly, some of
the weak signal samples cannot be detected if the threshold value is chosen too high,
which results in underestimation of channel occupancy. In this paper, thresholds are
evaluated by employing three different methods.
Fixed threshold-based evaluation
This threshold evaluation model relies on the calculation of probability distribution of
received signal power and received noise power. Figure 6.3 shows the normalized
probability distributions of both received signal power and noise power, and the
intersecting line represents the fixed decision threshold which is found to be -85.2830
dBm.
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Figure 6.3: Probability distributions of received signal power and noise power with
estimated threshold from measurement data.
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Dynamic threshold-based evaluation
The SA collects the signal samples at 461 frequency points, and the average noise floor
is different at each discrete frequency point. So, we employ different decision
thresholds at different frequency points. To do so, a dynamic threshold value at each
frequency point is calculated from the allowable false alarm probability. We know that
Pf < 0.5 represents the aggressive CR system to attain more than 50% spectrum
utilization with less than 50% interference to the PU [86]. Hence, for our experiment,
we have chosen targeted Pf to be 0.1.
Optimum threshold-based evaluation
In a single threshold-based detection scheme, threshold value plays a major role in
determining the system performance. Considering the CR system, both the probability
of detection Pd and false alarm probability Pf decrease monotonically with respect to
threshold λ , so, a trade-off must be maintained to achieve a target Pf with the
minimization of Pmd , where Pmd = 1−Pd is the probability of missed detection. To
achieve this, an optimum detection threshold λ ∗ must be chosen that will minimize the
total sensing error (with optimum here defined as attaining the desired Pf with
minimum Pmd).In unlicensed bands like the ISM band, an optimum threshold is
necessary to reduce the interference between the co-existing systems.

Proposition 4. If we assume that λ1 and λ2 be the minimum and maximum threshold
values selected from our received signal samples, then the total sensing error, defined as
Pe (λ ) = zPf (λ )+(1− z)Pmd , is a convex function of λ which monotonically decreases
from λ1 ≥ λ > λ ∗ and increases from λ ∗ < λ ≤ λ2. So, there necessarily exists an
optimum threshold value λ ∗ which produces minimum sensing error.

Proof. Proof of this proposition is given in Appendix F .

Parameter z is known as a weighting factor which maintains the balance between
false alarm probability and miss detection probability. Its range is 0 ≤ z ≤ 1 and its
value is chosen based on whether we give more importance to decreasing Pf or to
decreasing Pmd . Here, we consider that both play the same role, so, we set z = 0.5.
Hence, minimization via golden section search algorithm can be employed to calculate
the optimum threshold value λ ∗ [125]. For example, in Figure 6.4, one can observe
that sensing error monotonically decreases from threshold value −89 dBm to λ ∗ dBm
and then monotonically increases from λ ∗ to the threshold value −82 dBm. Hence,
after applying the golden section search algorithm λ ∗ is calculated to be −84.7511
dBm for minimum sensing error 0.1463. Worth noting it that the sensing error is quite
small over a range of ∼ 1 dB or more, hence in practice threshold specification only
requires this order of precision.
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Figure 6.4: Convex characteristic of sensing error with respect to threshold at z=0.5.

6.4.2 Spectrum occupancy

Occupancy of a particular spectrum is calculated from the received sample values that
exceed the predefined threshold. The data samples are collected over a time period Tspan

and over a frequency range Fspan, then the data matrix is represented as

A = [A(τi, fj)] (6.13)

where i= [1,2, ....,I] and j= [1,2, ....,J]. Here, I represents the total number of discrete
time instants and J represents the total number of frequency points. A(τi, fj) represents
the received signal power at the ith time instant and jth frequency point. For occupancy
calculation, each component of the matrix is compared with the predefined threshold
and a new matrix is computed, with elements are set to one if A exceeds the threshold,
otherwise the elements are set to zero. Then the total number of ones is divided by the
total number of measurement samples to obtain the fractional occupancy measure.
Fixed decision threshold-based spectrum occupancy evaluation
In this method, average threshold λ is calculated from the PDF of signal and noise
components. Then, the decision metric element is represented as

DM (τi, fj) =

1 if A(τi, fj)≥ λ

0 if A(τi, fj)< λ .
(6.14)

So, the spectrum occupancy at jth frequency point is computed as

Occupancy(1, fj) =
∑
I
i=1 DM (τi, fj)

I
(6.15)

Similarly, the spectrum occupancy at ith time instant is computed as

Occupancy(1,τi) =
∑
J
j=1 DM (τi, fj)

J
(6.16)

Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network 138



6.5 Proposed Prediction Algorithm Based on FLANN

Dynamic decision threshold-based spectrum occupancy evaluation
In this method, Pf is set fixed for all the frequency points and then λj is computed such
that only a targeted fraction of the noise samples at the jth frequency point lie above the
threshold value. The decision metric is given by

DM (τi, fj) =

1 if A(τi, fj)≥ λj

0 if A(τi, fj)< λj.
(6.17)

Then, the spectrum occupancy at each frequency point and time instant are calculated
as per (6.15) and (6.16), respectively.
Optimal decision threshold-based spectrum occupancy evaluation
In this method, optimal threshold λ ∗ is calculated by using the golden section search
algorithm on Pe (λ ) to get the minimum sensing error. For this case, the decision metric
is given by

DM (τi, fj) =

1 if A(τi, fj)≥ λ ∗

0 if A(τi, fj)< λ ∗.
(6.18)

The spectrum occupancy at each frequency point and time instant are calculated as per
(6.15) and (6.16), respectively.

6.5 Proposed Prediction Algorithm Based on FLANN

Our main objective is to design the spectrum occupancy model for one day in advance
using Trigonometric FLANN. As noted, we collected a set of data over 5 working days
from Monday to Friday from 9 AM to 5 PM. The total length of time of observation
is divided into 32 time slots of duration 15 minutes and the observation difference, i.e.,
the occupancy difference between any arbitrary selected days, taken at the exact same
time instant τi which is computed at 15 minute intervals. This periodic evaluation is
done to manage complexity and gain insight with initial results.

Let OM (τ1,τ2, ..,τI), OT (τ1,τ2, ..,τI), OW (τ1,τ2, ..,τI), OT H (τ1,τ2, ..,τI) and
OF (τ1,τ2, ..,τI) be the matrices each consisting of the 32 elements of measured
spectrum occupancy at (τ1,τ2, ...,τI) instants on days Monday through Friday,
respectively, which are evaluated from (6.18) and (6.16). Here, the value of I is equal
to 32. The final estimated occupancy statistics of 4 days are represented as
OT F (τ1,τ2, ..,τI), OWF (τ1,τ2, ..,τI), OT HF (τ1,τ2, ..,τI) and OFF (τ1,τ2, ..,τI) for
Tuesday through Friday, respectively and are obtained by updating the weights of the
FLANN to minimize the error between measured and predicted spectrum occupancy
values. For our proposed model, the corresponding threshold values λ2,λ3 and λ4 are
evaluated from the final estimated occupancy results OT F (τ1,τ2, ..,τI),
OWF (τ1,τ2, ..,τI) and OT HF (τ1,τ2, ..,τI), respectively. Let ÔT (τ1,τ2, ..,τI),
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ÔW (τ1,τ2, ..,τI), ÔT H (τ1,τ2, ..,τI) and ÔF (τ1,τ2, ..,τI) be the matrices consisting of
predicted spectral occupancy values of Tuesday through Friday, respectively. As, our
observation duration is the same for all the week days, occupancy statistics are
calculated for the same 32 instants. Steps explaining the future prediction model are
described as follows
Step-1: Calculate optimum threshold λ1 for Monday and find OM (τ1,τ2, ..,τI).
Step-2: Find OT (τ1,τ2, ..,τI). Then, compare the received samples of Tuesday with λ1

to predict ÔT (τ1,τ2, ..,τI), and estimate OT F (τ1,τ2, ..,τI) by updating the weights of
the Trigonometric FLANN to minimize the error between ÔT (τ1,τ2, ..,τI) and
OT (τ1,τ2, ..,τI). Evaluate λ2 fromOT F (τ1,τ2, ..,τI).
Step-3: Compare the spectrum occupancy statistics of OM (τ1,τ2, ..,τI) and
OT F (τ1,τ2, ..,τI), and find the difference of the occupancy at the ith instant which is
expressed as follows

di f f (τi) = |OT F (τi)−OM (τi)| i= [1,2, ....,32] (6.19)

In a similar manner, evaluate the differences at all 32 instances.
Step-4: Add and subtract the observation difference di f f (τi) from the final estimated
occupancy OT F (τi) to generate two new occupancy statistics X(τi) and Y(τi) at τi

instant, respectively. If, the probable occupancy statistics are known a priori, then the
corresponding threshold value can be easily found from measurement data. Hence, we
calculate the corresponding thresholds λx and λy from the matrices X(τ1,τ2, ..,τI) and
Y(τ1,τ2, ..,τI), respectively. Mean value of λx and λy acts as the decision threshold for
Wednesday. Thus, obtain ÔW (τ1,τ2, ..,τI). Including these differences at all 32
instances enables us to account for first-order variation of day-to-day occupancy for
the next day prediction.
Step-5: EvaluateOWF (τ1,τ2, ..,τI) by optimizing the weights of the FLANN to
minimize the error between OW (τ1,τ2, ..,τI) and ÔW (τ1,τ2, ..,τI), and find out λ3

from OWF (τ1,τ2, ..,τI).
Step-6: Similarly, compare OM (τ1,τ2, ..,τI), OT F (τ1,τ2, ..,τI) and OWF (τ1,τ2, ..,τI)

to calculate the observation difference which is given as follows

di f f (τi) =
1
3
{|OWF (τi)−OT F (τi)|+ |OWF (τi)−OM (τi)|+ |OT F (τi)−OM (τi)|}

(6.20)
Evaluate OT HF (τ1,τ2, ..,τI) by using the procedures described in Step-1 to Step-5.
Find out λ4 from OT HF (τ1,τ2, ..,τI). Our underlying assumption in this work is that
occupancy varies diurnally, but is essentially statistically stationary (wide sense) over
our entire measurement/prediction period. Hence, each pairwise difference is equally
weighted.
Step-7: Following the Step-3 to Step-6, compute di f f (τi) for Friday as per the
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following expression

di f f (τi) =
1
6
[|OT HF (τi)−OWF (τi)|+ |OT HF (τi)−OT F (τi)|+ |OT HF (τi)−OM (τi)|

+ |OWF (τi)−OT F (τi)|+ |OWF (τi)−OM (τi)|+ |OT F (τi)−OM (τi)|]
(6.21)

As per Step-4, predict ÔF (τ1,τ2, ..,τI), and finally obtain OFF (τ1,τ2, ..,τI) by
updating the FLANN weights to minimize the error between OF (τ1,τ2, ..,τI) and
ÔF (τ1,τ2, ..,τI).
In general, if we have a historical data set of (N−1) days, then di f f (τi) for Nth day is
calculated as

di f f (τi) =
N−1

∑
a=2

[
1

N−a

N−a
∑
b=1

∣∣O(N−a+1) (τi)−O(N−a+1−b) (τi)
∣∣] (6.22)

which requires (N−2)(N−1)
2 additions. Again, for the occupancy prediction of one day, all

the previous occupancy statistics have to be considered. So, mathematical complexity
increases with an increase in the number of days before the prediction day.

Meanwhile, the accuracy of prediction gradually improves when the data of more
days is averaged, up to a limit, of course. Hence, to get accurate future prediction a
trade-off must be considered between mathematical complexity and prediction
accuracy.

As our measurements were conducted during typical college semester days, the
observation differences show very little changes. Of course, if long term measurements
were conducted, either unusual college events (having significantly larger numbers of
persons accessing the network) or inevitable long-term network usage pattern changes
would occur, and the observation differences would show significant changes. The
proposed method implementing the Trigonometric FLANN is described in Appendix
G.

6.6 CR Implementation in 2.4 GHz Unlicensed Band

The 100 MHz ISM band is not always occupied by the electronic devices at all the
time. So, the CR can be implemented by identifyining the least occupied sub-band for
its data transmission. The maximum transmission power level of the CRU is decided
not to cause any harm to other coexting devices.

6.6.1 Double threshold-based sub-band selection

For the sub-band selection, the frequency band ranges from 2.4 GHz to 2.4835 GHz is
considered as the operating band of bandwidth 83.5 MHz which is then divided into N

Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network 141



6.6 CR Implementation in 2.4 GHz Unlicensed Band

sub-bands each of bandwidth Bs. The CRU performs SS on N sub-bands to select the
least occupied sub-band for its data transmission; so that the interference to the other
co-existing devices can be minimized. If s(n) represents the transmitted signal from the
other coexisting devices, then the received signal of nth sample at CRU on nth sub-band
is given by

xn (n) =

ηn (n) , (H0)

s(n)h+ηn (n) , (H1)
(6.23)

where n = [1,2, ....,N] and n= [1,2, ....,N ]. The two hypotheses H0 and H1 represent
the idle and busy state of the nth sub-band, respectively. ηn is the additive white
Gaussian noise in the nth sub-band of mean zero and variance ση

2. Then, the sensing
metric of the nth sub-band is given by

Yn =
1
N

N−1

∑
n=0
|xn (n)|2 (6.24)

Specifically, the spectrum occupancy statistic is measured by two parameters
probability of detection Pd and the probability of false alarm Pf . In difference to the
conventional SS techniques, here we define the performance metrics on the basis of
channel vacancy. Pdn is defined as the probability that the CRU correctly identifies the
nth sub-band to be vacant. Pfn is defined as the probability that the CRU identifies the
occupied sub-band to be vacant. Similarly, the miss detection probability Pmdn

represents the probability of identifying a vacant sub-band to be occupied. In a single
threshold-based detection scheme, decrease in Pf leads to increase in Pmd , this
decreases the spectral usage. Hence, we address the double threshold-based
measurement scheme to ensure the target miss detection probability with less Pf

through two controlling thresholds λ1 and λ2. The main objective is to identify the
vacant band correctly for data transmission. So, we keep Pmd lower bounded and
control Pf by varying ∆; where ∆ = λ1 − λ2. Figure 6.5 shows the double
threshold-based spectrum detection scheme.

Figure 6.5: Double threshold-based spectrum availability metric.

In this experiment, the occupancy of the nth sub-band is evaluated from the received
signal strength. Data is collected over the frequency span and time span, and make a
matrix A of size I×J. I and J represent the total number of discrete time instants and
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total number of frequency points available in the nth sub-band, respectively. So, each
component of the matrix is expressed as A(τi, fj), where i represents the discrete time
instant and j represents the frequency point. Accurate channel utilization is evaluated
by comparing each sample that lies within the sub-band with the two thresholds. So,
the decision metric is evaluated as

DMn (τi, fj) =


0 if A(τi, fj)< λ2

Underutilized if λ2 ≤ A(τi, fj)≤ λ1

1 if A(τi, fj)> λ1.

(6.25)

The nth sub-band utilization is expressed as

CUn =
∑
I
i=1 ∑

J
j=1 DMn (τi, fi)

IJ
(6.26)

In these conditions, Pdn, Pfn and Pmdn are represented as

Pdn = Pr (Yn < λ2|H0) (6.27)

Pfn = Pr (Yn < λ2|H1) (6.28)

Pmdn = 1−Pr (Yn < λ1|H0) = Pr (Yn > λ1|H0) (6.29)

Pmdn = Pr (λ2 ≤ Yn ≤ λ1|H0) (6.30)

According to (6.29) and (6.30), Pmdn occurs when the noise samples exceed the decision
threshold λ1, and the CRU consider the vacant band to be occupied. However, the
probability of (6.30) is less; so we consider (6.29) for deriving decision threshold λ1 for
the given Pmdn. Hence,λ1 for the nth sub-band is evaluated as

λ1 = NF (dBm)+Q−1 (Pmdn)ση
2 (6.31)

where NF (dBm) represents the CR noise floor, and is given by [183]

NF =−154(dBm/Hz)+10log(RBW ) (6.32)

The estimated noise power spectral density (PSD) for this specific frequency range with
this SA is ≈−154(dBm/Hz) and ση

2 represents the noise variance. The ideal thermal
noise PSD is ≈ −174(dBm/Hz). So, the measured noise PSD is 20 dBm higher than
the ideal thermal noise PSD. Before transmitting data, the CRU scans each sub-band for
the total time duration T . If the signal is received at Ts interval then the signal strengths
are averaged over the frequency points fall within the frequency range of a particular
sub-band. If N number of samples are chosen during T , then the occupancy statistics of
the nth sub-band evaluated from the (6.25) and (6.26) are expressed as

Hn =
{

Hn
1,Hn

2,Hn
3} (6.33)

The three elements Hn
1, Hn

2 and Hn
3 represent the three states busy, idle, and

underutilized of the nth sub-band, respectively. The final occupancy status of each
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sub-band at kth instant is given by

Ōn (k) = max
{

Hn
1,Hn

2,Hn
3} (6.34)

Then, each sub-band is experimented over K times to obtain the final occupancy statistic

of the nth sub-band which is given by Ōn =
1
K

K
∑

k=1
Ōn (k). So, all the N sub-bands are

experimented over K times to get the final occupancy statistic which is given as

Ō =
[
Ō1, Ō2, ...., ŌN

]
(6.35)

Let J number of sub-bands obtain Hn
1, hence, the CRU finds these sub-bands to be

fully congested. So, it has to select from N −J sub-bands for its data transmission.
Then, the channel vacancy statistics of N −J sub-bands are evaluated referring (6.26)
for the first condition given in (6.25). Let it be expressed as

V =
[
V1,V2, ....,VN −J

]
(6.36)

Then, V =
[
V1,V2, ....,VN −J

]
is processed through the interference free

communication index (IFCI) [184] which measure how long the CRU can transmit
data without causing interference to the co-existing devices on that particular sub-band
which is expressed as

Zn
′ = e−V

n
′ n

′
= [1,2, ....,N −J ] (6.37)

The values of Z =
[
Z1,Z2, ....,ZN −J

]
vary between 0 and 1. The least value of Z

indicates the interference free nth sub-band which is used by the CRU for its data
transmission. We assume that the CRU has to stay on the selected sub-band for the
duration T . If the CRU intend to transmit its data in another duration, then it has to
switch to that sub-band (sub-band is selected by employing (6.37)). In this way,
interference introduced to the co-existing systems can be minimized to some extent.

6.6.2 Power allocation and path-loss model

The CRU transmitter employs OFDM scheme for data transmission. So, each sub-band
of bandwidth Bs is divided into S orthogonal sub-carriers, each of bandwidth ∆ f . As, we
have considered the underlay spectrum sharing mechanism in which the CRU co-exists
with the other systems; the transmitting power should be adopted such that it would
not cause any interference to other coexisting devices. Hence, the minimum allowable
transmit power of the CRU in a sub-band can be expressed as [185]

Ptmin (dBm) =−61dBm/MHz+10log10 (S×∆ f )dBm (6.38)

If the PSD measured in 1 MHz does not exceed ≈ −61dBm, it will not cause any
interference to the other devices operating in this 2.4 GHz ISM band.

Most of the devices in 2.4 GHz ISM band operate in low power. For example, the
transmitting power of Bluetooth ranges from 0 dBm (1mW) to 20 dBm (100 mW). The
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minimum transmission power level for IEEE 802.15.4 is 6 dBm. The maximum output
power of the operating devices is limited to 30 dBm. Hence, the transmitting power of
the CRU on the sth sub-carrier is Pts which is limited between minimum transmitting
power Ptmins =−40dBm and maximum transmitting power Ptmaxs. We assume Ptmaxs is
-10 dBm. In the indoor environment, the transmitting signal from the CRU suffers from
reflection and diffraction, and may also be interrupted due to the partition walls or due
to motion of any objects or persons. The basic path loss model adopted in this chapter
is

PL (dB) = PL (d0)+ Ω̄log10

(
d
d0

)
+L f (p)(dB) (6.39)

where Ω̄: distance power loss coefficient, L f (p): floor penetration loss factor (dB)
where p is number of floors between the two terminals, f : frequency (MHz), d: distance
between the two CRUs (d > 1m) and d0: reference distance (1m). The values of the
parameters are obtained from the International telecommunication union (ITU) indoor
propagation channel model [186] considering the office scenario.

6.6.3 Throughput analysis

The measurement was conducted in the office hour from 9 AM-5 PM. So, it is obvious
that almost all the electronic devices are active during this period. Specifically,
interference to the co-existing systems occurs due to the CRU’s data transmission. So,
the amount of interference introduced by the sth sub-carrier to the jth sub-band can be
expressed as [67]

Is
j = gs

∆ls+∆ f/2
∫

∆ls−∆ f/2

Θs ( f )d f (6.40)

where gs is the channel gain, and Θs ( f ) represents the PSD of the sth sub-carrier which
can be expressed as

Θs ( f ) = ToPts

(
sinπ f To

π f To

)2

(6.41)

where To is the OFDM symbol duration. ∆ls represents the frequency separation
between the sth sub-carrier of nth sub-band and the center frequency of the jth
sub-band (highest occupied sub-band). Hence, the average interference introduced by
the sth sub-carrier to all J sub-bands is given by

Iavgs =
J

∑
j=1

I0
j (6.42)

Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network 145



6.6 CR Implementation in 2.4 GHz Unlicensed Band

where I0
j = gsTo

∆ls+∆ f/2
∫

∆ls−∆ f/2

(
sinπ f To

π f To

)2
d f . Data transmission always takes place on the

least occupied sub-band. Then, the overall throughput achieved is

R = PH0

S

∑
s=1

C0s (6.43)

Let N1 be the number of samples lies below λ2. Then, the absence rate is PH0 = N1
/
N.

Neglecting the interference from the co-existing systems on the selected sub-band, we
assume that

C0s = log2

(
1+
|hss|2Pts

Np

)
(6.44)

Here, |hss|2 represents the channel gain between the CRUs on sth sub-carrier and is
calculated from the path-loss model (6.39), and Np is the noise power. Then, the
throughput maximization problem under the interference constraint can be formulated
as

Maximize

Pt
: R (6.45)

Sub ject to :
S

∑
s=1

Pts ≤ Ptmax (6.45 a)

:
S

∑
s=1

PtsIavgs ≤ Ith (6.45 b)

where Pt = [Pt1,Pt2, ....,PtS] and Ptmax is the maximum transmission power. Ith is the
interference threshold below which the secondary transmission does not affect the co-
existing systems. The optimization problem (6.45) is a standard convex optimization
problem, hence it can be solved by the Lagrangian duality theorem which is expressed
as

L(µ,θ) = R+µ

(
Ith−

S

∑
s=1

PtsIavgs

)
+θ

(
Pt max−

S

∑
s=1

Pts

)
(6.46)

Then, Pts is derived by using the KKT condition [127]

Pts =

[
1

(θ +µ ∑
S
s=1 Iavgs)ln2

− Np

|hss|2

]+
(6.47)

where [.]+ = max [0, .]. µ and θ are known as Lagrangian multipliers, and are updated
by using the sub-gradient method as per the following expression

µ (it +1) =

[
µ (it)−ψ (it)

(
Ith−

S

∑
s=1

PtsIavgs

)]+
(6.48)

θ (it +1) =

[
θ (it)−ψ (it)

(
Pt max−

S

∑
s=1

Pts

)]+
(6.49)
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where ψ (it) is non-negative step size for the current iteration it and is set at 1√
it

. So,
ψ (it) decreases with the number of iteration. µ and θ converge to the optimal values
when ψ (it) is sufficiently small.

6.7 Performance Assessment and Discussion

The numerical computations are carried out in MATLAB environment with a Windows
8 based operating system, with a 3.4 GHz i7 CPU and 6 GB RAM specifications. In the
experimental results, Feed-forward MLP, Recurrent MLP, Trigonometric based FLANN
and Chebyshev based FLANN are represented by the legends F-MLP, R-MLP, TG-
FLANN and CH-FLANN, respectively. Unlike the other models, ANN requires only
one training process for adjustment of the interconnected processing parameters meant
for a specific problem. During the training process, the weights are initialized randomly
and then adjusted iteratively to minimize the normalized mean square error (MSE). If
t be the current iteration number and e(t) is the error at that iteration, then normalized
MSE is calculated as 10log10

(
e(t)

max(e(t))

)
. Training parameters are chosen after the trial

and error process. All these four models employ the same training and testing samples.
After the completion of training, weights are fixed and used for testing. The targeted Pf

and weighting factor z are set 0.1 and 0.5, respectively.

For our experiment, the F-MLP and R-MLP models consist of a single hidden
layer with 10 neurons. In FLANN, the input data is expanded using 9 polynomial
functions that are either the Trigonometric or Chebyshev polynomial functional
expansions. After the trial and error process, the learning rate for both ANN and
FLANN is set 0.07. In all cases, the logistic sigmoid function is used as the nonlinear
transfer function. The weights are updated for 8000 iterations. For training purposes,
10,000 samples are selected randomly at each frequency point and the normalized
MSE is calculated by comparing the actual average spectrum occupancy value with the
predicted average spectrum occupancy. The general convergence characteristics of the
MLP and FLANN for predicting spectrum occupancy statistics are shown in Figure
6.6. The elapsed time required for the training process of F-MLP, R-MLP,
CH-FLANN and TG-FLANN are 445.283 sec, 272.373 sec, 69.483 sec and 74.125
sec, respectively for 8000 iterations, and are 110.928 sec, 69.252 sec, 10.647 sec and
11.309 sec, respectively for 2000 iterations. Hence, FLANN outperforms the MLP in
terms of less computational time and smaller normalized MSE. It is noticed that
CH-FLANN has the lowest convergence time whereas F-MLP requires the highest
time to converge. It is also observed that as iteration number increases, the normalized
MSE of CH-FLANN gradually decreases but only very gradually. Further, a larger
number of iterations implies greater complexity (and time) for these models. So, it
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may be concluded that though TG-FLANN requires slightly more computational time
than CH-FLANN, it outperforms the other models in terms of normalized MSE.
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(b) 2000 iterations.

Figure 6.6: General convergence characteristics of ANN models.

The average received signal power over the frequency band and the time period for
the entire days of measurements is shown in Figure 6.7. Figure 6.8 depicts the
maximum, minimum and mean signal strength in dBm against frequency band.
Considering the entire time period, the maximum values of received signal power,
minimum values of signal power levels and mean values of received signal strength are
calculated at each frequency point. So, it is observed that the overall received signal
strength lies between -107.15 dBm and -24.55 dBm with mean value -80.874 dBm.
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Figure 6.7: Received signal power for 2.4 GHz to 2.5 GHz over the days of observation.
Frequency is shown in Hz and Time is in the format of hour: minute.
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Figure 6.8: Statistics of signal level over the entire frequency range of measurement for
the entire course of 5 working days (Monday-Friday).

For testing purposes, 80,000 data samples are selected at each frequency point and
are used for evaluating the performance of four ANN models with the three different
threshold selection methods. Figure 6.9 illustrates the performance of ANN models
using the test data employing three different threshold methods. It is noted that all four
ANN models are trained well to evaluate spectrum occupancy with high accuracy.
Figure 6.10 illustrates the effect of decision thresholds on the spectrum occupancy
prediction by TG-FLANN, and it is evidently observed that the detection performance
is greatly influenced by the decision threshold.
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(a) Fixed threshold.
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(b) Dynamic threshold.
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(c) Optimal threshold.

Figure 6.9: Illustration of spectrum occupancy results (over Monday- Friday)
comparing the performance of ANN models.
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Figure 6.10: Illustration of the TG-FLANN results for the 3 different threshold
methods; Fixed threshold (F-Threshold), Dynamic threshold (D-Threshold) and
Optimum threshold (O-Threshold).

Table 6.2 summarizes the performance of all four ANN models for three different
types of threshold evaluations. It is noted that fixed decision threshold based
measurement shows a larger spectral occupancy but the optimal threshold yields
minimum sensing error (with our chosen value of z). It is also observed that FLANN
predicts more accurate spectrum occupancy. The main goal of our work is to improve
CR learning schemes by introducing the FLANN model, which we have shown can
learn and train its parameters from historical information.

Table 6.2: Performance comparison of ANN models in terms of accuracy.

Decision Actual Avg. Sensing ANN models Predicted Accuracy%
threshold occupancy% error Avg.

occupancy
F-MLP 85.38 97.8

Fixed 83.54 0.1479 R-MLP 84.75 98.55
threshold CH-FLANN 82.76 99.06

TG-FLANN 84.19 99.22
F-MLP 83.08 97.65

Dynamic 81.18 0.1541(mean R-MLP 82.62 98.22
threshold value) CH-FLANN 80.93 99.69

TG-FLANN 81.1 99.9
F-MLP 82.81 97.19

Optimum 80.55 0.1463 R-MLP 82.37 97.74
threshold CH-FLANN 79.86 99.14

TG-FLANN 80.38 99.78

The received samples are organized to show the variation of spectrum occupancy
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at different time periods over the entire frequency range. The result for the optimum
threshold is shown in Figure 6.11. It is clearly noticed that the spectrum occupancy
is distinctly high in 3 different WLAN channels in channel: 1, 6 and 11. As per the
802.11 WLAN group, only 11 channels are allowed in USA. Hence, the unused WLAN
channels 12, 13 and 14 of center frequency 2.467, 2.472 and 2.484 GHz, respectively,
are empty and contain no signal component. Out of the 3 distinct channels (1, 6 and
11), channel 6 is mostly occupied by WLAN and other electronics devices operating in
this 2.4-2.5 GHz frequency range.

Figure 6.11: Illustration of spectrum occupancy over different time period for ISM band
(over 5 days of observations).

Out of the four ANN models, the Trigonometric FLANN yields the most accurate
spectrum occupancy statistics, although the Chebyshev FLANN results are essentially
identical. We have observed from Table 6.2 that Chebyshev FLANN gives under
estimation of spectrum occupancy which is more serious than over estimation of
spectrum occupancy. Hence, our proposed forecasting prediction model is designed
with the Trigonometric FLANN. Figure 6.12 illustrates the comparison between actual
spectrum occupancy (spectrum occupancy obtained by comparing the received
samples with the optimal threshold) and the predicted spectrum occupancy obtained by
our proposed algorithm based on FLANN prediction model for the 4 working days
(Tuesday through Friday). Average occupancy of the ISM band for five working days
is illustrated in Figure 6.13. For Figure 6.13, the average predicted occupancies for
Tuesday to Friday are evaluated by employing our proposed algorithm. It is observed
that Friday shows slightly more occupancy than the other days. It may be concluded
that the spectrum occupancy statistics are fairly constant over the week days
Monday-Friday.
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From Figure 6.14, it is evident that as the amount of averaged historical data
increases over the week, our proposed model becomes more accurate. For Tuesday, the
accuracy of prediction decreases slightly (as the algorithm has only one data set at that
time), then increases and maintains a constant value for Wednesday, Thursday and
Friday.
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(b) Wednesday.
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(c) Thursday.
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Figure 6.12: Validation of the proposed method for future occupancy prediction.
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Figure 6.13: Comparison of actual occupancy with predicted occupancy over 5 working
days in a week.
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Figure 6.14: Depiction of accuracy achieved from forecasting model for 5 working days
in a week.

In our experiment, the measurements were conducted during the usual college
days. So, we achieve about 99% accuracy from our future prediction model. However,
our proposed model can also be employed to predict the spectrum occupancy in any
scenarios having different statistics (e.g., unusual college events) as long as the
measurements/predictions take place during periods when the statistics are constant.

Implementing the CR technology, Figure 6.15 shows the average spectrum
occupancy over the 5 days of observation. λ1 is evaluated from (6.31) taking
Pmd = 0.1. λ2 is calculated from the given value of ∆ = 0.5. The measurement was
carried out during Fall 2014 semester in usual college days. Hence, the spectrum
occupancies of those days are nearly same. However, Thursday shows the least
occupied day. So, the measurement data of Thursday is used for implementing the CR
application. Exactly, it would not be the practical case, because the CRU may choose
any day for its data transmission. Specifically, we have chosen Thursday data set for
further evaluation.

Figure 6.16 shows the impact of threshold difference ∆ on the spectrum utilization.
It is observed that with the increase in ∆, probability of underutilization increases but
the probability that the information signal samples fall below λ2 decreases. But, if we
increase the value of ∆ further, the vacancy probability and underutilization coincide.
Figure 6.17 shows the impact of target miss detection probability on the false alarm
probability for different values of ∆. It is observed that Pf decreases with increase in
Pmd . Hence, for targeted Pmd , Pf can be controlled by varying the value of ∆.
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Figure 6.15: Spectrum utilization over week days.
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Figure 6.16: Variation of spectrum utilization over ∆.
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Figure 6.17: Impact of targeted Pmd on Pf .

The channel availability is checked for the particular duration T before the CRU
transmits its data. Let Ts be the interval between the two received signal strengths, and
FR is the number of frames have to be identified per sub-band. Specifically, there is a
periodic beacon frame from Wi-Fi APs in every 100 msec. So, Ts must be chosen very
carefully such that the received signals are not correlated, and Ts ≥150 msec. For our
experiment we have chosen Ts=10 sec, T =1 hr and FR=300. Hence, 300 samples are
selected at each frequency point for evaluating the channel utilization. 802.11 b/g/n Wi-
Fi devices mostly transmit in the non-overlapping channels (Channel 1, Channel 6 and
Channel 11) of center frequencies 2.412 GHz, 2.437 GHz and 2.462 GHz. Microwave
oven operates around 2.45 GHz. So, all the sub-bands are not fully occupied at all the
times. As the total number of frequency points in SA is 461, the discrete frequency
point fn in the frequency range 2.4 – 2.5 GHz is given by (6.1). The measurement was
carried out in the frequency span of 100 MHz, but the sub-band selection is done within
the bandwidth 83.5 MHz. Hence, 388 number of discrete frequency points out of 461
are processed for the evaluation of Figure 6.18 – Figure 6.21. We divide the entire
licensed band into 14 sub-bands each of 5 MHz bandwidth and separated by guard
bandwidth 0.4 MHz. So, 23 discrete frequency points are assigned to each sub-band
maintaining a gap of 3 discrete frequency points between the sub-bands. The CRU has
to select the appropriate sub-band for the data transmission using (6.37).

Figure 6.18 shows the occupancy status of all the sub-bands for 11 AM to 12 PM
on Thursday. It is observed that sub-band 4 is highly congested, and sub-band 14 can
be used for data transmission by the CRU. We set Pmdn=0.1 and ∆=0.5. Figure 6.19
shows the variation of system throughput over 8 hours of observation (9 AM – 5 PM)
on Thursday. We set Ptmins= -40 dBm, Ptmaxs=-10 dBm and Ptmax= 0 dBm. Ith is set at
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-20 dBm. The OFDM symbol duration T0= 25 µsec and Np is assumed to be -90 dBm.
Each sub-band is divided into 16 sub-carriers. From the figure it is depicted that system
throughput decreases as time increases from 9 AM. This means as time approaches
towards afternoon, the hallways in the Swearingen Engineering Center are getting busy
showing the busy duration of the college campus. So, more active users are accessing
the spectrum from 12 PM onwards, and the sub-band is highly occupied during 2 PM-4
PM. Thus, throughput is less during this period. Further, the throughput is higher for
less value of ∆.
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Figure 6.18: Spectrum utilization variation in different sub-bands.
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Figure 6.19: Variation of system throughput over different time periods.

Figure 6.20 shows the impact of distance difference between the CRUs on the
system throughput for Ptmaxs= -10 dBm, -5 dBm and 0 dBm. Ptmax is set at 5 dBm. It is
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obvious that path-loss increases when the distance increases, so throughput decreases.
For Ptmaxs=-10 dBm, normalized throughput decreases by 32% when distance between
the CRUs increases from 2 to 4 meter. With rise in maximum power Ptmaxs by 5 dBm
and 10 dBm from -10 dBm, normalized throughput is increased by 3% and 5%,
respectively, when the distance between the CRUs is 3meter.
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Figure 6.20: Impact of distance difference between the CRUs on throughput.

Figure 6.21 shows the impact of Ith on the system throughput taking the most
vacant sub-band and the most congested sub-band. It is obvious that as interference
threshold increases, the upper bound transmission power of each CRU increases as per
(6.45 b), so, throughput increases. Further, PH0 is more in the vacant sub-band than the
congested sub-band, so vacant sub-band shows more throughput. For Ith=-30 dBm
vacant sub-band offers improvement in normalized throughput by 2% compared to the
congested sub-band. When Ith increases by 40 dBm from -50 dBm to -10 dBm,
normalized throughput in the vacant sub-band is improved by 39%.
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Figure 6.21: Impact of Ith on throughput.

6.8 Summary

The inclusion of recent advancements in learning schemes for ANNs can provide
better models for forecasting future spectrum occupancy, which facilitates
energy-efficient radio systems. This chapter proposed an optimum threshold based
enhanced FLANN soft computing method into the CR application. Experimental
results showed that this model gave better prediction accuracy and took less
computational time compared to conventional ANN models. Furthermore, a prediction
model was proposed to forecast the channel statistics by analyzing the previously
observed data. FLANN provided a fairly accurate prediction of spectrum occupancy
one day in advance. So, FLANN based spectrum occupancy prediction can be an
effective approach towards improving the CR performance further. This research has
attempted deployment of CR technology in 2.4 GHz ISM band. Double
threshold-based detection scheme was used to find the exact status of the spectrum
occupancy, which ultimately improved the spectral efficiency. The performance of the
proposed scheme was investigated using the real data collected in 2.4-2.5 GHz
spectrum band. In addition, an adaptive power allocation scheme was proposed for
CRUs’ data transmission with limited interference to the co-existing systems. Hence,
it is concluded that by adaptive proper resource allocation with the suitable channel
selection, CR can be successfully deployed in an unlicensed band, which can solve the
spectrum scarcity issue to certain extent.

Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network 159



Chapter 7

Conclusions and Future Work
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7.2 Chapterwise Conclusions

7.1 Introduction

THE demand for more spectral efficient wireless communication
has led to the development of intelligent dynamic technologies for new wireless

communication systems. CR is basically a set of technologies that can utilize the
techniques of machine learning, game theory, and artificial intelligence properties to
attain this dynamic behavior. However, CR is a complex system that must have the
ability to perceive the radio channels, to learn and to adapt its parameters according to
statistical variations of the surrounding environment. The inclusion of intelligent
schemes for optimizing the resource parameters facilitates the energy-efficient radio
systems. Hence, in this thesis, the proposed approaches aim for EE maximization
considering different domain specific constraints defined for various scenarios.

7.2 Chapterwise Conclusions

This thesis focused on developing intelligent approaches for energy-efficient resource
allocation in the CRN. The CRN system model is consisting of the PU, SUs, SRs and
the PR. The SUs are distributed at different distances from the PU. So, their distance
dependent channel gains are very important in choosing the appropriate SUs for SS
and data transmission. The SUs chosen for SS may not improve the system
throughput, but there are some common parameters on which both SS and EE depend.
Hence, this dissertation addressed the EE maximization problem satisfying the
constraints of interference to the PR, minimum achievable data rate of the SUs and
target detection probability by selecting suitable SUs, optimizing sensing time and
allocating appropriate power to the SUs.

Chapter 2 discussed different transmitter detection techniques and their advantages
and disadvantages in detail. The two fusion schemes HDF and SDF were discussed
and their performances were analyzed through the simulation results. It was observed
from Figure 2.7 that Hybrid IWOPSO algorithm outperformed the other SDF-based
weight combining schemes by improving the probability of detection. The detection
performance was further improved by optimizing the weight coefficients at the FC using
multi-objective optimization algorithms.

In Chapter 3, a circular grid consisting of the stationary SUs distributed around the
centrally located PU was chosen to represent the system model. In the assumed
scenario, the PR was present closer to the PU and the SRs were distributed around the
PU maintaing slightly larger distances from the PU. The FC used both single and
double threshold-based fusion schemes. Suitable SUs were chosen separately for SS
and data transmission using the proposed algorithm. In double threshold-based
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detection scheme, the minimum number of SUs was evaluated for minimum sensing
rounds. The EE maximization problem was solved by the proposed IDM algorithm
which jointly optimized the sensing time and power allocation. The sensing time
optimization was evaluated by employing golden section search method which
maximizes the system throughput. The power allocation to the SUs was optimized
using EPA algorithm. From the simulation results, it was observed that the inclusion of
suitable SUs improved the detection performance by 14% for SNR=-18 dB. Figure 3.5
showed minimum number of SUs and the sensing rounds required for the given SNR.
The efficacy of our proposed approaches was illustrated in Figure 3.7 by comparing
with the other existing schemes. Further, it was observed that the system throughput
was increased by 8% for SNR=-11 dB by using 6 number of suitable SUs. It was
verified that with increasing the interference and throughput threshold, EE reduces.
Further, EE and throughput were maximized by 10% and 19%, respectively if the
target detection probability is set at 0.9 in case of double threshold-based detection
scheme.

In Chapter 4, we considered the presence of the PUE attacker closer to the PU in
the CRN along with the SUs, PR and SRs. On this system model, EE maximization
problem was formulated for both single and double threshold-based detection schemes
at the FC. In addition to this, each SU used double threshold-based detection scheme
to further enhance the detection probability. The global decision was made by the
hybrid MRC-OR double threshold data fusion scheme. The negative impact of the
attacker on the secondary network was considered as the constraints in terms of
interference, transmission delay and throughput balancing power allocation while
formulating the EE maximization problem. The eligible SUs for SS and data
transmission were selected initially and the EE maximization problem was solved by
our proposed NIRA algorithm. To overcome the high computational complexity of
NIRA, an improved NARA algorithm was proposed. It was observed that NARA
algorithm offered improvement in EE approximately by 9 times as shown in Figure
4.13 for the defined system parameters. It was clearly observed from Figure 4.11 that
the attacker signal reduced the SINR, hence required more power consumption. For
the given target detection probability 0.9, the presence of attacker decreased the
system throughput by 76% but increased the power consumption by 15%. It was
concluded that EE can be maximized by increasing SNR and threshold difference as
shown in Figure 4.9 and Figure 4.14, respectively.

In extension to the work carried in Chapter 3 and Chapter 4, Chapter 5 introduced
the intelligent resource allocation in the CR-VANET where the CRs were mounted on
the moving vehicles. A typical vehicular network scenario in which the PU, PR, SR
and the FC were present at certain distances from the road lane was considered in this
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research. The protective region of the PU and the transmission region of the SUs were
named as zone 1 and zone 2 which covered some portions of the road. Then, the
expected number of vehicles were calculated for the zone 1 and zone 2. In this
CR-VANET, the performance metrics were evaluated by considering the spatial
correlation of each vehicle with the other vehicles. In the moving vehicular scenario,
the time varying channel responses made the EE maximization problem more
comprehensive. Hence, EE was maximized under the various constraints like
interference to the PR, maximum transmission power and minimum achievable data
rate. An adaptive algorithm based on NLMS was proposed to solve such type of
time-varying optimization problem which showed 14% improvement in EE compared
to the scheme without considering those constraints. Figure 5.5 illustrated that lower
SNR required more sensing time than the higher SNR. It was also verified from Figure
5.7b that EE without considering the PUE attacker was increased by 12 times over the
system model with PUE attacker. But power consumption in the presence of the
attacker was increased by 80% without the attacker when the throughput threshold was
set at 2.1 bits/s/Hz. The proposed approaches will be highly beneficial for CR-VANET
even in an adversarial wireless environment.

Chapter 6 discussed our novel attempt of CR deployment in the ISM band. From
the real measurement data in 2.4-2.5 GHZ spectrum band, spectrum occupancy was
evaluated. Also, the proposed spectrum occupancy prediction algorithm based on
FLANN was successful in predicting the occupancy of the ISM band prior to the
observation day as 99% of accuracy from the prediction model was achieved. An
interference-aware intelligent power allocation scheme was utilized for the CRU so
that the transmitting power of the CRU would not cause any significant interference to
the other co-existing devices.

7.3 Future Scope of Research

The CR technology explores itself to the multidisciplinary field which requires more
robust and heuristic algorithms to support the adversarial wireless surroundings.
Though the thesis contributed novel resource allocation schemes towards the
energy-efficient CRN design satisfying different constraints, still it may be extended as
our future work.

• ED-based SS techniques considered throughout the thesis are semi-blind.
Therefore, in order to make the system more robust to noise uncertainty, blind
SS based techniques may be used.

• In the thesis, the performance of our proposed algorithm was analyzed by
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assuming that the PU is fixed and present at the center. Accordingly, the
positions of all the SUs were determined. In a real time scenario, where the PUs
are mobile and transmit with low power, the fixed power allocation may not be
suitable. In that context, while designing the power allocation algorithm
dependence on different channel parameters and the shadowing factor need to be
incorporated.

• The algorithms in this research were proposed for a typical system model.
Designing CRN models for a heterogeneous Two-Tier network consisting of
picocells and femtocells may be attempted.
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Appendix A

Derivation of (3.18)

The outage of mth SU is

Poutm = Pr

{
log2

(
1+
|hsrm|2Ptm

Np

)
< Rth

}
(A.1)

So, the overall outage probability of mth SU is given by

Poutm =
τd

Γ

[
PH0

(
1−Q f

(
λg2
))

Pr

(
log2

(
1+
|hsrm|2Ptm

Np

)
< Rth

)
+

PH1Q̄md
(
λg1
)

Pr

(
log2

(
1+

|hsrm|2Ptm

Np +Pp
∣∣hprm

∣∣2
)

< Rth

)]
(A.2)

Poutm =
τd

Γ

[
PH0

(
1−Q f

(
λg2
))

Pr

(
|hsrm|2 < γth

)
+

PH1Q̄md
(
λg1
)

Pr

(
|hsrm|2−

∣∣hprm
∣∣2γpγth < γth

)]
(A.3)

As |hsrm|2 and
∣∣hprm

∣∣2 are Rayleigh distributed and independent of each other, so

Pr

(
|hsrm|2 < γth

)
= 1− exp

(
γth

σsrm2

)
(A.4)

Pr

(
|hsrm|2−

∣∣hprm
∣∣2γpγth < γth

)
=
∫ ∫ 1

σsrm2 exp
(
− x

σsrm2

)
1

σprm2 exp
(
− y

σprm2

)
dxdy

=1− σsrm
2

σprm2γpγth +σsrm2 exp
(
− γth

σsrm2

)
(A.5)

Substituting the solutions (A.4) and (A.5) in (A.2), (3.18) is obtained.
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Appendix B

Proof of R(τs,Pt) is a unimodal function in the
range 0≤ τs ≤ T .
Appendix B1 (Single threshold-based SDF model)

R
′
(τs,Pt) =

dR(τs,Pt)

dτs
=

C0PH0

Γ

[{(
−Q f

′
(τs)

)
τd

}
−
(
1−Q f (τs)

)]
(B.1)

Solving (3.4) as single threshold, we have

Q
′
f (τs) =

−b
√

fs

2
√

2π
τs
− 1

2 exp

(
−
(
a+b

√
τs fs

)2

2

)
(B.2)

where C0 = ∑
M
m=1C0m, At τs = 0, since Q

′
f (0) =−∞. So lim

τs→0
R
′
(0) = ∞ for all values

of Pt . At τs = Γ, since 0 ≤ Q f (Γ) < 1. So, lim
τs→∞

R
′
(Γ) < 0. Hence, it is proved that

R
′
(τs) is a unimodal function in the range 0≤ τs ≤ Γ.

Appendix B2(Double threshold-based SDF model)

R′ (τs) =
1
T

C0PH0

[{
−
(

SR
′
(τs)τs +SR (τs)

)}(
1−Q f (τs)

)
+ τd

(
−Q f

′
(τs)
)]

(B.3)

From (3.3), (3.4) and (3.5)

Q f
′
(τs) =

−
(

∆
′
+b
)√

fs
√

8πτs
exp

−
(

a+(∆
′
+b)
√

τs fs

)2

2

 (B.4)

SR
′
(τs) =

(
Q̃
′
f (τs)−Q f

′
(τs)
)

PH0(
1−
((

Q̄d−Qd (τs)
)

PH1 +
(
Q̃ f (τs)−Q f (τs)

)
PH0
))2 (B.5)

In deriving (B.5), we will see that Q f
′
(0) = Q̃

′
f (0) =−∞ for any value of ∆. Similar to

the condition given in Appendix B1, it is proved that R
′
(τs) is a unimodal function in

the range 0≤ τs ≤ Γ.
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Appendix C

Proof of SR is a decreasing function of M.

Let δ is decided such that Q f
(
λg2
)
= Q̄ f . Then, taking the first partial derivative of SR

with respect to M

SR
′
=
−Qd

′(λg2)PH1 + Q̃′f (λg1)PH0

(1−ρ)2 (C.1)

For the given target false alarm probability Q̄ f , Qd
(
λg2
)

is given by

Qd
(
λg2
)
= Q


Q−1 (Q̄ f

)√
2

M
∑

m=1
σηm4wm2−

M
∑

m=1
σηm

2wmγm
√

τs fs√
2

M
∑

m=1
σηm4 (1+2γm)wm2

 (C.2)

From (3.3) and (C.2), it is proved that Q̃ f
(
λg1
)

and Qd
(
λg2
)

are the decreasing and
increasing function of M, respectively. Hence, dSR

dK < 0. So, it is proved that SR is a
decreasing function of M.
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Appendix D

Proof of convergence of
F (ϒ,τs,Pt) = {R(τs,Pt)−ϒPT (τs,Pt)}.
To prove this convergence, let S be the search subset, then F (ϒ) =

max
τs,Pt
{R(τs,Pt)−ϒPT (τs,Pt)} is a monotonically decreasing function and converges at

each iteration.
Proof: Let t represents the current iteration. First, assume that ϒ(t +1)> ϒ(t). Then

F (ϒ(t +1)) = max{R(τs,Pt)−ϒ(t +1)PT (τs,Pt)} (D.1)

= R
(
τs
∗,Pt

∗)−ϒ(t +1)PT (τs
∗,Pt

∗)

< R
(
τs
∗,Pt

∗)−ϒ(t)PT
(
τs
∗,Pt

∗)
≤ max{R(τs,Pt)−ϒ(t)PT (τs,Pt)}
= F (ϒ(t))

To prove the convergence of F (ϒ,τs,Pt), it is sufficient to show that
R(τs,Pt)−ϒ(t)PT (τs,Pt) decreases with successive iterations. We know that

F (ϒ(t)) = R
(
τs
∗ (t) ,Pt

∗(t)
)
−ϒ(t)PT

(
τs
∗ (t) ,Pt

∗(t)
)

(D.2)

= ϒ(t +1)PT (τs
∗ (t) ,Pt

∗(t))−ϒ(t)PT
(
τs
∗ (t) ,Pt

∗(t)
)

= {ϒ(t +1)−ϒ(t)}PT
(
τs
∗ (t) ,Pt

∗(t)
)

As F (ϒ(t)) > 0, ϒ(t +1) should be greater than ϒ(t). Hence, F (ϒ,τs,Pt) goes on
decreasing in successive iterations.

168



Appendix E

Proof of Theorem 3.

In the absence of an attacker, Q f in terms of Q̄d is expressed as (3.4) (considering the
single threshold-based detection scheme). Taking the first derivative of DP (τs) with
respect to τs, we have

dDP (τs)

dτs
=

1
Γ
− 1

Γ
Q
[
a+b

√
τs fs

]
− (τd)

Γ

b
√

fs√
8πτs

exp

{
−
(
a+b

√
τs fs
)2

2

}
− Q̄d

Γ
(E.1)

From (E.1), it is obvious that lim
τs→0

dDP(τs)
dτs

= −∞ and lim
τs→Γ

dDP(τs)
dτs

> 0. Hence, DP (τs)

decreases from τs to τs
∗, and the increases from τs

∗ to Γ. Further differentiating (E.1),
it is proved that d2DP(τs)

dτs2 > 0. Hence, DP (τs) is a convex function of τs. So, there exists
a unique solution τs

∗ in the range [0,Γ] at which DP (τs) is minimum. Thus, Theorem 3
is proved.
Similarly, it can be proved that DA (τs) is also a convex function of τs.

169



Appendix F

Proof of Proposition 4.

Given Pe (λ ) = zPf (λ ) + (1− z)Pmd . Differentiating both Pf (λ ) and Pf (λ ) with
respect to λ we have

dPf (λ )

λ
=−

√
N

2ση
2
√

π
exp

−1
2
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2
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2
√
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 (F.1)

and

dPd (λ )

λ
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√
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So,
dPe (λ )

λ
= z

dPf (λ )

λ
− (1− z)

dPd (λ )

λ
(F.3)

Using (F.1) and (F.2), and further differentiating both the sides of (F.3), we obtain

d2Pe (λ )

dλ 2 =
zN

2ση
4
√

2π
Q−1 (Pf (λ )

)
exp
{
−1

2
(
Q−1 (Pf (λ )

))2
}
−

(1− z)N

2(P+ση
2)

2√2π
Q−1 (Pd (λ ))exp

{
−1

2
(
Q−1 (Pd (λ ))

)2
}

(F.4)

In the practical wireless environment, Pf should be less than 0.5 and Pd should be greater
than 0.5 are desirable to maximize the system throughput [86]. Hence, for Pf ≤ 0.5 and
Pd ≥ 0.5, (F.4) is positive.
Thus Pe (λ ) is a convex function of λ .
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Appendix G

Formulation of Proposed Method using the
Trigonometric FLANN.

This describes the formulation of our proposed method implementating the FLANN to
predict spectrum occupancy one day in advance. The FLANN model consists of the
4 dimensional input pattern χ = [OT ,OW ,OT H ,OF ]

T . So, χ is a matrix composed of
4×32 elements. The procedure to implement FLANN is summarized below.
Step-1: Initialize the input matrix.
Step-2: Initialize τi and i= 1, then the ith element of OT is expanded by the following
functional expansion

Z(τi) = [OT (τi),cos(πOT (τi)),sin(πOT (τi)),cos(2πOT (τi)), ...,sin(4πOT (τi))]

(G.1)
Step-3: Initialize iteration r = 1 and the weight vector for Z(τi) is
Wτi

(r) =
[
Wτi

1 (r) ,Wτi
2 (r) , . . . .,Wτi

J (r)
]T where J is the number of functional

elements, and here j = 9.
Step-4: Compute the output of the ith element as

Ōτi
(r) = sigmoid (Z(τi)Wτi

(r)) , (G.2)

and compute the corresponding error as eτi
(r) = OT (τi)− Ōτi

(r).
Step-5: Update the weight as Wτi

(r+1) = Wτi
(r) + ϕβ̄τi

(r)Z(τi)T , where
β̄τi

(r) =
(

1−
(
Ōτi

(r)
)2
)

eτi
(r).

Step-6: Repeat Step-3 to Step-5 until the convergence criteria is satisfied.
Step-7: Repeat Step-2 to Step-6 until spectrum occupancy statistics of all the 32
elements of OT are evaluated.
Step-8: Thus, the final occupancy statistic of Tuesday OT F (τ1,τ2, ..,τI) is estimated
and predict occupancy for Wednesday i.e. ÔW (τ1,τ2, ..,τI). Then, follow Step-2 to
Step-7 to predict the occupancy statistic for Thursday.
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